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Abstract 

Agriculture is one of the most vulnerable sectors to climate change. The current vulnerability 

assessments through traditional fragmented sectoral methods are insufficient to capture the effects on 

complex agricultural systems. Therefore, the traditional methods need to be replaced by integrated 

approaches. The objective of this study is to propose a holistic vulnerability assessment method for 

agricultural systems. By aggregating both agro-ecological and socio-economic information, we develop 

an agricultural systems vulnerability index (ASVI) which allows for: (i) a classification of geographical 

units according to their vulnerability level; (ii) an identification of key determinants of vulnerability for 

each unit; (iii) an assessment of adaptation policy scenarios considering their effects on the 

sustainability of the analysed systems. The proposed method is applied in the Khorezm region of 

Uzbekistan – a representative irrigated agricultural region in the Lower Amu Darya river basin. A 

decision support tool is used to facilitate multi-criteria decision analysis, including the computation of 

the index and performing sensitivity analysis of the results. The assessment for Khorezm reveals 

significant spatial differences of vulnerability levels due to a variation of contributing factors, e.g. 

natural resources, water productivity, rural-urban ratio. It reveals also that feasible land and water 

management policies could reduce the vulnerability in Khorezm, particularly in the districts with the 

poorest agro-ecological conditions. Overall, the proposed method could support national and local 

authorities in the identification of sustainable adaptation policies for the agriculture sector. 

 

Key words: adaptation, vulnerability, Amu Darya, integrated indicators, sensitivity, sustainability, 

irrigated agriculture 
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1 Introduction 

Agriculture remains a key economic sector for many low-income countries, accounting on average for 

28% of their gross domestic product (GDP) (World Bank 2013). The sustainability of agricultural 

systems depends on many drivers acting at multiple scales, from local to global. At a local scale, the 

performance of agricultural production systems depends on the availability of natural resources (soil 

and water in particular), climatic conditions, and several social and economic variables (availability of 

production factors, entrepreneurship, infrastructures). In a globalised world, local social and 

environmental systems are affected by exogenous drivers, which cannot be controlled or managed 

locally, such as national and supranational policies and markets, and climatic changes.  

Undoubtedly, climate change as a global driver poses a significant threat to agriculture, particularly in 

arid regions. The latter are exposed to more frequent hydrological extreme events and changes in the 

seasonal agro-meteorological conditions, along with land degradation and desertification (Gain and 

Wada 2014; IPCC 2014b).  The climatic changes originate from both natural phenomena and 

anthropogenic activities. It is evident that the solution of climate change problems should theoretically 

be found in the implementation of effective global policies tackling the phenomena at their origin, and 

in particular in the control of greenhouse gas concentrations. Following international agreements such 

as the Kyoto Protocol, mitigation policies have been implemented to varying extents in various 

countries, but they have been shown to be insufficient for controlling the trends of climatic changes. As 

a consequence, policy makers have shifted their focus from attempting to mitigate global warming to 

the need to adapt to its current and future impacts. 

Numerous methods for the assessment of climate change impacts on agriculture have been proposed 

(e.g. Banerjee et al. 2014; Calzadilla et al. 2013; Howden et al. 2007; Mendelsohn 2014; Molua 2009; 

Morton 2007). A vast body of literature has shown that social and economic factors, along with 

environmental change, contribute negatively to the scale of the impact (e.g. Antwi-Agyei et al. 2012; 

Harvey et al. 2014; Lindoso et al. 2014; Sommer et al. 2013). Some of these studies (Berry et al. 2006; 

Harvey et al. 2014; Lindoso et al. 2014; Luers et al. 2003) are framed within the concepts of risk and 

vulnerability.  

The various existing definitions of risk and vulnerability have created a heterogeneous understanding 

of the terms, leading to disagreement within the scientific community, concerning in particular how to 
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measure imprecisely defined variables (Birkmann 2006b; Füssel 2007; Gain et al. 2012). Nevertheless, 

there is common understanding that vulnerability is a component of risk and a condition for a system 

to be adversely affected (IPCC 2014b).  

Recent vulnerability assessment frameworks have conceptually integrated the research streams of 

climate change adaptation (CCA) and disaster risk management (DRM) (Birkmann et al, 2013; Gain et 

al. 2012; Giupponi et al. 2015; IPCC 2012). The Fifth Assessment Report (AR5) of the Intergovernmental 

Panel for Climate Change (IPCC) recognizes that “vulnerability encompasses a variety of concepts and 

elements including sensitivity or susceptibility to harm and lack of capacity to cope and adapt” (IPCC 

2014b, p. 5). However, in the AR5 of the IPCC, exposure is considered an external element while 

assessing risk. Alternatively, Birkmann et al. (2013) suggest that vulnerability is a function of exposure, 

susceptibility and (lack of) resilience. Of relevance to the agricultural systems analysis under global 

environmental change is the vulnerability framework proposed by Turner II et al. (2003), which is in 

line with the CCA stream of thoughts and strongly emphasizes human-environmental linkages. 

When referring to vulnerability assessment for agricultural systems, three distinctive research streams 

are highlighted in the literature: 

-The research stream on agro-ecological (AE) assessments (e.g. Liu et al. 2013; Srivastava et al. 

2010) considers the sensitivity of crop production to climatic shocks. The methodological 

approaches of this stream include statistical and multi-criteria analysis of AE indicators; 

- The economic assessments of the agricultural sector analyse the effects of climate change on its 

economic performance (e.g. Calzadilla et al. 2013; Molua 2009). Key performance indicators are 

agricultural productivity and farm income. The assessments are based primarily on econometric 

analysis using partial or general equilibrium models. 

-The assessments on social aspects (e.g. Antwi-Agyei et al. 2012; Harvey et al. 2008; Morzaria-Luna 

et al. 2014) present the social vulnerability perspective. This research stream analyses the 

relationship between agricultural performance and climatic hazards by incorporating indicators of 

adaptive capacity.  

The interactions between AE and socio-economic (SE) aspects within the agricultural systems are 

complex across spatio-temporal scales. Therefore, holistic vulnerability assessments for agriculture 

that reflect the multi-dimensional nature of the concept have received less attention (e.g. Balbi et al. 
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2013; Monterroso et al. 2014; Zarafshani et al. 2012; Yuan et al. 2015). This approach requires: (i) an 

integrated consideration of cross-disciplinary indicators; and (ii) a suitable normalization or 

standardization procedure, and aggregation methods (Gain and Giupponi 2015). 

In order to reduce vulnerability in a changing world, it is necessary to assess and compare plausible 

case-specific strategies, including CCA (Balbi et al. 2013; Giupponi et al. 2013). The latter involves 

decisions and actions, which could mitigate damage or take advantage of new opportunities (IPCC 

2014a). The availability of numerous funding mechanisms, including those under the United Nations 

Framework Convention on Climate Change (UN FCCC), and a range of bilateral and multilateral 

agreements (Conway and Mustelin 2014; Hulme et al. 2011) have led to the intensification of the 

international community’s commitment to enhancing CCA action. The Copenhagen Accord, adopted at 

the Fifteenth session of the Conference of the Parties (COP) to the UN FCCC, offered opportunities to 

significantly advance the climate change agenda and to establish a solid enabling environment for CCA. 

In the following years, there was a steady increase in the emphasis upon adaptation at the COP to the 

UN FCCC, in recognition of the crucial role of National Adaptation Plans (NAPs) in building adaptive 

capacity and resilience of the socio-ecological systems, and reducing their vulnerability to climate 

change. Effective CCA strategies have been identified as a combination of both bottom-up reactive local 

actions at state level and global initiatives (Adger et al. 2005; Biesbroek et al. 2010; Ladoba 2014). 

Vulnerability approach to adaptation planning is a central concept in key international climate change 

frameworks and funding mechanisms (Füssel and Klein 2006; IPCC 2014b). Adaptation action in 

agriculture is influenced by the effects of climatic (climate change, variability and extremes) and non-

climatic (economic conditions, politics, environment, society and technology) conditions and forces. 

Therefore, the vulnerability approach to CCA could be suitable for identifying case-specific conditions 

under which adaptive decisions should be made (Smit and Skinner 2002).  

Vulnerability reduction in the agricultural sector should be approached in a sustainable mode. The IPCC 

(2014a, p. 26) defines sustainability as “a dynamic process that guarantees the persistence of natural 

and human systems in an equitable manner”. However, this aspect is poorly reflected in the existing 

vulnerability assessment methods for agriculture. 

Looking across disciplines, the most common method for quantification of vulnerability is the indicator-

based assessment. Despite the existence of concerns over the actual quantification of vulnerability, 

4 
 



vulnerability assessment tools have a significant positive impact upon scientifically sound and socially 

coherent adaptation planning (Giupponi et al. 2013). Furthermore, vulnerability indicators appear to 

be useful tools for communicating complex state-of-affairs (Hinkel 2011).   

A better understanding of the factors which make (local, national, global) agricultural systems 

vulnerable to climate change and hazards would support governments in developing national and 

global CCA strategies. With this motivation, the objective here is to contribute to the literature on 

vulnerability assessment for agriculture in the context of CCA by proposing a holistic approach and 

integrating assessment results with a sustainability analysis of adaptation scenarios. We provide a 

comprehensive assessment of vulnerability of agricultural systems at a sub-national scale through 

aggregation of AE and SE information into one agricultural systems vulnerability index (ASVI). We 

further seek to evaluate the effect of a set of CCA measures on regional vulnerability, while accounting 

for the sustainability of the AE and SE systems.  

The methodological framework is applied to the case study of the Khorezm region of Uzbekistan, which 

is a proper example of: (i) an irrigated agricultural system in an arid/semi-arid region threatened by 

significant reduction of (Amu Darya) river water flows during the vegetation period, also caused by 

global change (Schlüter et al. 2013); (ii) a sub-national vulnerability assessment in a country with an 

agricultural sector under strong and close surveillance of the national administration, including the 

provision of state production quotas for cotton and wheat; (iii) a centralized water management system 

(Veldwisch et al. 2012); and (iv) limited data availability.  

2 Methodological framework 

2.1 A conceptual model for vulnerability assessment  

According to Spedding (1988, p. 15), “the operational units of agriculture may be described as 

agricultural systems, including all the variations in size and complexity of a unit that are called 

enterprises, farms, plantations, regional and national agricultures”. Here references are made to the 

regional and national agricultural systems, which consist of cropping/livestock and ecological (i.e. 

natural resources such as land and water) systems. In a broader context, the regional and national 

agricultures have agrarian structures combining the economic, social, technical and political factors 

and processes that affect agricultural production. The agrarian structure therefore describes the socio-

economic and technological factors of vulnerability. 
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To structure this complex analysis, we group the components of the agricultural systems into those 

with an AE dimension (e.g. soil properties, cropping-patterns, irrigation network) and SE dimension 

(e.g. economic activities and social relations) (Fig. 1). This approach allows for further analysis of the 

results in terms of environmental and SE sustainability.  

To conceptualize the vulnerability analysis, we draw upon the vulnerability frameworks of Birkmann 

et al. (2013) and Turner II et al. (2003), and refer to the definitions specified in the glossary of terms of 

the AR5 of the IPCC (IPCC 2014a) (Fig.1). We examine exposure through indicators, which reflect the 

presence of AE and SE assets or resources that could be adversely affected by climate change or hazard 

events. Hazards due to global climate change are considered an external pressure (or shock) with a 

degree, magnitude and probability of occurrence, without necessarily being in direct contact with the 

system. Framing the exposure in this way allows us to evaluate climatic scenarios and link the 

vulnerability assessment to further risk analysis. Similarly, the climate vulnerability index (CVI) 

(Sullivan and Meigh 2005) and water vulnerability index (WVI) (Sullivan 2011) contain indicators 

including surface water availability and climate impact on water resources among others.  

The factors that determine the susceptibility of the system are the properties predisposing elements at 

risk to suffer harm (Birkmann et al. 2013). Resilience is related to factors shaping the ability of a system 

to cope with and adapt to shocks or gradual changes, such as functional efficiency, capacity, diversity, 

and accessibility.  

Operationalizing vulnerability assessment should facilitate decision-making through: (i) an 

identification of key vulnerability factors and regions with higher potential impacts of climate change 

and hazards, and (ii) ex-ante evaluation of CCA and risk reduction policies. For this purpose, it is 

essential to provide an explicit analysis of vulnerability that can be useful for improved planning and 

decision-making in the agricultural sector.  In addition, the development of policy scenarios should be 

an integral part of the analysis (Fig. 1). The proposed methodological framework (Fig. 1) also suggests 

that adaptation and risk mitigation efforts increase the resilience and decrease the susceptibility and 

exposure of the agricultural system. Furthermore, the conceptual model for vulnerability assessment 

for agricultural systems highlights the importance of achieving balance between the two agricultural 

sub-systems (AE and SE) through sustainable climate policies.  

 

6 
 



 

[Figure 1 (Conceptual model for vulnerability assessment for agricultural systems) here] 

 

2.2 Selection of agro-ecological and socio-economic indicators 

Appropriate indicators for vulnerability assessment can be developed in a systematic way by: (i) 

defining the system boundaries; (ii) understanding the direct and indirect linkages between the system 

components and outlining the main assumptions and hypotheses; (iii) preparing a preliminary list of 

indicators based on existing literature on relevant indicators; and lastly, (iv) selecting a final set of 

indicators based on stakeholders’ involvement (Gain et al. 2012). The final list of vulnerability 

indicators should contain the most sensitive factors related to the agricultural system – climate change 

nexus.  
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The available literature is rich in guidance for selection of indicators (e.g. Birkmann 2006; OECD 2008). 

However, in this paper we have incorporated tangible criteria considering the specific vulnerability 

assessment context. Firstly, both agricultural systems and vulnerability have a dynamic nature and 

therefore evaluators should account for slow-changing variables, such as soil-properties (Luers 2005). 

Specifically, agricultural systems are composed of human and environmental components, both of 

which change over time but at a different pace. For example, agricultural productivity in a certain region 

might increase in a relatively shorter period; however, unsustainable resource utilization could lead to 

land degradation in a longer period. Similarly, the concept of vulnerability implies change over time, 

not only due to changes in the system components, but also as a result of adaptation responses to 

climate change (Birkmann et al. 2013). Secondly, given the strong grip of the national administration 

on the lower level administrations, including those in the case study, the proposed methodological 

framework refers to multi-level analysis, i.e. national, regional and even sub-regional levels. However, 

this intention may be restricted by differences in data availability at these levels and make it necessary 

to re-scale from sub-regional to national assessment, and vice versa. In general, larger sets of statistical 

data for SE variables are available at national and regional levels, while AE information is accessible 

mainly at local level. Thirdly, selected indicators should capture the impact of the intended policy 

scenarios upon the provision of robust information to decision-makers. 

2.2.1 Indicators used for the agro-ecological system 

The vulnerability of the AE systems is determined by factors of exposure, susceptibility and resilience. 

Following the definitions provided (Sections 1 and 2) the level of exposure of an AE system could be 

measured through natural resource indicators such as water availability and cropland. For example, it 

is assumed that regions with a higher share of cropland are more exposed to climate change and shocks 

because they have more assets that could be adversely affected. Susceptibility is related to the 

properties of the AE system, which make the system more fragile and sensitive, grouped here into 

environmental quality and degradation, and agricultural production sensitivity, respectively. Soil and 

water quality (including groundwater and irrigation), for example, are among the main environmental 

compartments in agro-environmental assessments (Giupponi and Carpani 2006).  Agricultural 

production loss is an indirect output measurement of agricultural sector sensitivity to climate 

pressures.  
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Resilience is shaped by agricultural diversity, and productivity, technical efficiency and capacity. 

Diversity is a well-recognized pre-condition for resilience (Schouten et al. 2012). Thus, it is assumed 

that agricultural production differentiation is correlated to the AE system’s greater capacity to cope 

with changes and shocks. Aspects such as water and land productivity, and irrigation system efficiency 

and capacity are factors used to reflect the resilience and overall capacity of the production process. 

2.2.2 Indicators used for the socio-economic system  

Exposure of the SE system is composed of economy (agricultural output) and people. It is assumed 

therefore that regions with a higher agricultural output or regions with a higher population density will 

be more exposed to climate effects. The factors that shape the sensitivity of the human component are 

dependence and development, and access to resources. It is assumed that regions that are highly 

dependent on the agricultural sector or have a low rate of production growth would be at a high risk of 

water scarcity (Gain and Giupponi 2015). Furthermore, social vulnerability studies include indicators 

for access to resources such as access to water for irrigation (e.g. Sullivan and Meigh 2005). Finally, the 

resilience of the SE system was measured using indicators of SE agrarian structure. The latter 

characterize the coping and adaptive capacity of the regions, which is limited or enhanced by the 

system’s properties, such as land ownership, farm typology and labour organization.  

2.3 Aggregation and policy evaluation method 

Normalisation, one of the preliminary steps for the aggregation of diverse indicators, makes it possible 

to deal with the different measurement units. Several normalization techniques exist in the literature 

(OECD 2008), and the best choice depends on the indicators under consideration, and the preferences 

of the decision-maker (Gain and Giupponi 2015). After normalizing the indicator values (i.e. 

transforming them into real numbers between zero and one), the final outcome (in this paper the ASVI) 

is the result of a hierarchical combination of several indicators that need to be aggregated. The need to 

aggregate multi-dimensional information constitutes a challenge for the selection of a methodological 

approach. Suitable aggregation algorithms need to be selected in accordance with the logic of the 

conceptual framework, but also according to the elicited preference of the decision makers (Gain and 

Giupponi 2015; Giupponi et al. 2013). Statistical and participatory methods could be applied for 

composite indicator development. For instance, large datasets are often aggregated through a 

combination of multivariate statistical techniques, such as principal component and factor analysis. In 
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addition, there are also widely applied simplified methods such as simple additive weighting (SAW) 

with equal weights.  

The proposed assessment method provides flexibility in terms of analytical approaches according to 

the desired outcome. For example, the method can be applied for: participatory or data-driven 

vulnerability assessment; spatial or aggregated analysis; multi-criteria decision analysis of climate 

change and policy scenarios. The framework can also integrate the output of external models. We 

perform the vulnerability assessment using the mDSS decision support tool developed within the 

NetSyMod framework (Network Analysis – Creative System Modelling – Decision Support) (Giupponi 

et al. 2008). The mDSS software was initially developed as a Multi-sectoral Integrated and Operational 

Decision Support System for Sustainable Use of Water Resources at the Catchment Scale (Giupponi 

2007). The tool has been used in several cases to facilitate the involvement of stakeholders and experts 

in environmental decision-making (Giupponi 2014). In this study we adopted the mDSS tool for: (i) 

normalization and aggregation of the spatial data; (ii) ranking within and across scenarios and mapping 

of the results; and (iii) sensitivity analysis of the obtained ranks of scenario options.  

 

3 Application of vulnerability assessment method to irrigated agriculture in the case study area 

 

3.1 System of agro-ecological and socio-economic indicators for Khorezm 

Khorezm is located in the northwest, arid/semi-arid parts of Uzbekistan (60°05′ and 61°39′ E longitude 

and 41°13′ and 42°02′ N latitude) and comprises 680,000 ha (Fig. 2). The population is 1.7 million, 

while agriculture accounts for about 35% of the regional gross production. The livelihoods of the 

majority of the people are highly dependent upon the Amu Darya river waters as the region is 

characterized by irrigated agriculture. The cropland of Khorezm comprises 270,000 ha and is entirely 

dependent on irrigation. Small areas of the irrigated land are also used for livestock rearing, 

horticulture and gardens. Aleksandrova et al. (2014) previously summarized the determinants of 

regional climate change vulnerability for the study area, to which we refer here and summarise below. 

Annual precipitation is barely 100 mm and occurs mainly during the fall and winter seasons, while the 

annual evapotranspiration is 1400–1600 mm. Climate change threatens the Khorezm region through 
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changes in the quantity and timing of Amu Darya discharges (Schlüter et al. 2013) leading to more 

frequent drought events.  

 

[Figure 2 (Map of the Khorezm region of Uzbekistan and its administrative districts) here] 

Environmental deterioration, including groundwater salinization and land degradation, has become a 

major concern in Khorezm. The average groundwater salinity value for Khorezm continues to lie in the 

moderately saline waters (Rhoades et al. 1992), meaning that it does not directly affect the performance 

of crops. However, increasing groundwater salinity combined with high temperatures driving 

evapotranspiration have exacerbated secondary soil salinization (Tischbein et al. 2012). Consequently, 

more water is required to leach the accumulated salts. At present, about 40-60% of the croplands in the 

region are salinized. The soil organic matter (SOM), estimated at only 7.5.g kg-1 on average in the topsoil 

(Akramkhanov et al. 2012), has been continuously affected by intensive soil tillage, high temperatures 

and intensive irrigation. In addition, soil degradation has increased significantly, particularly during 

water-scarce periods. 

The sensitivity of the agricultural systems in Khorezm is determined by several factors such as: (i) the 

dominance of high water demanding crops, mainly cotton (Gossypium hirsutum) and rice (Oryza sativa), 
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and to a lesser extent wheat (Triticum aestivum); (ii) the high dependence on irrigated agriculture; and 

(iii) the low diversification of farmers’ income; (iv) the high percentage of the rural population which 

accounts for 67% of the total population (Aleksandrova et al. 2014).  

Local water distribution management is a prime determinant of the access to water of farmers, 

especially during water-scarce seasons. It includes storage of water in the Tuyamuyun reservoir 

(upstream from Khorezm) and sub-regional distribution through primary (inter-region), secondary 

(inter-farm) and tertiary (on-farm) canals. The inefficiency of the irrigation system together with the 

restrictive water management by the national and regional administration have had a particularly high 

impact. Existing policies prioritize water distribution to cotton and wheat fields, and restrict rice 

cultivation in case of expected water scarcity. 

Furthermore, national policies affect the resilience in the region through frequent land reforms, state 

land tenure and production quotas for cotton and wheat (Aleksandrova et al. 2014). Cotton and wheat 

farming is dominant, whereas the agricultural diversity varies within the districts of Khorezm. Karimov 

(2012) found that crop diversification is positively related to the higher technical efficiencies of the 

farmers in Khorezm.   

A survey among key informants (Supplement 1) was conducted based on a semi-structured 

questionnaire to examine the underlying factors of vulnerability for the last 15 years. Specifically, open-

ended questions were used to explore the impacts of past experiences of water scarcity and to 

characterize the determining factors. In addition, a preliminary list of indicators was presented during 

focus group discussions among national and international scientists with substantial research 

experience (4 to 10 years) in the Khorezm region. A total of nine researchers participated, with 

backgrounds in agricultural economics, water management, environmental monitoring, agronomy and 

afforestation. Building upon the survey findings (Table 1), focus group recommendations and previous 

research results (Aleksandrova et al. 2014), the proposed vulnerability assessment method for 

agricultural systems was operationalized upon data availability. The final set of selected indicators is 

listed in Table 2 (details are provided in Supplement 2). 
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[Table 1 (Key vulnerable groups and factors identified by key informants) here] 

 

 

3.2 Scenario specification 

3.2.1 Impact of climate change on water flow for irrigation 

The latest assessment of the impact of climate change on the water flow to the midstream Kerki gauging 

station (upstream from the Tuyamuyun reservoir which discharges water to Khorezm), suggests that 

the average multi-year seasonal discharge will drop by 13% in 2030 and by 22% in 2050 (Schlüter et 

al. 2013). These findings are based on various assumptions relating to greenhouse gas concentrations, 

and future institutional and technical conditions. Here, we consider the case of a 20% reduction of the 

average water flow to each district of Khorezm during the vegetation season (April-September). Even 

though the expected climate changes and land degradation in the Central Asian region are significant 

(IPCC 2014b; Mannig et al. 2013), to simplify our feasibility study, we explore the case of reduced water 

flow in the current environmental conditions.  
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[Table 2 (Components of vulnerability and selected indicators) here] 

 

 

14 
 



3.2.2 Adaptation policy scenario  

According to the available statistical data, the environmental pressures are higher in three districts of 

Khorezm located at the tail-end of the primary irrigation canals, namely Kushkupir, Shavat and 

Yangiarik (Fig.2). More specifically, these districts share the following characteristics: the lowest access 

to irrigation; the lowest cotton yield (Ruecker et al. 2012); high share of low quality cropland; the 

highest groundwater salinity. Therefore, the following adaptation scenario was explored for those 

districts: 

 50% reduction in the use of low quality cropland (defined in Supplement 2) for cotton production as 

a water-saving measure. The existing estimates suggest that eliminating marginal areas (soils with 

low productivity) from the irrigation plan could save 15-20% surface water (Awan et al. 2012). 

Therefore, it was assumed that with a 50% reduction in the use of low quality cropland, each of the 

three districts could save about 10% water; 

 20% reduction of the cotton area in addition to the reduced low quality cropland; 

 100% reduction of the rice areas, which could save up to 1% water (Awan et al. 2012); 

 replacement of the reduced cotton area with fruit and vegetable cultivation. This could save about 

9% water (Awan et al. 2012) and increase the farmers’ income (Bobojonov et al. 2012). 

This set of adaptation measures could bring several additional SE benefits. For example, a recent 

analysis on the prospects of afforestation of the Khorezm’s marginal croplands reveals that tree 

plantations represent an applicable option for income diversification, soil salinity improvement and a 

decrease in the regional water demand (Khamzina et al. 2012). Furthermore, an overall reduction of 

the cotton cropland in the range of 17-69% (i.e. reduction of raw cotton production) could maintain the 

same level of cotton export revenues provided the potential of the cotton value chain were better-

exploited, e.g. through investments in the processing sector such as cotton fibre and fabric production 

for export (Rudenko et al. 2013; Rudenko et al. 2012). 

Building upon these findings, it was assumed that adaptation would not have a negative effect upon the 

indicators for gross agricultural production (GAP) and compound rate of agricultural growth per cap 

(CRAG) and therefore those elements were kept at the baseline state. However, the agricultural 

diversity index (ADI) and share of non-cotton/wheat farms (SNCWF) values were increased in 

accordance with the adaptation scenario, referring to increased resilience and capacity. Moreover, 
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economic water productivity (EWP) should increase, whereas we again assume constant GAP yet less 

water demand due to the set of measures. 

The adaptation scenario developed seeks to explore adaptation options at a sub-regional scale in 

Khorezm. Imposing water-saving measures only in those districts with the highest environmental 

degradation and the lowest access to irrigation is a more feasible near-future scenario. Given the 

governmental policies of prioritization of raw cotton production, the explored set of measures could 

hardly be introduced across all districts. Furthermore, the proposed adaptation scenario is used for 

sensitivity tests of the spatial multi-criteria analysis.  

Developing upon the above specifications, two scenarios were explored in this study: (i) 20% reduced 

water flow under business-as-usual conditions, referred to as BAU -20%; and (ii) 20% reduced water 

flow with imposed adaptation measures in three districts (as described above), referred to as ADAPT -

20%. 

3.3 Vulnerability assessment 

3.3.1 ASVI computation and results 

Descriptive statistics are derived to explore the baseline dataset (Supplement 2). The original data (10 

observations) is composed of 14 indicators with diverse measurement units. All variables are 

quantitative, except access to irrigation (AI), which is categorical. Given this structure of the dataset, 

Pearson correlation analysis was performed to verify the relationships between the indicators 

(Supplement 3). The sign of the correlation coefficient r is consistent with the theoretical knowledge, 

with the exception of some cases (such as r of AI and CRAG), in which r is very low and not statistically 

significant. Given the small sample size, variables with r>0.8 were considered with caution during the 

robustness tests of the baseline results. High correlation (i.e. r>0.8) exists between: GAP and population 

(PPL); GAP and rural population (RPPL); cotton/wheat area (CWA) and ADI. However, these indicators 

belong to different sub-components of the ASVI (except GAP and PPL), and were therefore preserved 

during the first run of the model. 

The full dataset, containing baseline data and two scenario matrices (BAU -20% and ADAPT -20%) (i.e. 

30 observations and 14 indicators), was normalized (min-max method) and aggregated with mDSS 

software using SAW. We assigned equal hierarchical weights (EHW). The ranking algorithm was based 
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on the surface area of each district. The hierarchical design allowed us to group the indicators into sub-

indices that share the same dimension of vulnerability (Fig. 3). The index values were divided into 3 

classes (1-low, 2-medium and 3- high vulnerability) within the range of the minimum and maximum 

scores: (i) for the baseline scenario; and (ii) jointly for the BAU -20% and ADAPT -20% to provide a 

basis for adaptation policy evaluation. In the baseline assessment, the ASVI values were in the range 

0.45-0.65, while for the two water scarcity scenarios (BAU -20% and ADAPT -20%) the scores ranged 

between 0.30-0.68. 

 

[Figure 3 (Structure of the agricultural systems vulnerability index (ASVI) for Khorezm) here] 

 

The summary of the results obtained in mDSS, including the level of vulnerability and the associated 

dominant factors, are provided in Fig. 4 and 5 (detailed description of the vulnerability patterns for 

each district is provided in Supplement 4). The most critical elements shaping vulnerability within the 

region differ across the districts. The indicators related to cotton and wheat farming are set into the 

sensitivity and resilience sub-indices, and the districts with the lowest share of their production fall in 
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the low and medium vulnerability classes. The state of the natural resources (soil, water) and water 

productivity are also major determinants of the districts’ vulnerability to climate pressures. In addition, 

the population size, rural-urban ratio and gross agricultural output within the region, supplement the 

spatial variability of the ASVI and its sub-components. 

 

[Figure 4 (Baseline index mapping) here] 
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[Figure 5 (Baseline sub-index chart) here] 

 

3.3.2 Sensitivity analysis of the baseline ASVI 

Following the baseline estimations, the robustness of the ASVI was carried out by analysing its 

correlation with the input parameters. Four indicators were significantly correlated (with r>0.6): crop 

area (CA), CWA, ADI, SNCWF. Given this result and the high correlation between the GAP and PPL 

indicators belonging to the same sub-component of the ASVI, several sensitivity tests of the weighting 

method were performed (Table 3). 

First, the weight of the indicator PPL was reduced in favour of that of the GAP indicator, since it has 

very high values in Urgench and Khiva - two urban-dominated districts.  However, the effect of the 

change in the vulnerability class is reflected only in the rank of Gurlen, which has the second highest 

GAP in Khorezm after Urgench. In addition, the weights of the CA, ADI and SNCWF indicators were 

reduced separately and jointly, since those indicators showed a higher correlation with the ASVI 

compared to the rest of the indicators. Change in the vulnerability class occurred solely for Urgench. 

The last run of the robustness test accounted for the change in the weights of the vulnerability sub-

components (exposure, susceptibility, lack of resilience). The latter addressed the correlation problem 

within the exposure component, and between exposure, lack of resilience and ASVI by assigning lower 

weights. Those modifications changed the classes of the three districts with the highest exposure 

indices of all. Lastly, lowering the weight of the SNCWF indicator significantly changed the class of 

Urgench to one with much higher vulnerability. Given that the class sensitivity under the alternative 
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weighting scheme affects primary Urgench district, we used the EHW approach throughout the 

analysis. 

[Table 3 (Sensitivity of the class agricultural systems vulnerability index (ASVI) due to a change in the 

assigned weights) here] 
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3.3.3 Spatial analysis of the ASVI under different scenarios 

The change in the aggregated ASVI values under the explored scenarios is given in Table 4. The results 

show that the lowest vulnerability values are obtained under the scenario ADAPT -20% (values range 

0.30 – 0.61), while the highest vulnerability is observed under the scenario BAU -20% (values range 

0.47 – 0.68). Changing only one indicator equally across all districts, i.e. water flow (WF) under scenario 

BAU -20%, leads to a higher overall vulnerability but preserves the original rank order. 

The spatial sensitivity of the ASVI to a change in several indicators related to adaptation is high. This is 

confirmed by the change of the classes of the districts in which the adaptation was imposed (Yangiarik, 

Kushkupir, Shavat) (Fig. 6). According to the sensitivity analysis performed through mDSS, the most 

critical criterion1 for rank volatility for the three districts is the AE exposure sub-component. The most 

vulnerable districts identified in the baseline assessment (Shavat and Kushkupir) are those with the 

highest volatility of the classes. However, the rank order of the rest of the districts follows the same 

pattern. 

 

[Table 4 (agricultural systems vulnerability index (ASVI) values under different scenarios) here] 
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[Figure 6 (agricultural systems vulnerability index (ASVI) for Khorezm under different scenarios) 

here] 

 

3.3.4 Adaptation policy evaluation 

The analysis presented above demonstrated how local actors can apply the proposed method not only 

to assess the current vulnerability in Khorezm, but also to explore the effects of plausible scenarios on 

the spatial distribution of vulnerability. However, to support development planning, we seek to also 

analyse the effect of adaptation on the AE and SE systems as a means to integrating adaptation policies 

evaluation with sustainability analysis. For this purpose, we use the vulnerability sub-indices (exposure 

AE and SE, susceptibility AE and SE, lack of resilience AE and SE) for the three districts in which 

adaptation measures were imposed (Fig. 7). A change in the values of the sub-indices under the 

explored scenarios occurs only in four components, namely, exposure AE, susceptibility AE, lack of 

resilience AE and SE.  

The sustainability patterns for Kushkupir and Shavat are similar since the two districts share common 

vulnerabilities. Significant reduction of AE susceptibility and overall lack of resilience is observed in all 

districts.  The increased SE resilience, determined by the indicator for the type of farming, has a very 

strong influence on the overall vulnerability reduction.  
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[Figure 7 (Comparison of the sub-component scores of the agricultural systems vulnerability index 

(ASVI) for three districts of Khorezm under different scenarios) here] 

 

4 Discussion  

Global change and water availability, in particular, are of major concern in achieving food security and 

enhancing rural development in Central Asia. Djanibekov et al. (2013a) assessed that the pressure on 

the water resources in Uzbekistan is expected to rise significantly due to increasing economic growth, 

unless policy actions take place. Looking into these pressing needs, the vulnerability assessment for 

Khorezm could serve as a model for the analyses of policy implications at sub-national level. While 

previous research in the case study region looked into the benefits of options for improved land and 

water management (e.g. Djanibekov et al. 2013b; Martius et al. 2012; Rudenko et al. 2013), a multi-
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dimensional assessment of the regional vulnerability to climate change at sub-national level was 

performed here, linking multiple dynamic factors and policy responses into aggregated information for 

policy-makers.  

This study found that there are significant spatial differences between the AE and SE determinants of 

the districts’ vulnerability, which should be considered in the rural development and climate change 

policies. The explored adaptation scenario targeted the districts with the poorest agro-environmental 

conditions. A differential approach to adaptation planning which considers the spatial differences could 

be a feasible pathway to initiate adaptation, given constraints in the region such as state production 

quotas and the need for substantial investments in the irrigation infrastructure (Aleksandrova et al. 

2014), while contributing to a more equal development. Bekchanov et al. (2010) already discussed the 

importance of equal water distribution in improving low water productivity in the tail-end districts. 

Similarly, Dubovyk et al. (2012) recommend prioritized mitigation planning in the low-fertility lands 

located close to the natural sandy desert, since land degradation in those areas is significantly high. As 

mentioned, tree plantation is a suitable risk mitigation, water saving and income diversification policy 

(Section 3.2). Importantly, the districts with the highest environmental susceptibility have a high share 

of land for cotton cultivation. Therefore, agricultural production diversification is crucial for regional 

resilience, especially in the most vulnerable districts.  

The vulnerability analysis for Khorezm could be further extended to risk assessment, considering 

future environmental and SE change. The case study presented is an example of data constrained 

vulnerability assessment. Therefore the analysis would benefit from the involvement of key 

stakeholders in the ASVI and scenario development process. Adaptation policy impact assessments 

from external models could be linked to the framework through the mDSS tool for multi-criteria 

analysis of various policy options.  

The vulnerability assessment for the agricultural sector requires an integrated approach coupling AE 

and SE systems. This concept should also relate to dynamic processes before becoming suitable for 

scenario analysis. The proposed approach bridges the vulnerability assessment with policy decision-

making, which makes it a useful supplementary methodology for identifying hazard prevention policies 

and CCA measures. 
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The ASVI tool allows integrated, spatial and comparative assessment of local vulnerability to climate 

change and hazards. Furthermore, the method presented here adds several features to the vulnerability 

assessment methods for agricultural systems that are not common in the current literature. Firstly, the 

ASVI incorporates indicators reflecting global change (such as land degradation) impacts at a regional 

scale, which makes it compatible with further risk analysis. Secondly, the proposed method is suitable 

for evaluation of adaptation scenarios considering three pillars of sustainability (environment, society, 

economy), and hence the ASVI tool incorporates the core principles of the global agenda for sustainable 

development under climate change. In addition, the tool could facilitate discussion among local 

stakeholders for identification of priority regions and areas for policy intervention. Therefore, policy-

makers working in the field of agriculture can adopt the framework in order to identify sustainable 

solutions of local issues under climate change. 

The methodology is transferable to other case studies, providing flexibility in terms of weighting and 

aggregation methods. We explored non-participatory techniques, but the selected mDSS software is a 

proven tool for policy evaluation with stakeholders’ involvement (Giupponi 2007 2014; Giupponi et al. 

2008). While further work is required to refine the methodology for wider applicability, the approach 

proposed here could facilitate dialogues among local and national actors.  

The analysis performed aimed at exploring the applicability of the method in assessing the impact of 

the potential reduction of irrigation water availability and of the set of adaptation measures upon the 

Khorezm regional vulnerability. The application in the case study considers min-max linear scaling for 

normalization, which is a commonly used method in hierarchical models. The hierarchical approach to 

the configuration of social vulnerability indices is highly accurate though a certain level of uncertainty 

originates at the weighting stage (Tate 2012). Special attention was paid, therefore, to the weighting 

algorithm of the case study assessment. The robustness tests through a change in the weights of the 

baseline ASVI showed that the index is highly sensitive to the AE exposure and resilience indicators. 

However, the vulnerability class of only one district reflected these changes, which is most likely related 

to the highest values of several exposure indicators for the district. The sensitivity tests showed 

satisfactory stability of the ranks under different scenarios.  
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This study has several other acknowledged shortcomings. First, the method has only been exemplified 

through the Khorezm case study. Even though indicator development involved local stakeholders, a 

backward communication of the final results to the key policy-decision makers was not feasible.  

Second, the adaptation scenario developed is based on literature review findings. Therefore, it is limited 

by the assumed changes in, or preserved constant values of, the AE and SE parameters. For instance, 

climate change would affect crop production through a change in the seasonal agro-meteorological 

conditions not only through the irrigation water availability. Nevertheless, the incentive behind the 

scenario analysis was to demonstrate the applicability of the vulnerability assessment approach for 

policy evaluation, and to explore the uncertainty in the use of the developed ASVI. 

Third, we have concentrated on a district scale analysis within a region. Spatial up-scaling of the 

vulnerability approach, however, is associated with several challenges, such as: (i) possible loss of 

information during the process of transferring the approach from a local to a higher level; and (ii) 

assumptions suitable for one spatial level might not be adequate for another level (Eriksen and Kelly 

2007; Fekete et al. 2010). In addition, the choice of scale yields different relationships between the 

indicators (Tate 2012). 

5. Conclusion 

Arid and semi-arid regions occupy vast territories in Africa, South and Central Asia. The decreasing 

water availability in major rivers predicted for many of these regions means that nations and 

communities need to adapt to these environmental changes (IPCC 2014b). The international 

community has already recognized that effective CCA strategies should be built upon local and regional 

knowledge of vulnerability and sustainable practices (e.g. IPCC 2014b, IPCC 2012). However, 

adaptation strategies based only on local and community level adaptation are frequently inadequate in 

accounting for interactions with regional and global drivers. Therefore, more robust multi-scale 

initiatives are required (Laboda 2014) to obtain significant impacts on large proportions of affected 

population.  Furthermore, the AR5 of the IPCC postulates that adaptation should be developed by 

integrating strategies targeted at ensuring water availability and supply, food security, and increased 

agricultural income (IPCC 2014b).   

Looking into these emerging issues, this study argues that a holistic approach to vulnerability 

assessment for agricultural systems could contribute to improved decision-making in CCA at sub-
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national level, and hence to supporting global efforts intended to build resilient agricultural systems. 

The study further demonstrates how policy-makers could evaluate the sustainability of adaptation 

options within the framework of vulnerability.    

The proposed assessment method can be used in other geographical areas as a generalized operational 

method for the aggregation of multi-dimensional spatial information, relevant to describing 

determinants of vulnerability and upon which scenarios of future conditions could be applied. Hence, 

the derived ASVI could be a useful tool for: (i) informing adaptation planning in agriculture (e.g. 

targeted resource allocation), provided that the adequate indicators are considered in each specific 

case; (ii) facilitating discussion on sustainable local action in response to global change; and (iii) 

monitoring and evaluation of climate risk management policies. However, we must bear in mind that 

vulnerability indicators reduce complexity, which could lead to misinterpretation of information, 

meaning that they should be considered as entry-points for adaptation planning and allocation of 

resources, rather than as prime criteria (Hinkel 2011).  

This study also provides a concrete example of a set of adaptation measures, which are likely to have 

the potential to be implemented in many irrigated dry regions in Asia and elsewhere. Key strategies  

supporting global efforts to combat water scarcity in semi-arid regions, as well as environmental 

deterioration such as soil salinization, that are also suitable for irrigated agriculture include: (i) 

improved water management; (ii) increased diversification of the agricultural production with 

reduction of water-intensive crops; and (iii) an applied differential approach to adaptation planning in 

the sector accounting for environmental and socio-economic vulnerabilities of the agricultural systems.  

 

Notes 

1 The most critical criterion is part of the sensitivity analysis performed in mDSS software. It shows 

the criterion that could reverse the ranking of the options given the smallest change in its weight 
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Figure 1 Conceptual model for vulnerability assessment for agricultural systems, which links the 

vulnerability assessment to the sustainability analysis and policy decision-making 

Figure 2 Map of the study site.  Top left: Central Asia regional map. Bottom left: map of Uzbekistan. 

Right side: map of Khorezm with its administrative districts 

Figure 3 Structure of the agricultural systems vulnerability index (ASVI) for Khorezm (applied simple 

additive aggregation method with equal hierarchical weights) 

Figure 4 Spatial distribution of agricultural systems vulnerability index (ASVI) for Khorezm under 

baseline scenario (2012).  The ASVI values for each class are in following range: low 0.45-0.51, medium 

0.52-0.58, high 0.59-0.65 

Figure 5 Distribution of sub-component scores of agricultural systems vulnerability index (ASVI) for 

Khorezm under baseline scenario (2012), by district. AE refers to agro-ecological; SE refers to socio-

economic 

Figure 6 Agricultural systems vulnerability index (ASVI) for Khorezm under two scenarios - BAU -20% 

(business-as-usual scenario with reduction of water flow by 20%) (left) and ADAPT -20% (adaptation 

scenario under 20% less water availability) (right). The ASVI values for each class are in the following 

range: low 0.30-0.42, medium 0.43-0.56, high 0.57-0.68 

Figure 7 Comparison of sub-component scores of the agricultural systems vulnerability index (ASVI) 

for three districts of Khorezm under two scenarios – BAU_S_20% (business-as-usual scenario with 

reduction of water flow by 20%) and ADAPT_S_20% (the case of introducing a set of adaptation 

measures in response to expected 20% less water availability). AE refers to agro-ecological; SE refers 

to socio-economic 
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List of Tables: 

Table 1 Summary of the results of survey exploring vulnerability to water scarcity in the Khorezm 

region of Uzbekistan - key vulnerable groups and factors identified by key informantsa  

Vulnerable group Vulnerability factors 
Population (urban and rural)  Both urban and rural population could be negatively affected by water scarcity, 

because Khorezm is an agricultural region, and local food markets react to 
environmental change through prices. 
 The rural population is more sensitive to water scarcity due to the high percentage 
of people employed in the agricultural sector and the dependence of households’ food 
self-sufficiency on their own production. 

Farmers  Cotton and wheat farmers are most vulnerable because: 
- they have to meet state production quotas and the price of their output is fixed 

(governmental support is provided during severe water scarcity); 
- cotton fields require more water than gardens, and cotton is more sensitive to 

the timing of irrigation, in comparison to gardens; 
 Rice farmers generate good profit if there is enough water, but at the same time rice 
production is restricted by the government during water scarce years. 
 Farmers from the tail-end (downstream) districts receive less water especially 
during drought years, i.e. have lower access to resources than the up- and mid-stream 
districts. 
 Some of the rice, fruit and vegetable-producing farmers can generate sufficient profit 
during water scarce years due to higher market prices. 
 The farmers face high risk of water scarcity due to frequent land reforms, state land 
tenure and generally poor irrigation infrastructure and management. 
 Poor soil properties and high salinization are major problems. 

aThe list of key informants included in the survey is provided in Supplement 1.  The survey was 
conducted in April and May 2013 in the Khorezm region of Uzbekistan by the lead author. A total of 10 
unique interviews with key informants were performed 
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Table 2 Components and selected indicators for measuring agricultural systems vulnerability to climate 

change and water scarcity for Khorezm  

Componenta Category Relationship 
with ASVIb 

Selected indicatorc 
Acronym 

AE exposure Natural resources - water flow to district WF 
+ crop area (% of total for Khorezm) CA 

SE exposure Economy and people + population (% of total for Khorezm) PPL 
+ gross agricultural production district share  GAP 

AE 
susceptibility 

Environmental quality 
and degradation 

+ groundwater salinity (average) GS 
+ low quality cropland (% of cropland in 

district) 
LQCL 

Agricultural production 
sensitivity 

+ cotton/wheat area (share in total district 
area) 

CWA 

+ rice area (share in total district area) RA 
SE 
susceptibility 

Dependence and 
development 

+ rural population share (% for the district) RPPL 
- compound rate of agricultural growth per 

cap 
GRAG 

Access to resources - access to irrigation AI 
AE resilience Productivity, efficiency 

and capacity 
- economic water productivity EWP 

Diversity - agricultural diversity index ADI 
SE resilience Socio-economic agrarian 

structure 
- share of non-cotton/wheat farms in the 

district 
SNCWF 

aAE refers to agro-ecological; SE refers to socio-economic  
bASVI refers to agricultural systems vulnerability index 
cIndicators specification, descriptive statistics and correlation analysis are presented in Supplement 2 
and Supplement 3 
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Table 3 Results of performed sensitivity tests of baseline agricultural systems vulnerability index 

(ASVI) as regards volatility of the class of ASVI to a change in the assigned weights of input parameters  

aThe first row presents vulnerability classes of the baseline index derived by using equal hierarchical 
weights (EHW). Rows 2-6 show sensitivity tests based on a change in the weights of a number of 
indicators. The numbers/symbols in each column refer to: 1 - low vulnerability class; 2 - medium 
vulnerability class; 3 - high vulnerability class; * - value at the border between two classes. 

 

 

 

 

 

 

 

 

 

 

Changes in 
assigned 
weightsa 

Bagat Gurlen Khanka Khushkupir Shavat Urganch Khazarasp Khiva Yangiarik Yangibazar 

EHW 1 2 1 3 3 2 3 1 2 2 
PPL=0.25, 
GAP=0.75 1 3 1 3 3 2 3 1 2 2 
CA=0.25, 
WF=0.75 1 2 1 3 3 1 3 1 2 2 
ADI=0.25, 
EWP=0.,75 1 2 1 3 3 2 2--3* 1 2 2 
CA=0.25, 
WF=0.75, 
ADI=0.25, 
EWP=0.75 1 2 1 3 3 1--2* 3 1 2 2 
SNCWF=0.50 1 2 1 3 3 2--3* 3 1 2 2 
E=0.25, 
S=0.50, R=0.25 1 2 1 3 3 1 2 1 3 2 
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Table 4 Estimated values of agricultural systems vulnerability index (ASVI) under different scenarios 

with applied equal hierarchical weighting (EHW) method, by district of Khorezm 

District Baseline (2012) BAU -20%a ADAPT -20%b 
Shavat 0.65 0.68 0.38 
Khushkupir 0.63 0.66 0.41 
Khazarasp 0.59 0.60 0.61 
Gurlen 0.58 0.61 0.61 
Yangibazar 0.56 0.59 0.59 
Yangiarik 0.53 0.55 0.30 
Urgench 0.52 0.55 0.55 
Khanka 0.48 0.50 0.50 
Bagat 0.46 0.48 0.48 
Khiva 0.45 0.47 0.47 

aBAU -20% refers to business-as-usual scenario with reduction of water flow by 20% 
bADAPT -20% refer to the case of introducing a set of adaptation measures (as described in Section 3.2) 
in response to the expected 20% less water availability 
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Supplement 1  
Table S1 List of key informants included in surveya for exploring the vulnerability to water scarcity in 
Khorezm region of Uzbekistan 
  

Organization Field of expertise 
International development organization 
working in the region 

Rural development, farmers’ adaptation, water and 
agriculture management  

Ministry of Agriculture and Water resources 
of the Republic of Uzbekistan 

Agronomy and water management  
Agricultural economics  
Village representative  

Regional branch of the State Committee for 
Natural Protection 

Environmental protection, ecological conservation and 
restoration  

Khorezm Administration on 
Hydrometeorology (Uzhydromet) 

Climate and water  

Khorezm representative of Farmers’ 
Association of the Republic of Uzbekistan 

Farmers’ support services (information dissemination, 
trainings, market access)  

Insurance company (Uzagrosugurta) 
 

Natural disaster losses in the agricultural sector 
(assessment and coverage) 

Water Consumer Association  Local representatives from Gurlen and Kushkupir 
districts 

 
aThe survey was conducted in April and May 2013 in the Khorezm region of Uzbekistan by the lead author. 
A total of 10 unique interviews with key informants were performed 
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Supplement 2 
Table S2 Detailed specification of indicators and descriptive statistics 
 

Indicators: description, relevance and data source Min  Max Mean  St. dev. 

WF (water flow to district, million m3) 
Water flow (WF) represents the long-term average water supply to each district 
which is planned by the government and determined by the water availability and 
annual crop planning. The values of the average water flow to each district during 
the vegetation period (1998-2012) were calculated based on data obtained from 
MAWR (2011)a and OblVodkhoz (2013)b. The indicator is assumed to be 
negatively related to the district’s vulnerability. 

203.13 
 

337.21 
 

266.89 
 

43.28 

CA (share of the crop area in the total area of Khorezm, %) 
The indicator presents the land planned for 1-year cropping as of January 2013 
(e.g. fruit trees gardens are multi-year plants thus are not included) and the data is 
taken from OblVodkhoz (2013)b. The indicator reflects which district has higher 
share crop land within Khorezm, thus is more exposed to climate change and 
water scarcity.  

6.50 
 

12.80 
 

10.00 
 

2.29 

PPL (population share in the total population of Khorezm, %) 
The indicator takes into consideration which districts are more populated and 
therefore more vulnerable. The data is for 01.01.2013 and originates from OblStat 
(2013a)c.  

4.66 
 

18.65 
 

10.00 
 

4.12 

GAP (district’s gross agricultural production share, %) 
This indicator shows the average gross agricultural production share of each 
district in the total GAP of the Khorezm, being a proxy for the exposure of the 
region. The source is OblStat (2013b)d.   
Remark: Even though the available data is for 1999-2012, the rate is calculated 
using data from 2009 onwards, due to the following factors: (i) new land 
consolidation reforms towards farm optimization were initiated in 2008, which 
would have affected farm efficiency and profits; (ii) 2008 was also severe drought 
year; (iii) even though 2011 was moderate drought year, the links between land 
reforms and drought impacts are reflected in the growth rate under current land 
reforms.  

7.34 
 

14.11 
 

10.00 
 

1.96 

GS (average groundwater salinity, g/l) 
The indicator shows the long-term average (1990-2004, no later data exists) 
ground-water salt content for each district. The dataset (ZEF/ UNESCO Project 
Database)e contains in total 1970 collecting points (observation wells) in Khorezm 
and on average 197 points per district. The samples were taken each year during 
April, July and October.  

1.47 
 
 
 

2.26 1.80 0.24 

LQCL (share of the low quality crop land in the total district's crop land, %) 
Official numbers are taken from OblVodkhoz (2013)b. Low quality crop land is 
defined as area with soil infertility. Soil quality conditions in Uzbekistan are 
measured through soil bonitet (an aggregate score in the range 0-100 of several 
parameters, including results of laboratory analysis) (Akramkhanov et al. 2012)f. 

6.93 
 
 
 

18.70 13.55 4.08 
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Indicators: description, relevance and data source Min  Max Mean  St. dev. 

The indicator reflects which district has higher share of poor quality soils as of 
January 2013, which suggests higher susceptibility. 

CWA (share of the cotton/wheat area in the total district’s area, %) 
Official numbers are taken from OblVodkhoz (2013)b and the indicator reflects 
which district has higher share of land used for cotton cultivation, thus sensitive to 
water scarcity (Remark: the values show jointly cotton and wheat area, since 
separate data for cotton area was not available, however big part of the cotton 
fields are rotated with winter wheat and therefore is considered suitable indicator 
variable).  

69.43 
 
 

90.67 
 

83.98 5.64 

RA (share of the rice area in the total district’s area, %) 
The data source is OblVodkhoz (2013)b. During a drought year, rice production is 
significantly reduced and therefore normal water availability year 2012 is taken to 
derive the indicator values. Our assumptions suggest that high share of rice areas 
makes the districts more vulnerable. 

4.30 
 
 
 

19.59 8.90 5.08 

RPPL (share of the rural population in the total for the district, %) 
The values show the districts with dominating rural population, thus more linked 
with agriculture. The data is as of 01.01.2013 and originate from the OblStat 
(2013a)c.  

48.04 
 

82.45 
 

69.58 
 

10.44 

CRAG (compound rate of agricultural growth per capita) 
The indicator takes 2009-2012 annual gross agricultural output per capita and 
measures the agricultural development of each district, whereas higher values 
reflect lower susceptibility. The data specification is same as GAP, including the 
reasoning for taking 2009-2012 series only. The formula used is as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �(𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐2012 𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐2009⁄ )
1
3� − 1 

0.02 
 

0.07 
 

0.03 
 

0.02 

AI (access to irrigation, category) 
The districts are first divided into 3 categories (upper-tail, mid-tail, end-tail) based 
on previous research (Bekchanov et al. 2010)g. The indicator reflects the location 
along the main irrigation canals which determines the access to water of each 
district. Therefore the category variables in this code refer to: 1- low access at the 
end-tail location (downstream); 2 - medium access at the mid-tail location 
(midstream) and 3 – high access at the upper-end location (upstream). 

1 
  

3 2  

EWP (economic water productivity, USZ/m-3) 
The indicator distinguishes which district has higher gross agricultural output per 
unit of water flow for the period 2009-2012 (i.e. it reflects land use, water use, 
technical efficiency and capacity). It is expected that the indicator will be 
positively related to the capacity of the district to optimize the water-use. The 
calculations are based on the data for WF and GAP, being specified above. The 
calculated values are similar to previously obtained results from Bekchanov et al. 
(2010)g for districts’ water productivity for the period 2000-2007. Difference is 
observed mainly in the productivity of Urgench and Khazarasp, but the datasets 
used in this study differ. 

9.35 
 

18.65 
 

14.31 
 

2.86 
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Indicators: description, relevance and data source Min  Max Mean  St. dev. 

ADI (agricultural diversity index, index) 
The index is calculated using Shannon's diversity index:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖 =  −� 𝑝𝑝𝑗𝑗
𝑆𝑆

𝑗𝑗=1
∗ 𝑙𝑙𝑙𝑙 𝑝𝑝𝑗𝑗 

where, 
i – district in the Khorezm region, pj – proportion of land (ha) used for j 
specialization, s – total land. 
The main specialization categories included are (the classification is made 
according to the data obtained from OblVodkhoz (2013)b): cotton and wheat; 
livestock; fruits and vegetables (horticulture; viticulture; watermelon; potatoes; 
other vegetables); other (silk; poultry; honey makers; fishery).  Higher ADI 
suggests more diversity, thus less vulnerability to climate change and water 
scarcity. 

0.41 
 

0.93 
 

0.58 
 

0.14 

SNCWF (share of non-cotton/wheat farms for each district, %) 
Using the same dataset as ADI, this indicator is a proxy for land tenure and 
freedom in decision-making, since cotton and wheat farmers are under state quota 
production system, including strict requirements on the production techniques 
(fertilizers use, tillage, etc.), as well as lower opportunities for making profit. 
Therefore, SNCWF is assumed to be negatively related with vulnerability. 

46.41 
 

68.51 
 

57.20 
 

6.94 

aMAWR (2011) Land and Water Use Values for Uzbekistan for 1998–2010. Ministry of Agriculture and Water Resources of the 
Republic of Uzbekistan 

bOblVodkhoz (2013) Annual Bulletin, January 2013. Khorezm Regional Department of Agriculture and Water Resources 
Management. Ministry of Agriculture and Water Resources, Uzbekistan 

cOblStat (2013a) Socio-economic indicators for Khorezm. Regional Statistical Department, Urgench, Uzbekistan 
dOblStat (2013b) Agricultural Indicators for Khorezm Oblast. Regional Statistical Department, Urgench, Uzbekistan 
eZEF/ UNESCO Project Database 
fAkramkhanov A, Kuziev R, Sommer R, Martius C, Forkutsa O, Massucati L (2012) Soils and soil ecology in Khorezm. In: 

Martius C, Rudenko I, Lamers JPA, Vlek PLG (eds) Cotton, water, salts and soums: Economic and ecological restructuring 
in Khorezm, Uzbekistan, Springer Netherlands 

gBekchanov M, Karimov A, Lamers JPA (2010) Impact of water availability on land and water productivity: A temporal and 
spatial analysis of the case study region Khorezm, Uzbekistan. Water 2 (3):668-684 (Special Issue: Challenges and 
Developments on Water Resources Management in Central Asia) 
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Supplement 3  1 
Table S3 Pearson correlation coefficients for the baseline scenario dataset 2 
 3 

  WF CA PPL GAP GS LQCL CWA RA RPPL CRAG AI EWP ADI SNCWF 

WF 1.00              

CA 0.47 1.00             

PPL 0.17 0.08 1.00            

GAP 0.38 0.43 0.80 1.00           

GS 0.43 -0.10 -0.36 -0.42 1.00          

LQCL -0.37 -0.30 -0.49 -0.61 0.59 1.00         

CWA 0.25 0.48 -0.65 -0.25 0.15 -0.01 1.00        

RA -0.13 0.42 -0.18 0.26 -0.25 0.01 0.16 1.00       

RPPL -0.38 -0.47 -0.70 -0.89 0.34 0.62 0.20 -0.34 1.00      

CRAG 0.16 -0.04 0.50 0.27 -0.32 -0.55 -0.33 -0.43 -0.29 1.00     

AI -0.07 0.40 -0.05 0.32 -0.64 -0.48 0.31 0.56 -0.15 -0.18 1.00    

EWP -0.45 0.08 0.62 0.63 -0.74 -0.24 -0.46 0.41 -0.51 0.03 0.43 1.00   

ADI -0.26 -0.54 0.60 0.18 -0.08 0.07 -0.99 -0.19 -0.13 0.31 -0.35 0.40 1.00  

SNCWF -0.25 -0.76 0.24 -0.14 0.26 0.33 -0.52 -0.49 0.31 -0.10 -0.38 0.07 0.59 1.00 
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Supplement 4  23 
Table S4 Summary of the results of the baseline agricultural systems vulnerability assessment for Khorezm – 24 
a detailed characterization by district 25 
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District Level of vulnerability and key factors 

Bagat 
 

Vulnerability: low. The baseline scenario rank of Bagat is 9, suggesting one of the 
lowest levels of vulnerability in the region. Overall, Bagat has low exposure and high 
resilience in comparison with the other regions. Meanwhile, the susceptibility falls in the 
mid-class, shaped primary by the highest for Khorezm dependence and development, i.e. 
RPPL and CRAG indicators. 

Gurlen 
 

Vulnerability: medium. Gurlen, even though located close to the river, has medium 
exposure, susceptibility and very low resilience. To this contribute the high values of the 
indicators CA, GAP and the huge land used for cotton and wheat, including the lowest 
share of non-cotton farms. Major susceptibility factor is also the largest share of the land 
used for rice cultivation. 

Khanka 
 

Vulnerability: low. Khanka district has the lowest susceptibility in Khorezm, associated 
with the lowest environmental deterioration, the highest value of CRAG indicator and 
its upstream location. Despite the medium exposure and the high lack of resilience as a 
result of the low agricultural diversity and the high share of cotton and wheat farms, the 
low susceptibility place the district in the low vulnerability class. 

Khazarasp 
 

Vulnerability: high. Khazarasp is the largest district and has the largest share of crop 
land which contributes to the high exposure. Susceptibility of the region, however, is 
medium, shaped by the low CRAG value and the high agricultural production sensitivity 
due to the intense cropping of cotton and rice (Khazarasp and Gurlen are the largest rice 
producers in Khorezm). Even though the district has the highest economic water 
productivity within the region, the low agricultural production diversification places the 
region in the mid-range of the resilience class.  

Khiva 
 

Vulnerability: low. Khiva is the district with the highest resilience in Khorezm due to 
the high agricultural diversity and economic water productivity. Meantime, the district 
has the smallest share of land used for cotton and wheat cultivation. 

Kushkupir 
 

Vulnerability: high. Kushkupir holds a big share in the Khorezm crop land, and the 
same time has the lowest water availability and contributes little to the regional GAP. 
The high exposure and the medium susceptibility and lack of resilience, make Kushkupir 
the second most vulnerable district. Together with Shavat, the region has the highest 
environmental degradation and poorest land and water resources quality – a situation 
aggravated by the high share of cotton production. Importantly, the region has the lowest 
economic water productivity. 
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Shavat 
 

Vulnerability: high. Shavat share the same environmental and water access challenges 
as Kushkupir, as well as the high scale of cotton production given the poor state of its 
natural resources. Water flow to the district however is higher in comparison to 
Kushkupir, which places Shavat in the mid-class of exposure component. 

Urgench 
 

Vulnerability: low to medium. Urgench is the Khorezm regional centre, with the 
highest values of PPL and GAP indicators, and at the same time it holds a large share of 
Khorezm’s crop land. All of those factors contribute to the highest value of exposure 
within the region. However the district have very low susceptibility related to the better 
state of land and water resources and highest share of urban population in comparison 
with the rest of the districts. The lack of resilience sub-index of Urgench is in the lower 
range of mid-class.  

Yangiarik 
 

Vulnerability: medium. Yangiarik is a downstream district, with the highest regional 
susceptibility sub-index, main determinants of which are the poor environmental quality, 
the high share of cotton and wheat fields, as well as the dominance of the rural population 
and the lower agricultural development rate. However, Yangiarik is the least exposed 
district, having the lowest CA and GAP indicators values. The district has medium 
resilience. 

Yangibazar Vulnerability: medium. Similarly to Yangiarik, Yangibazar has very low level of 
exposure, primary determined by the lowest socio-economic exposure component (PPL 
and GAP indicators). Meantime, the region has high susceptibility and lack of resilience, 
with the following most critical factors: the highest share of cotton/wheat area, very high 
share of rural population, mid-stream location and the lowest agricultural production 
diversity.  
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