1	
2	
3	
4	Noble gases in sulfide deposits of modern deep-sea hydrothermal systems:
5	Implications for heat fluxes and hydrothermal fluid processes
6	
7	Zhigang Zeng ^{a, c, *} , Samuel Niedermann ^b , Shuai Chen ^a , Xiaoyuan Wang ^a , Zhaoxue Li ^a
8	
9	
10	^a Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and
11	Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
12	^b Deutsches GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany
13	° Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266071, China
14	
15	
16	
17	*Corresponding author. Email address: zgzeng@ms.qdio.ac.cn (ZG. Zeng). Postal
18	address: Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine
19	Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, 7
20	Nanhai Road, Qingdao 266071, China. Tel.: +86 532 82898525; fax: +86 532
21	82898525.
22	

23 ABSTRACT

24 Studies of noble gases in seafloor sulfide deposits are an important tool for understanding the origin of ore-forming fluids, both enabling the determination of 25 26 noble gas sources and revealing the degree of fluid-rock interaction and mantle 27 degassing. The noble gas concentrations and isotopic compositions of 27 sulfide, 3 sulfate, and 2 opal mineral aggregate samples have been studied in different 28 hydrothermal fields from the East Pacific Rise, Mid-Atlantic Ridge, Central Indian 29 30 Ridge, Southwest Indian Ridge, and North Fiji Back-Arc Basin. The helium concentrations and isotopic ratios in the sulfide aggregate samples are variable (⁴He 31 0.12 to 22×10^{-8} cm³ STP/g; ³He/⁴He ~0.6 to 10.4 R_a), and most of the sulfide helium 32 33 concentrations are higher than those in the opal mineral samples (⁴He 0.017 and 0.028 $\times 10^{-8}$ cm³ STP/g), suggesting that the low-temperature fluids have lost their mantle 34 35 helium during cooling. The helium of high (> 7 Ra), medium (1–7 Ra), and low (≈ 1 36 Ra) ³He/⁴He ratio samples is derived mainly from the MORB or OIB mantle by magma degassing, from mixing between hydrothermal fluid and seawater during 37 ore-forming processes, and from ambient seawater, respectively. The high ³He/⁴He 38 39 ratios (> 7 Ra) of sulfides imply that high-temperature sulfides retain the helium isotopic compositions of the primary hydrothermal fluid, whereas low-temperature 40 41 sulfides, sulfates, and opal minerals do not.

The neon, argon, krypton, and xenon concentrations in the sulfide aggregate samples are also variable; in most of the sulfide aggregates, they are significantly lower than in the sulfate and opal mineral samples. It is known that barite and opal minerals are

45	characteristic of low-temperature (< 200°C) paragenetic associations, indicating that
46	heavier noble gases (Ne, Ar, Kr and Xe) are enriched under low-temperature
47	conditions. Most of the sulfide, sulfate and opal mineral aggregate samples possess
48	heavy noble gas elemental abundances similar to those of air-saturated seawater and
49	Ne, Ar, and Xe isotopic compositions that span narrow ranges around atmospheric
50	values, an observation which is most easily explained by the dominance of a
51	seawater-derived component.
52	In addition, based on the calculated helium/heat ratios, global helium and heat fluxes
53	to high-temperature hydrothermal vents are approximately 0.05–6 $\times 10^4$ kg per year
54	and 0.1–12 ×10 ¹² W, meaning that roughly 0.3% of ocean heat is supplied by seafloor
55	high-temperature hydrothermal activity.
56	Keywords: noble gases; massive sulfides; sulfates; opal; seafloor hydrothermal
56 57	Keywords: noble gases; massive sulfides; sulfates; opal; seafloor hydrothermal systems
57	
57 58	
57 58 59	
57 58 59 60	
57 58 59 60 61	
57 58 59 60 61 62	
57 58 59 60 61 62 63	

67 **1. Introduction**

68 The study of noble gases in seafloor hydrothermal sulfides is key to revealing the 69 evolution of seafloor hydrothermal systems. Such studies can be used to reconstruct 70 fluid temporal variability and to extend our knowledge of the helium/heat ratio back 71 into the geological record (e.g., Turner and Stuart, 1992; Stuart et al., 1994a, b; 72 Jean-Baptiste and Fouquet, 1996; Zeng et al., 2001, 2004). To date, noble gas studies 73 have been performed in sulfide deposits of modern seafloor hydrothermal fields in the 74 Middle Valley of the northern Juan de Fuca Ridge (NJdFR) (Stuart et al., 1994a, b); in 75 the Trans-Atlantic Geotraverse (TAG) and Snake Pit hydrothermal fields of the 76 Mid-Atlantic Ridge (MAR) (Stuart et al., 1994b; Zeng et al., 2001); in the East Pacific 77 Rise (EPR) near 13°N (Stuart et al., 1995; Jean-Baptiste and Fouquet, 1996) and 21°N 78 (Turner and Stuart, 1992; Stuart et al., 1994b); in the JADE hydrothermal field of the 79 Okinawa Trough (Zeng et al., 2004; Hou et al., 2005; Lüders and Niedermann, 2010); 80 in the North Fiji Basin (NFB) (Lüders and Niedermann, 2010); and in the PACMANUS hydrothermal field of the Manus Basin in Papua New Guinea (Webber 81 82 et al., 2011). The ³He/⁴He ratios of sulfide-, sulfate-, and opal-hosted fluid inclusions 83 from the Middle Valley, the EPR near 13°N and 21°N, the TAG, Snake Pit, JADE, NFB, and PACMANUS hydrothermal fields range from 0.29 to 13.3 Ra (sulfide 84 samples, n=96; R_a is the atmospheric ³He/⁴He ratio of 1.39×10⁻⁶) and from 2.6 to 12.4 85 R_a (sulfate and opal samples, n=16), respectively (Turner and Stuart, 1992; Stuart et 86 87 al., 1994a, 1994b, 1995; Jean-Baptiste and Fouquet, 1996; Zeng et al., 2001, 2004; 88 Hou et al., 2005; Lüders and Niedermann, 2010; Webber et al., 2011). Most of these

89	values are almost indistinguishable from the ${}^{3}\text{He}/{}^{4}\text{He}$ ratios of vent fluids (5.3–8.3 R _a)
90	from these hydrothermal fields (e.g., Lupton et al., 1980; Craig and Lupton, 1981;
91	Kim et al., 1984; Kennedy, 1988; Kodera et al., 1988; Jean-Baptiste et al., 1991;
92	Rudnicki and Elderfield, 1992; Charlou et al., 1996) and of MOR basalts (6-11 Ra)
93	(Kurz et al., 1982; Graham, 2002), suggesting that helium is predominantly derived
94	from a magmatic source beneath the hydrothermal systems (Zeng et al., 2004; Hou et
95	al., 2005; Lüders and Niedermann, 2010). This shows that the fluid inclusions of
96	sulfides reliably record the helium isotope ratio of the original hydrothermal fluid
97	(Lüders and Niedermann, 2010). In the Middle Valley, the ${}^{3}\text{He}/{}^{4}\text{He}$ ratios (5.8–7.1 R _a)
98	of fluid inclusions in sulfide minerals are lower than those of typical MOR vent fluids
99	(~8 Ra; e.g., Craig and Lupton, 1981; Kennedy, 1988; Kodera et al., 1988) and are
100	closer to those of vent fluids from the sediment-covered Guaymas basin (7 R_a ; Lupton,
101	1983), suggesting a contribution of radiogenic He derived either from sedimentary
102	pore fluids or from aging of the magmatic system beneath the NJdFR (Stuart et al.,
103	1994a). The fluid-inclusion ³ He/ ⁴ He ratios of sulfides reflect a mixture of
104	basalt-derived He and radiogenic He acquired from pore fluids in the overlying
105	Pleistocene turbidite sediments after seawater-basalt interaction, and the He isotopes
106	can be used to distinguish pore fluids from seawater in seafloor hydrothermal systems
107	(Stuart et al., 1994b). In another study, the helium isotopic compositions of
108	fluid-inclusions in hydrothermal sulfides from the EPR near 13°N were measured
109	using both crushing and heating techniques, and comparison of the two extraction
110	methods suggests that both techniques give similar results (Jean-Baptiste and Fouquet,

111 **1996**).

112	The elemental abundances of Ne, Ar, Kr, and Xe in fluid inclusions of sulfide samples
113	from the JADE hydrothermal field and NFB suggest that the heavier noble gases are
114	derived from ambient seawater (Zeng et al., 2004; Lüders and Niedermann, 2010).
115	The Ar, Kr, and Xe concentrations of Middle Valley sulfides are 10 to 50 times higher
116	than those of sulfides from the EPR near 21°N, and the Ar and Xe isotopic ratios of
117	sulfides from both settings are indistinguishable from atmospheric values (Turner and
118	Stuart, 1992). The argon isotopic ratios in fluid inclusions of sulfides from the TAG
119	(⁴⁰ Ar/ ³⁶ Ar 287-359; Zeng et al., 2001) and the PACMANUS hydrothermal field
120	(⁴⁰ Ar/ ³⁶ Ar 295–310; Webber et al., 2011) are somewhat more variable, but still close
121	to the atmospheric ratio (295.5 after Nier, 1950; 298.56 after Lee et al., 2006; Mark et
122	al., 2011). This also indicates that most of the heavier noble gases come from seawater
123	(Turner and Stuart, 1992; Zeng et al., 2001; Webber et al., 2011). Likewise, ⁴⁰ Ar
124	excesses of up to 2.6% relative to atmospheric Ar (i.e., ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ up to 303) are
125	present in fluid inclusions of sulfide samples from the EPR near 13°N. Fluid-inclusion
126	${}^{3}\text{He}/{}^{4}\text{He}$ ratios of 7.3–9.3 R _a in the same samples are typical for mid-ocean ridge
127	hydrothermal fluids and imply a mantle origin for the ⁴⁰ Ar excess also (Stuart and
128	Turner, 1998).
120	Although noble gases in seafloor hydrothermal sulfides can provide important

Although noble gases in seafloor hydrothermal sulfides can provide important information on fluid sources, fluid flux changes (e.g., Turner and Stuart, 1992), and hydrothermal processes (e.g., Stuart et al., 1994a, b), noble gas composition data for fluid inclusions in sulfide, sulfate, and opal samples from seafloor hydrothermal

133	systems in mid-ocean ridge (MOR) and back-arc basin (BAB) settings are still scarce;
134	in particular, Ne, Ar, Kr, and Xe data for modern seafloor sulfide deposits are lacking.
135	In this study, noble gas concentrations and isotopic compositions have been measured,
136	for the first time, in seafloor hydrothermal sulfide deposits from the EPR near 1-2°S,
137	the Logatchev hydrothermal field (LHF) in the MAR near 15°N, the MAR near 13°S,
138	the Central Indian Ridge (CIR), and the Southwest Indian Ridge (SWIR) (Fig. 1). The
139	characteristics of noble gas concentrations and isotopic compositions in sulfide,
140	sulfate, and opal mineral aggregates are described, seawater and magmatic noble gas
141	contributions are characterized, the implications for fluid-rock interaction and
142	fluid-seawater mixing are explored, and helium and heat fluxes from hydrothermal
143	fluids to seafloor hydrothermal sulfide deposits are evaluated.
144	
145	
146	
146 147	
147	
147 148	
147 148 149	
147 148 149 150	
147 148 149 150 151	

155 **2. Sampling and methods**

176

156 Seafloor hydrothermal sulfide samples were recovered by TV-grab samplers from the fast-spreading EPR near 13°N, the ultra-fast spreading EPR near 1-2°S, the Kairei 157 hydrothermal field (KHF) and the Edmond hydrothermal field (EHF) on the 158 159 intermediate-spreading CIR near 25°S, the slow-spreading MAR near 13°S and at the LHF (15°N), and the ultra-slow spreading SWIR near 63.5°E and in the "A" area 160 (49°E) in 2005, 2007, 2008, 2009, and 2010 during the DY105-17, DY115-19, 161 162 DY115-20, and DY115-21 cruises of R/V "Dayang Yihao". Sulfide samples from the Sonne 99 hydrothermal field (S99HF) in the back-arc North Fiji Basin (NFB) were 163 164 collected in 1998 during the SO134 cruise of HYFIFLUX II (Fig. 1). 165 At the EPR near 13°N and 1-2°S, the KHF, the EHF, the MAR near 13°S, the A area, 166 the SWIR near 63.5°E, and the S99HF, the seafloor hydrothermal sulfides are hosted 167 by mid-ocean ridge basalt (MORB) (e.g., Zeng et al., 2010, 2014). The KHF is 168 situated on basaltic rocks but the hydrothermal fluids also interact with and circulate through ultramafic rocks (Nakamura et al., 2009). In the LHF, the hydrothermal 169 sulfide deposit is associated with ultramafic rocks located in a debris flow consisting 170 171of heterogeneous ultramafic and mafic intrusive rocks, including serpentinized harzburgite, serpentinized dunite, gabbronorite, and olivine-bearing basalt (e.g., 172Petersen et al., 2009; Zeng et al., 2014). Figure 1 and Table 1 give information about 173174the sampling location, depth, and mineralogy of hydrothermal sulfide samples. 175 Seafloor hydrothermal sulfide samples consist of major pyrite ± marcasite,

chalcopyrite, sphalerite, anhydrite, barite, opal, and minor galena.

177 Sulfide, sulfate, and opal mineral aggregate samples were taken from various seafloor 178 hydrothermal sulfide deposits. Samples denoted as pyrite, sphalerite, chalcopyrite + pyrite, sulfate, and opal consist of abundant (> 30%) pyrite \pm marcasite, sphalerite, 179 180 chalcopyrite + pyrite, anhydrite + barite, and opal respectively. All the samples were 181 crushed and sieved to select sulfide, sulfate, and opal aggregates between >1 mm and 1 cm. All mineral aggregate samples destined for noble gas analysis were then 182 hand-picked carefully under a binocular microscope to avoid contamination by oxides. 183 184 These samples were placed in distilled water, exposed to ultrasonic waves for 15 min, and washed in pure water (18.2 M Ω) to remove impurities from the surface. All 185 186 samples were then dried and stored in a desiccator.

187 For noble gas analysis at GFZ Potsdam, samples of 0.13–1.1 g of various sulfide, 188 sulfate, and opal mineral aggregates were loaded one at a time into an ultra-high 189 vacuum crusher. For the first six samples analyzed (designated by * in Tables 2 and 3), 190 the crusher was baked at 100 °C for 24 h. However, a very slow reduction of pressure during pumping and baking as well as persisting high blanks after the baking 191 192 procedure indicated that not only adsorbed atmospheric gases, but also part of the 193 fluid inclusion-hosted original noble gases might be lost before crushing extraction. Therefore, for all remaining samples, the crusher was just pumped for typically 16–20 194 195 h without baking before the blank measurement and subsequent crushing extraction. In the crusher used, gases are released from fluid inclusions by mechanically breaking 196 197 the mineral grains between two hard metal jaws. The crushing efficiency (i.e., the 198 amount of gas extracted compared to the total gas hosted in the fluid inclusions) is

estimated as between 50% and 100% for silicate minerals, but may be lower for some 199 200 sulfides (cf. Jean-Baptiste and Fouquet, 1996; Lüders and Niedermann, 2010). Active gases were removed in two titanium sponge or foil getters and two SAES (ZrAl) 201 getters before trapping the noble gases at 11 K on charcoal in a cryogenic adsorber. 202 203 After sequential release, the noble gas concentrations and isotopic compositions were determined separately for helium, neon, argon, and krypton + xenon in a VG5400 204 mass spectrometer. Static blanks (i.e., created without activating the crusher 205 206 mechanism) measured before each sample gas extraction varied widely, depending mainly on the total gas content of the respective sample, from $4-230 \times 10^{-12}$ cm³STP 207 (standard temperature and pressure) 4 He, 1–1,200 × 10⁻¹² cm³ STP 20 Ne, 0.1–32 × 10⁻⁸ 208 cm³ STP 40 Ar, 0.03–27 × 10⁻¹² cm³ STP 84 Kr and 0.01–1.9 × 10⁻¹² cm³ STP 132 Xe. 209 210 Even the highest blank values rarely exceeded 2%-3% of the total sample gas 211 amounts, except for some Ne and Xe measurements.

212 The mass spectrometer sensitivity and the isotopic mass discrimination were determined using the GFZ laboratory standard provided by the Linde company, which 213 214 is an artificial mixture of the five noble gases with an enhanced ${}^{3}\text{He}/{}^{4}\text{He}$ ratio of 15.58 ± 0.17 R_a and atmospheric isotopic compositions for neon, argon, krypton, and xenon. 215 The calibration gas was originally cross-checked against glass ampoule gas standards 216 provided by the University of Bern, and the ³He/⁴He ratio was calibrated against air 217 and the Japanese He standard (Matsuda et al., 2002). Details of the analytical 218 219 procedures and data reduction methods used can be found in Niedermann et al. (1997). 220

221	All data have been corrected for analytical blanks, isobaric interferences (⁴⁰ Ar ⁺⁺ ,
222	CO2 ⁺⁺ , H ³⁵ Cl ⁺ , H ³⁷ Cl ⁺), and mass discrimination effects. Error limits correspond to
223	the 95% confidence level and include the statistical uncertainties of the measurement,
224	the uncertainties of sensitivity and mass discrimination determinations, and the
225	uncertianties of blank and interference corrections. Noble gas data were obtained for
226	17 pyrite, 3 anhydrite+barite, 2 opal, 8 sphalerite, and 2 chalcopyrite+pyrite aggregate
227	samples in total (Tables 2, 3). The reported concentrations of fluid inclusion-hosted
228	noble gases in the sulfide, sulfate, and opal mineral samples are not concentrations in
229	the fluid, but were determined per gram of solid sulfide, sulfate, and opal mineral
230	crushed.
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	

- 243 **3. Results**
- 244 *3.1. Helium*

The measured concentrations of fluid inclusion-hosted He in the investigated sulfide, 245 246 sulfate, and opal mineral aggregate samples vary over three orders of magnitude (⁴He $0.0174-22.1 \times 10^{-8}$ cm³ STP/g) (Table 2, Fig. 2). Several pyrite aggregate samples 247 from the EPR near 13°N have the highest ⁴He concentrations (up to 22.1 $\times 10^{-8}$ cm³ 248 STP/g, Table 2) of the entire sample suite, which are significantly higher than sulfide 249 250 mineral samples from the EPR near 1-2°S, the MAR, the CIR, the SWIR, and the NFB (Table 2, Fig. 2). Furthermore, most of the ⁴He concentrations in sulfide mineral 251252 aggregate samples are significantly higher than those of sulfate mineral (anhydrite and 253 barite) aggregates and opal mineral samples from the MAR and CIR (Table 2, Fig. 2). 254 The ${}^{3}\text{He}/{}^{4}\text{He}$ ratios in the sulfide aggregate samples vary from ~0.6 to 10.4 R_a (Table 2552, Fig. 3), and most of the ${}^{3}\text{He}/{}^{4}\text{He}$ ratios of sulfide mineral samples are significantly 256 less radiogenic than the modern atmosphere, lying within the MORB range or even somewhat higher (Figs. 3, 4). Only two samples possess ³He/⁴He ratios (0.63^{+0.71}-0.64 257 Ra, S25-TVG21 from the SWIR near 63.5°E, and 1.50±0.61 Ra, TVG13-9.1 from the 258 EHF, CIR) that are within the error of the atmospheric value (1 R_a; Figs. 3, 4). 259 Although the fluid-inclusion population densities in these samples are not known, the 260 261 variation in He concentrations may in part be due to differences in the fluid-inclusion population densities among the sulfide, sulfate, and opal samples, or to variations in 262 263 crushing efficiency, which may also occur among different minerals (Jean-Baptiste 264 and Fouquet, 1996). However, none of these parameters can probably explain the

265	observed three order of magnitude range in the present sample set. Furthermore, the
266	helium concentrations in seafloor hydrothermal sulfide, sulfate, and opal mineral
267	aggregate samples do not show any relationship with water depth or spreading rate.
268	The pyrite mineral aggregates from the EPR near 13°N, from ~2500 m water depth on
269	a ridge with moderately fast spreading velocity (~100 mm/yr), possess significantly
270	higher He concentrations than the remaining samples from both shallower and deeper
271	locations and from slower- and faster-spreading ridges (Tables 1, 2). The ³ He/ ⁴ He
272	ratios show a slightly decreasing tendency with water depth; however, the significance
273	of this trend is questionable because the data include different minerals and different
274	settings (Tables 1, 2). There is clearly no trend in ³ He/ ⁴ He ratios with spreading rate,
275	which suggests that they are not controlled by this parameter.
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	

288	Neon, argon, krypton, and xenon concentrations are also variable and, like He, may be
289	influenced to some extent by variations in fluid-inclusion population density or
290	crushing efficiency. Sulfide, sulfate and opal mineral aggregates have ²⁰ Ne, ⁴⁰ Ar, ⁸⁴ Kr,
291	and 132 Xe concentrations from 0.029–5.6 ×10 ⁻⁸ , 28–3,500 ×10 ⁻⁸ , 26–2,900 ×10 ⁻¹² , and
292	$1.7-180 \times 10^{-12}$ cm ³ STP/g (Tables 2, 3). The two sulfate mineral (anhydrite and barite)
293	aggregates from the LHF on the MAR exhibit the highest Ne, Ar, and Kr
294	concentrations (²⁰ Ne 3.88 and 5.61 $\times 10^{-8}$, ⁴⁰ Ar 3060 and 3480 $\times 10^{-8}$, and ⁸⁴ Kr 2480
295	and 2850 $\times 10^{-12}$ cm ³ STP/g), whereas one opal sample from the EHF shows the
296	highest Xe concentration (132 Xe 184 ×10 ⁻¹² cm ³ STP/g) (Tables 2, 3). Generally, the
297	²⁰ Ne, ⁴⁰ Ar, ⁸⁴ Kr, and ¹³² Xe concentrations in sulfate mineral aggregates and in opal
298	samples from the LHF and EHF are significantly higher than those in sulfide mineral
299	aggregate samples from the other study areas (Tables 2, 3). In addition, the Ne, Ar,
300	and Xe isotopic ratios in the sulfide, sulfate and opal mineral aggregate samples have
301	narrow ranges (20 Ne/ 22 Ne 9.7–10.2; 38 Ar/ 36 Ar 0.1877–0.1912; 129 Xe/ 132 Xe
302	0.979-0.993; see Tables 2, 3), showing no relationship with mineral aggregate type
303	(Tables 2, 3).
304	

309 **4. Discussion**

- 310 *4.1. Noble gas sources*
- 311 4.1.1 Helium sources

312 It is known that the ${}^{3}\text{He}/{}^{4}\text{He}$ ratio of the MORB is ~8.5 R_a (e.g., Moreira et al., 1998;

313 Graham, 2002). Modern OIB have much more variable ${}^{3}\text{He}/{}^{4}\text{He}$ ratios that may reach

values up to ~33 R_a (Honda et al., 1993). The ${}^{3}\text{He}/{}^{4}\text{He}$ ratios of hydrothermal fluids

315 from various hydrothermal fields all over the world's oceans range from ~5.7 to 10.0

316 R_a (Jenkins et al., 1978; Lupton et al., 1980; Welhan and Craig, 1983; Kim et al., 1984;

317 Merlivat et al., 1987; Jean-Baptiste et al., 1991, 1997, 1998, 2004; Rudnicki and

318 Elderfield, 1992; Ishibashi et al., 1994, 1995; Charlou et al., 1996, 2000; Gamo et al.,

319 2001; Keir et al., 2008) and are therefore close to the MORB range. Therefore, the

helium isotopic compositions of seafloor sulfide deposits can be used as evidence for
the source of helium (e.g., Stuart et al., 1994a).

322 The ³He/⁴He ratios for the sulfide, sulfate, and opal mineral aggregate samples studied here fall into a broad range (~0.6–10.4 Ra; Table 2, Fig. 3). A few samples from the 323 NFB are characterized by a high ${}^{3}\text{He}/{}^{4}\text{He}$ ratio >7 R_a (e.g., 113.1GTV: 10.4 ± 1.0 R_a; 324 Fig. 4). This value is almost indistinguishable from the ${}^{3}\text{He}/{}^{4}\text{He}$ ratio of hydrothermal 325 fluids currently venting from the NFB (9.04-10.0 Ra; Ishibashi et al., 1994), 326 327 suggesting that the sulfide minerals from the NFB formed under high-temperature 328 (>200°C) fluid conditions with only minor dilution by ambient seawater (Ishibashi et 329 al., 1994). The absence of radiogenic He in fluid-inclusions from the sulfides formed 330 by high-temperature mineralization suggests that the hydrothermal circulation

331	occurred within an active magmatic system and not within the underlying <1 Ma old
332	oceanic crust (e.g., Malahoff et al., 1982; Auzende et al., 1988; Tanahashi et al., 1991;
333	Huchon et al., 1994). Similarly, many samples from other settings have ³ He/ ⁴ He
334	ratios $> 7 R_a$, i.e., within the range typical of the MORB-type isotope signatures found
335	at their respective locations. Moreover, compared with atmospheric ³ He/ ²² Ne
336	(4.36×10 ⁻⁶) and 3 He/ 36 Ar ratios (2.33×10 ⁻⁷ ; Ozima and Podosek, 2002), the high
337	3 He/ 22 Ne (4.1–260 ×10 ⁻⁵) and 3 He/ 36 Ar (1.5–90 ×10 ⁻⁶) ratios in such samples are
338	consistent with the expected higher ratios in MOR magmas (MORB ${}^{3}\text{He}/{}^{22}\text{Ne} = 5.1$,
339	${}^{3}\text{He}/{}^{36}\text{Ar} = 0.45$; Moreira et al, 1998; OIB ${}^{3}\text{He}/{}^{22}\text{Ne} \approx 2.4$, ${}^{3}\text{He}/{}^{36}\text{Ar} \approx 0.4$; Trieloff et
340	al., 2000; Raquin and Moreira, 2009; Füri et al., 2010), which also suggests that the
341	He is derived from direct degassing of magmatic volatiles (e.g., Baker and Lupton,
342	1990; Stuart et al., 1994b; Zeng et al., 2001). Likewise, the elemental abundance
343	pattern (Fig. 5) shows that He/Ne and He/Ar ratios are one to three orders of
344	magnitude higher than expected for air-saturated seawater in most sulfide samples.
345	Medium He isotopic ratio (1 $R_a < {}^{3}He/{}^{4}He < 7 R_a$) samples (Fig. 4) are abundant in the
346	EHF, CIR. They have a broad range of ³ He/ ⁴ He ratios between those of the MORB
347	and the atmosphere (Table 2, Figs. 4 and 6) and He to heavier noble gas ratios similar
348	to those of air or air-saturated seawater (Fig. 5). This suggests that these samples have
349	likely been influenced by both radiogenic He from seawater and unradiogenic He
350	released by the MORB mantle beneath the hydrothermal system. This pattern shows
351	that the He in the medium He isotopic ratio samples is a mixture of seawater and
352	MORB mantle He.

353	Two samples from the EHF and the A area (CIR and SWIR respectively) have low
354	3 He/ 4 He ratios (~1 R _a ; Fig. 4) which are close to seawater and atmospheric values, and
355	show air-like He to heavier noble gas ratios, indicating that their He is mainly derived
356	from seawater (Fig. 6). Depressed ${}^{3}\text{He}/{}^{4}\text{He}$ ratios (0.29–6.91 R _a) were also observed
357	in fluid inclusions in pyrite and anhydrite from the PACMANUS hydrothermal field
358	of Papua New Guinea and were interpreted as caused by significant atmospheric
359	diffusive low-temperature fluid and seawater exchange (Webber et al., 2011).
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	
371	
372	
373	
374	

4.1.2 Neon, argon, krypton, and xenon sources

376 Most of the Ne, Ar, and Xe isotopic ratios agree with values for the modern atmosphere (Ozima and Podosek, 2002; Lee et al., 2006) or are just slightly lower or 377 higher (Tables 2, 3). Their values are significantly different from those of MORB and 378 379 OIB mantle end-members, confirming that Ne, Ar, and Xe are derived mainly from ambient seawater (Fig. 6). This can be interpreted as evidence for entrainment of 380 seawater into hydrothermal fluids (e.g., Stuart et al., 1994a). 381 382 Furthermore, the elemental abundance pattern of Ne, Ar, Kr, and Xe in fluid 383 inclusions of sulfide, sulfate and opal samples is similar to that in air-saturated water 384 (Fig. 5), which also suggests that the heavier noble gases in all the sulfide, sulfate, and 385 opal samples are predominantly derived from ambient seawater. Kr isotopic ratios 386 were not measured because they do not vary among different terrestrial reservoirs and

are therefore not indicative of the fluid source. Consequently, it was not possible to assess the source of Kr in sulfide, sulfate, and opal mineral aggregate samples based on Kr isotope data. However, the elemental abundance pattern (Fig. 5) and the observation that Kr concentrations in the present samples show positive correlations with Ne and Ar concentrations indicate that Kr, like Ne and Ar, is derived mainly from

- 392 seawater.
- 393

394

395

397 4.2. Noble gas enrichment

398 The high concentrations of He in the present seafloor sulfide samples are consistent 399 with those in seafloor sulfides from other studies (Turner and Stuart, 1992; Stuart et al., 1994a, 1994b, 1995; Jean-Baptiste and Fouquet, 1996; Zeng et al., 2001, 2004; 400 401 Lüders and Niedermann, 2010; Webber et al., 2011), which suggests that they are due to extraction of mantle volatiles from magma by circulating hydrothermal fluids (e.g., 402 Baker and Lupton, 1990). In addition, most of the helium concentrations of the sulfide 403 aggregate samples are significantly higher than those in opal minerals, which form 404 under low-temperature (< 200°C) conditions (e.g., Fouquet et al., 1988; Dekov et al., 405 406 2013) and are known to leak helium (e.g., Trull et al., 1991). The ⁴He concentration in hydrothermal fluids (10⁻⁶ to 10⁻⁵ cm³STP/g; Fourre et al., 2006) is significantly higher 407 than that in seawater ($\sim 3.8 \times 10^{-8}$ cm³STP/g). However, due to its low concentration, 408 409 the helium in opal minerals is much more susceptible to dilution with ambient 410 seawater (Jean-Baptiste and Fouquet, 1996), and loss of He at low temperatures acts against preservation of the initial hydrothermal fluid ³He/⁴He ratios in opal minerals. 411 In principle, low He concentrations and/or low ³He/⁴He ratios in sulfate, opal and 412 several sulfide (e.g., sample S25-TVG21) aggregate samples might also indicate a 413 contribution of radiogenic helium produced by in-situ decay of U and Th. The typical 414 415 U-Th content of hydrothermal sulfate, opal and sulfide samples on the EPR is in the range of 1–10 ppm U and 0.1–1 ppm Th (Lalou and Brichet, 1982, 1987). However, 416 417 the ages of sulfate, opal, and sulfide deposits sampled from the EPR are very young, 418 ranging from 0 to 20 years in most cases (Lalou et al., 1985), which rules out any

significant radiogenic He production. Furthermore, based on the diffusion coefficient 419 of He in sulfides, a simple diffusion calculation shows that the ${}^{3}\text{He}/{}^{4}\text{He}$ ratios cannot 420 be decreased from MORB-like to much lower values by fractionation in seafloor 421 422 sulfide deposits over the typical ages of these sulfide deposits (Jean-Baptiste and 423 Fouquet, 1996). Hence, the lower He concentrations and/or ³He/⁴He ratios in sulfate, opal, and several sulfide aggregate samples are most likely related to mixing of the 424 end-member hydrothermal fluid with ambient seawater. For the sulfate and opal 425 426 samples, significant seawater He contribution is also evident in the elemental abundance pattern (Fig. 5). 427

428 Within individual seafloor hydrothermal systems. He concentrations vary on short 429 time scales in response to magmatic-tectonic processes (Baker and Lupton, 1990) or 430 to changes in hydrothermal system plumbing (Butterfield et al., 1990). Despite this, 431 vent-fluid ³He/⁴He ratios remain constant (Lupton et al., 1989). The results presented 432 here imply that when using sulfides to reconstruct the characteristics of hydrothermal fluids, care must be taken to select high-temperature sulfide minerals by mineralogical 433 analyses (Jean-Baptiste and Fouquet, 1996) due to He depletion in low-temperature 434 sulfide, sulfate, and opal minerals. In addition, sulfide minerals, because of their low 435 ionic porosity and low U and Th contents (238 U < 10 ppm, 232 Th < 1 ppm; Lalou et al., 436 437 1993, 1996; You and Bickle, 1998; Münch et al., 2001), preserve the He isotope ratios of the initial fluid considerably better than sulfate and silicate minerals. 438 439 The Ne, Ar, Kr, and Xe concentrations in sulfate and opal mineral samples are

440 significantly higher than in sulfide aggregate samples. Barite and opal minerals from

441	the EPR near 13°N and the Panarea Platform of the Aeolian Arc in the Tyrrhenian Sea
442	were all formed under low-temperature (< 200°C) conditions (e.g., Fouquet et al.,
443	1988; Dekov et al., 2013), suggesting that low-temperature sulfide minerals (e.g.,
444	pyrite and sphalerite), sulfate mineral aggregates, and opal samples can trap high
445	concentrations of Ne, Ar, Kr and Xe, as well as hydrated phyllosilicates (chlorite,
446	serpentine, and talc; Podosek et al., 1980) as a result of low-temperature fluid
447	interaction and/or gas adsorption. This intuitively suggests that Ne, Ar, Kr, and Xe are
448	enriched under low temperature (< 200°C) conditions.
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	

 $(C_p \times T)$

(1)

464 In general, the sulfide, sulfate, and opal mineral aggregate samples vielded $0.12-22\times$ 10^{-8} cm³ STP ⁴He/g, 0.16–0.72×10⁻⁸ cm³ STP ⁴He/g, and 0.017–0.028 × 10⁻⁸ cm³ STP 465 ⁴He/g respectively. In comparison, high-temperature (>300 °C) vent fluid He 466 concentrations have been found to range from 0.09 to 6.0×10^{-5} cm³ STP ⁴He/g fluid 467 (e.g., Merlivat et al., 1987; Jean-Baptiste et al., 1991, 1997; Rudnicki and Elderfield, 468 1992; Ishibashi et al., 1994), suggesting that the mineral aggregates have trapped 469 roughly $0.2-2400 \times 10^{-4}$ g hydrothermal fluid / g sulfide, $0.2-80 \times 10^{-4}$ g 470 hydrothermal fluid / g sulfate, and $0.03-3 \times 10^{-4}$ g hydrothermal fluid / g opal. This 471 472 implies in turn that the sulfide mineral aggregate samples have trapped more 473 hydrothermal fluids (up to 24%) than the sulfate (up to 0.8%) and opal (less than 0.1%) 474 mineral samples in modern seafloor hydrothermal sulfide deposits.

Furthermore, if the deposition temperature of the minerals containing the fluids can be established, assuming that all the Ne comes from seawater and that the ²⁰Ne/²²Ne and ³He/⁴He ratios in seawater are equal to the atmospheric values, a combination of the temperature and isotopic ratios of MORB mantle helium and neon can be used to estimate helium/heat ratios, He/Q. The following equations apply:

480
$${}^{3}\text{He/Q} = ({}^{3}\text{He/}{}^{22}\text{Ne})_{m} \times (({}^{4}\text{He/}{}^{3}\text{He})_{m} - ({}^{4}\text{He/}{}^{3}\text{He})_{a}) / (({}^{4}\text{He/}{}^{3}\text{He})_{b} - ({}^{4}\text{He/}{}^{3}\text{He})_{a}) \times ({}^{22}\text{Ne})_{s} / ({}^{4}\text{He/}{}^{3}\text{He})_{a} / ({}^{4}\text{He/}{$$

482
$${}^{4}\text{He/Q} = ({}^{4}\text{He}/{}^{20}\text{Ne})_{m} \times (({}^{20}\text{Ne}/{}^{4}\text{He})_{m} - ({}^{20}\text{Ne}/{}^{4}\text{He})_{s})/(({}^{20}\text{Ne}/{}^{4}\text{He})_{b} - ({}^{20}\text{Ne}/{}^{4}\text{He})_{s}) \times$$

483 $({}^{20}\text{Ne})_{s}/(C_{p} \times T)$ (2)

484 where $({}^{22}Ne)_s$ and $({}^{20}Ne)_s$ are the concentrations of ${}^{22}Ne$ (1.71 × 10⁻⁸ cm³ STP/g) and

²⁰Ne (1.68 × 10⁻⁷ cm³ STP/g) in seawater, C_p is the heat capacity of seawater (5.8 J K⁻¹ g⁻¹; Elderfield and Schultz, 1996), and *T* is the temperature difference between vent fluid and seawater, which is essentially equal to the vent-fluid temperature in °C. The subscripts m, b, a, and s refer to the sample, the MORB mantle, the atmosphere, and seawater respectively.

Assuming a vent fluid temperature of 350 °C, Eqs. (1) and (2) were applied to the 490 sulfide mineral aggregate samples to calculate 3 He/Q (0.22–3.44, avg 1.09 × 10⁻¹⁴ cm³ 491 STP/J) and ⁴He/Q (0.17–3.13, avg 0.97×10^{-9} cm³ STP/J), which are extracted 492 through hydrothermal activity from the MORB and/or the OIB mantle. The He/heat 493 494 ratios in the MORs (EPR near 13°N, EPR near 1-2°S, KHF and EHF in the CIR: ${}^{3}\text{He/Q} = 0.36-3.44 \times 10^{-14} \text{ cm}^{3} \text{ STP/J}; {}^{4}\text{He/Q} = 0.32-3.13 \times 10^{-9} \text{ cm}^{3} \text{ STP/J})$ are not 495 significantly different from those in the back-arc NFB (${}^{3}\text{He/Q} = 0.22 - 1.97 \times 10^{-14} \text{ cm}^{3}$ 496 STP/J; 4 He/Q = 0.17–1.50 × 10⁻⁹ cm³ STP/J). However, these values are an order of 497 magnitude lower than those (³He/Q 1.5×10⁻¹³ cm³ STP/J; ⁴He/Q 1.4×10⁻⁸ cm³ STP/J) 498 calculated by Turner and Stuart (1992) using the concentrations of ³⁶Ar (1.26×10⁻⁶ 499 cm³STP/g) and ⁴⁰Ar (3.73×10⁻⁴ cm³STP/g) in Pacific deep water (Bieri and Koide, 500 1972). 501

The mass of high-temperature (350 °C) hydrothermal fluid emanating from mid-ocean ridges is on the order of $0.3-0.6 \times 10^{13}$ kg/yr (Elderfield and Schultz, 1996). Assuming helium concentrations of 0.09 to 6.0×10^{-5} cm³ STP ⁴He/g fluid in high-temperature (> 300 °C) vent fluids (Merlivat et al., 1987; Jean-Baptiste et al., 1991, 1997; Rudnicki and Elderfield, 1992; Ishibashi et al., 1994, 1995) and using ⁴He/Q of 0.97 ×

507	10 ⁻⁹ cm ³ STP/J, global helium and heat fluxes to high-temperature hydrothermal vents
508	are approximately 0.05–6 $\times 10^4$ kg per year of helium, and 0.1–12 $\times 10^{12}$ W of heat,
509	which cover the range (1.1–6.2 ×10 ¹² W) of vent heat flux estimated by Elderfield and
510	Schultz (1996). Using a total oceanic heat flux of 32×10^{12} W (Elderfield and Schultz,
511	1996), this suggests that roughly 0.3% or more of ocean heat is supplied by seafloor
512	high-temperature hydrothermal activity. In addition, the amount of seafloor massive
513	sulfide deposits in the global oceans has been estimated as on the order of 6×10^8
514	tonnes (Hannington et al., 2011) using new deposit occurrence data from 10,000 km
515	of ridge, arc, and back-arc spreading centers. Approximately 65% and 22% of global
516	seafloor hydrothermal sulfide deposits occur along MORs and BABs (Hannington et
517	al., 2011) respectively, suggesting that helium and heat fluxes to high-temperature
518	hydrothermal vents are approximately 0.03–3.9 $\times 10^4$ kg per year and 0.07–7.8 $\times 10^{12}$
519	W in MORs, or 0.01–1.3 ×10 ⁴ kg per year and 0.02–2.6 ×10 ¹² W in BABs.
520	
521	
522	
523	
524	
525	
526	
527	

529 Acknowledgements

We would like to thank the crews of the DY105-17, DY115-19, DY115-20, and 530 DY115-21 cruises for helping us with sample collection. We are grateful to Dr. Erio 531 Rahders of the Institute for Geological Sciences, Geology Department, Free 532 533 University of Berlin, Dr. Xiguang Deng of Guangzhou Marine Geological Survey, China Geological Survey, and Dr. Huaiming Li of the Second Institute of 534 Oceanography, SOA, China, for providing some of the samples. We thank Enzio 535 536 Schnabel for performing the noble gas analyses. International Science Editing checked our English. We are most grateful for the detailed and constructive comments 537 538 and suggestions provided by Dr. David Hilton, Dr. Fin Stuart and one anonymous 539 reviewer, which greatly improved an earlier version of the manuscript. This work was 540 supported by the National Key Basic Research Program of China (Grant No. 541 2013CB429700), the National Special Fund for the 12th Five-Year Plan of COMRA 542 (Grant No. DY125-12-R-02), the National Natural Science Foundation of China (Grant No. 41325021, 40830849, and 40976027), the Shandong Province Natural 543 Science Foundation of China for Distinguished Young Scholars (Grant No. 544JQ200913), the Strategic Priority Research Program of the Chinese Academy of 545 Sciences (Grant No. XDA11030302), the CAS/SAFEA International Partnership 546 547 Program for Creative Research Teams, and the Qingdao Collaborative Innovation Center of Marine Science and Technology. 548

549

551 **References**

- Auzende, J.-M., Eissen, J.-P., Lafoy, Y., Gente, P., Charlou, J.L., 1988. Seafloor
 spreading in the North Fiji Basin (Southwest Pacific). Tectonophysics 146,
 317–351.
- Baker, E.T., Lupton, J.E., 1990. Changes in submarine hydrothermal ³He/heat ratios
 as an indicator of magmatic/tectonic activity. Nature 346, 556–558.
- 557 Bieri, R.H., Koide, M., 1972. Dissolved noble gases in the east equatorial and 558 southeast Pacific. J. Geophys. Res. 77, 1667–1676.
- 559 Butterfield, D.A., Massoth, G.J., McDuff, R.E., Lupton, J.E., Lilley, M.D., 1990.
- 560 Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal 561 Emissions Study vent field, Juan de Fuca: subseafloor boiling and subsequent 562 fluid-rock interaction. J. Geophys. Res. 95, 12895–12921.
- Charlou, J.-L., Donval, J.P., Jean-Baptiste, P., Dapoigny, A., Rona, P.A., 1996. Gases
 and helium isotopes in high temperature solutions sampled before and after
 ODP 158 drilling at TAG hydrothermal field (26°N, MAR). Geophys. Res.
 Lett. 23, 3491–3494.
- 567 Charlou, J.L., Donval, J.P., Douville, E., Jean-Baptiste, P., Radford-Knoery, J.,
 568 Fouquet, Y., Dapoigny, A., Stievenard, M., 2000. Compared geochemical
 569 signatures and the evolution of Menez Gwen (37°50'N) and Lucky Strike
 570 (37°17'N) hydrothermal fluids, south of the Azores Triple Junction on the
 571 Mid-Atlantic Ridge. Chem. Geol. 171, 49–75.
- 572 Craig, H., Lupton, J.E., 1981. Helium-3 and mantle volatiles in the ocean and the

- 573 oceanic crust. In: The Sea (ed. C. Emiliani) vol. 7. In: The oceanic 574 lithosphere. Wiley, New York, pp. 391–428.
- 575 Crovetto, R., Fernández-Prini, R., Japas, M.L., 1982. Solubilities of inert gases and
 576 methane in H₂O and D₂O in the temperature range of 300 to 600 K. J. Chem.
 577 Phys. 76, 1077–1086.
- Dekov, V.M., Kamenov, G.D., Abrasheva, M.D., Capaccioni, B., Munnik, F., 2013.
 Mineralogical and geochemical investigation of seafloor massive sulfides
 from Panarea Platform (Aeolian Arc, Tyrrhenian Sea). Chem. Geol. 335,
- 581 136–148.
- Elderfield, H., Schultz, A., 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224.
- Fouquet, Y., Auclair, G., Cambon, P., Etoubleau, J., 1988. Geological setting and
 mineralogical and geochemical investigations on sulfide deposits near 13°N
 on the East Pacific Rise. Mar. Geol. 84, 145–178.
- Fourre, E., Jean-Baptiste, P., Charlou, J.-L., Donval, J.P., Ishibashi, J.I., 2006. Helium
 isotopic composition of hydrothermal fluids from the Manus back-arc Basin,
 Papua New Guinea. Geochem. J. 40, 245–252.
- Füri, E., Hilton, D.R., Halldórsson, S.A., Barry, P.H., Hahm, D., Fischer, T.P.,
 Grönvold, K., 2010. Apparent decoupling of the He and Ne isotope
 systematics of the Icelandic mantle: The role of He depletion, melt mixing,
 degassing fractionation and air interaction. Geochim. Cosmochim. Acta 74,

595 3307-3332.

596	Gamo, T., Chiba, H., Yamanaka, T., Okudaira, T., Hashimoto, J., Tsuchida, S.,
597	Ishibashi, J., Kataoka, S., Tsunogai, U., Okamura, K., Sano, Y., Shinjo, R.,
598	2001. Chemical characteristics of newly discovered black smoker fluids and
599	associated hydrothermal plumes at the Rodriguez triple junction, Central
600	Indian Ridge. Earth Planet. Sci. Lett. 193, 371–379.
601	Graham, D.W., 2002. Noble gas isotope geochemistry of Mid-Ocean Ridge and Ocean
602	Island Basalts: Characterization of mantle source regions. In: Noble Gases
603	(eds. D. Porcelli, C. Ballentine and R. Wieler) MSA Special Volume 47,
604	247–317.
605	Hannington, M., Jamieson, J., Monecke, T., Petersen, S., Beaulieu, S., 2011. The
606	abundance of seafloor massive sulfide deposits. Geology 39, 1155–1158.
607	Hiyagon, H., Ozima, M., Marty, B., Zashu, S., Sakai, H., 1992. Noble gases in
608	submarine glasses from mid-oceanic ridges and Loihi seamount: Constraints
609	on the early history of the Earth. Geochim. Cosmochim. Acta 56, 1301-1316.
610	Honda, M., McDougall, I., Patterson, D.B., Doulgeris, A., Clague, D.A., 1993. Noble
611	gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A
612	solar component in the Earth. Geochim. Cosmochim. Acta 57, 859-874.
613	Hou, Z.Q., Zaw, K., Li, Y.H., Zhang, Q.L., Zeng, Z.G., Urabe, T., 2005. Contribution
614	of magmatic fluid to the active hydrothermal system in the JADE field,
615	Okinawa Trough: Evidence from fluid inclusions, oxygen and helium
616	isotopes. Int. Geol. Rev. 47, 420-437.

617	Huchon, P., Gracia, E., Ruellan, E., Joshima, M., Auzende, JM., 1994. Kinematics of
618	active spreading in the central North Fiji Basin (Southwest Pacific). Mar.
619	Geol. 116, 69–87.
620	Ishibashi, JI., Wakita, H., Nojiri, Y., Grimaud, D., Jean-Baptiste, P., Gamo, T.,
621	Auzende, JM., Urabe, T., 1994. Helium and carbon geochemistry of
622	hydrothermal fluids from the North Fiji Basin spreading ridge (southwest
623	Pacific). Earth Planet. Sci. Lett. 128, 183-197.
624	Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M., Sakai, H., 1995. Helium
625	and carbon geochemistry of hydrothermal fluids from the mid-Okinawa
626	Trough back-arc, southwest of Japan. Chem. Geol. 123, 1–15.
627	Jean-Baptiste, P., Charlou, JL., Stievenard, M., Donval, J.P., Bougault, H., Mevel, C.,
628	1991. Helium and methane measurements in hydrothermal fluids from the
629	Mid-Atlantic Ridge: the Snake Pit site at 23°N. Earth Planet. Sci. Lett. 106,
630	17–28.
631	Jean-Baptiste, P., Fouquet, Y., 1996. Abundance and isotopic composition of helium in
632	hydrothermal sulfides from the East Pacific Rise at 13°N. Geochim.
633	Cosmochim. Acta 60, 87–93.
634	Jean-Baptiste, P., Dapoigny, A., Stievenard, M., Charlou, JL., Fouquet, Y., Donval,
635	J.P., Auzende, J.M., 1997. Helium and oxygen isotope analyses of
636	hydrothermal fluids from the East Pacific Rise between 17°S and 19°S.
637	Geo-Mar. Lett. 17, 213–219.
638	Jean-Baptiste, P., Bougault, H., Vangriesheim, A., Charlou, JL., Radford-Knoery, J.,

639	Fouquet, Y., Needham, D., German, C., 1998. Mantle ³ He in hydrothermal
640	vents and plume of the Lucky Strike site (MAR 37°17'N) and associated
641	geothermal heat flux. Earth Planet. Sci. Lett. 157, 69-77.
642	Jean-Baptiste, P., Fourré, E., Charlou, JL., German, C.R., Radford-Knoery, J., 2004.
643	Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge,
644	36°14'N). Earth Planet. Sci. Lett. 221, 325–335.
645	Jenkins, W.J., Edmonds, J.M., Corliss, J.B., 1978. Excess ³ He and ⁴ He in Galapagos
646	submarine hydrothermal waters. Nature 272, 156–158.
647	Keir, R.S., Schmale, O., Walter, M., Sültenfuß, J., Seifert, R., Rhein, M., 2008. Flux
648	and dispersion of gases from the "Drachenschlund" hydrothermal vent at
649	8°18'S, 13°30'W on the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 270,
650	338–348.
651	Kennedy, B.M., 1988. Noble gases in vent water from the Juan de Fuca Ridge.
652	Geochim. Cosmochim. Acta 52, 1929–1935.
653	Kim, K.R., Welhan, J.A., Craig, H., 1984. The hydrothermal vent fields at 13°N and
654	11°N on the East Pacific Rise: Alvin 1984 results. EOS Trans. Am. Geophys.
655	Union 65, 973.
656	Kodera, M., Igarashi, G., Ozima, M., 1988. Noble gases in hydrothermal plumes of
657	Loihi Seamount. Earth Planet. Sci. Lett. 87, 266-272.
658	Kurz, M.D., Jenkins, W.J., Schilling, JG., Hart, S.R., 1982. Helium isotopic variation
659	in the mantle beneath the central North Atlantic Ocean. Earth Planet. Sci.

Lett. 58, 1-14.

- Lalou, C., Brichet, E., 1982. Age and implication of East Pacific Rise sulphide
 deposits at 21°N. Nature 300, 169–171.
- Lalou, C., Brichet, E., Hekinian, R., 1985. Age dating of sulfide deposits from axial
 and off axial structures of the East Pacific Rise near 12°50'N. Earth Planet.
 Sci. Lett. 75, 59–71.
- Lalou, C., Brichet, E., 1987. On the isotopic chronology of submarine hydrothermal
 deposits. Chem. Geol. 65, 197–207.
- 668 Lalou, C., Reyss, J.-L., Brichet, E., Arnold, M., Thompson, G., Fouquet, Y., Rona,
- 669 P.A., 1993. New age data for Mid-Atlantic Ridge hydrothermal sites: TAG 670 and Snakepit chronology revisited. J. Geophys. Res. 98, 9705–9713.
- 671 Lalou, C., Reyss, J.L., Brichet, E., Krasnov, S., Stepanova, T., Cherkashev, G., Markov,
- V., 1996. Initial chronology of a recently discovered hydrothermal field at
 14°45′N, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 144, 483–490.
- Langmuir, C.H., Vocke, R.D.Jr., Hanson, G.N., 1978. A general mixing equation with
- applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392.
- 676 Lee, J.-Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim,
- J.S., 2006. A redetermination of the isotopic abundances of atmospheric Ar.
 Geochim. Cosmochim. Acta 70, 4507–4512.
- 679 Lüders, V., Niedermann, S., 2010. Helium isotope composition of fluid inclusions
- 680 hosted in massive sulfides from modern submarine hydrothermal systems.
- 681 Econ. Geol. 105, 443–449.
- 682 Lupton, J.E., Klinkhammer, G.P., Normark, W.R., Haymon, R., Macdonald, K.C.,

683	Weiss, R.F., Craig, H., 1980. Helium-3 and manganese at the 21°N East
684	Pacific Rise hydrothermal site. Earth Planet. Sci. Lett. 50, 115–127.
685	Lupton, J.E., 1983. Fluxes of 3-Helium and heat from submarine hydrothermal
686	systems: Guaymas Basin versus 21°N EPR. EOS Trans. Am. Geophys.
687	Union 64, 723.
688	Lupton, J.E., Baker, E.T., Massoth, G.J., 1989. Variable ³ He/heat ratios in submarine
689	hydrothermal systems: evidence from two plumes over the Juan de Fuca
690	Ridge. Nature 337, 161–163.
691	Malahoff, A., Hammond, S.R., Naughton, J.J., Keeling, D.L., Richmond, R.N., 1982.
692	Geophysical evidence for post-Miocene rotation of the island of Viti Levu,
693	Fiji, and its relationship to the tectonic development of the North Fiji Basin
694	and Lau basins. Earth Planet. Sci. Lett. 87, 4109–4125.
695	Mark, D.F., Stuart, F.M., de Podesta, M., 2011. New high-precision measurements of
696	the isotopic composition of atmospheric argon. Geochim. Cosmochim. Acta
697	75, 7494–7501.
698	Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K., Yamamoto, J., Miura, Y.,
699	Kaneoka, I., Takahata, N., Sano, Y., 2002. The ³ He/ ⁴ He ratio of the new

700 internal He Standard of Japan (HESJ). Geochem. J. 36, 191–195.

- 701 Merlivat, L., Pineau, F., Javoy, M., 1987. Hydrothermal vent waters at 13°N on the
- East Pacific Rise: isotopic composition and gas concentration. Earth Planet.
 Sci. Lett. 84, 100–108.
- 704 Moreira, M., Kunz, J., Allègre, C., 1998. Rare gas systematics in popping rock:

- isotopic and elemental compositions in the upper mantle. Science 279,
 1178–1181.
- Münch, U., Lalou, C., Halbach, P., Fujimoto, H., 2001. Relict hydrothermal events
 along the super-slow Southwest Indian spreading ridge near 63°56′E–
 mineralogy, chemistry and chronology of sulfide samples. Chem. Geol. 177,
 341–349.
- Nakamura, K., Morishita, T., Bach, W., Klein, F., Hara, K., Okino, K., Takai, K.,
 Kumagai, H., 2009. Serpentinized troctolites exposed near the Kairei
 Hydrothermal Field, Central Indian Ridge: Insights into the origin of the
 Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth
 Planet. Sci. Lett. 280, 128–136.
- Niedermann, S., Bach, W., Erzinger, J., 1997. Noble gas evidence for a lower mantle
 component in MORBs from the southern East Pacific Rise: Decoupling of
 helium and neon isotope systematics. Geochim. Cosmochim. Acta 61,
 2697–2715.
- Nier, A.O., 1950. A redetermination of the relative abundances of the isotopes of
 carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789–793.
- Ozima, M., Zashu, S., 1983. Noble gases in submarine pillow volcanic glasses. Earth
 Planet. Sci. Lett. 62, 24–40.
- Ozima, M., Podosek, F.A., 2002. Noble Gas Geochemistry. Cambridge Univ. Press,
 Cambridge, UK.
- 726 Petersen, S., Kuhn, K., Kuhn, T., Augustin, N., Hékinian, R., Franz, L., Borowski, C.,

- 727 2009. The geological setting of the ultramafic-hosted Logatchev
 728 hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on
 729 massive sulfide formation. Lithos 112, 40–56.
- Podosek, F.A., Honda, M., Ozima, M., 1980. Sedimentary noble gases. Geochim.
 Cosmochim. Acta 442, 1875–1884.
- Poreda, R.J., Farley, K.A., 1992. Rare gases in Samoan xenoliths. Earth Planet. Sci.
 Lett. 113, 129–144.
- Raquin, A., Moreira, M., 2009. Atmospheric ³⁸Ar/³⁶Ar in the mantle: Implications for
- the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287,
 551–558.
- Rudnicki, M.D., Elderfield, H., 1992. Helium, radon and manganese at the TAG and
 Snake pit hydrothermal fields, 26° and 23°N, Mid-Atlantic Ridge. Earth
 Planet. Sci. Lett. 113, 307–321.
- Smith, S.P., Kennedy, B.M., 1983. The solubility of noble gases in water and in NaCl
 brine. Geochim. Cosmochim. Acta 47, 503–515.
- Stuart, F.M., Duckworth, R., Turner, G., Schofield, P.F., 1994a. Helium and sulfur
 isotopes in sulfide minerals from Middle Valley, Northern Juan de Fuca
 Ridge. Proc. ODP, Sci. Res. 139, 387–392.
- 545 Stuart, F.M., Turner, G., Duckworth, R.C., Fallick, A.E., 1994b. Helium isotopes as
- tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology 22,
 823–826.
- 548 Stuart, F.M., Harrop, P.J., Knott, R., Fallick, A.E., Turner, G., Fouquet, Y., Rickard, D.,

749	1995. Noble gas isotopes in 25000 years of hydrothermal fluids from 13°N
750	on the East Pacific Rise. In: Hydrothermal Vents and Processes (eds. L.
751	Parson, C. Walker and D. R. Dixon). Geological Society, London, Special
752	Publications 87. pp. 133–143.
753	Stuart, F.M., Turner, G., 1998. Mantle-derived ⁴⁰ Ar in mid-ocean ridge hydrothermal

- fluids: implications for the source of volatiles and mantle degassing rates.Chem. Geol. 147, 77–88.
- Tanahashi, M., Kisimoto, K., Joshima, M., Lafoy, Y., Honza, E., Auzende, J.-M., 1991.
- Geological structure of the central spreading system, North Fiji Basin. Mar.Geol. 98, 187–200.
- Trieloff, M., Kunz, J., Clague, D.A., Harrison, D., Allègre, C.J., 2000. The nature of
 pristine noble gases in mantle plumes. Science 288, 1036–1038.
- Trull, T.W., Kurz, M.D., Jenkins, W.J., 1991. Diffusion of cosmogenic ³He in olivine
 and quartz: Implications for surface exposure dating. Earth Planet. Sci. Lett.
 103, 241–256.
- Turner, G., Stuart, F.M., 1992. Helium/heat ratios and deposition temperatures of
 sulphides from the ocean floor. Nature 357, 581–583.
- Valbracht, P., Staudacher, T., Malahoff, A., Allègre, C.J., 1997. Noble gas systematics
- of deep rift zone glasses from Loihi seamount, Hawaii. Earth Planet. Sci. Lett.
 150, 399–411.
- Webber, A.P., Roberts, S., Burgess, R., Boyce, A.J., 2011. Fluid mixing and thermal
 regimes beneath the PACMANUS hydrothermal field, Papua New Guinea:

- Helium and oxygen isotope data. Earth Planet. Sci. Lett. 304, 93–102.
- Welhan, J.A., Craig, H., 1983. Methane, hydrogen and helium in hydrothermal fluids
- at 21°N on the East Pacific Rise. In: Hydrothermal processes at seafloor
 spreading centers (eds. P. A. Rona, K. Bostrom, L. Laubier and J. K. L.
 Smith). Plenum Press, New York. pp. 391–409.
- You, C.-F., Bickle, M.J., 1998. Evolution of an active sea-floor massive sulphide
 deposit. Nature 394, 668–671.
- Zeng, Z.G., Qin, Y.S., Zhai, S.K., 2001. He, Ne and Ar isotope compositions of fluid
- inclusions in hydrothermal sulfides from the TAG hydrothermal field,
 Mid-Atlantic Ridge. Sci. China Series D 44, 221–227.
- Zeng, Z.G., Qin, Y.S., Zhai, S.K., 2004. He, Ne and Ar isotope compositions of fluid
 inclusions in massive sulfides from the Jade hydrothermal field, Okinawa
 Trough. Acta Oceanol. Sin. 23, 655–661.
- 784 Zeng, Z.G., Chen, D.G., Yin, X.B., Wang, X.Y., Zhang, G.L., Wang, X.M., 2010.
- Elemental and isotopic compositions of the hydrothermal sulfide on the East
 Pacific Rise near 13°N. Sci. China Earth Sci. 53, 253–266.
- Zeng, Z.G., Chen, S., Selby, D., Yin, X.B., Wang, X.Y., 2014. Rhenium-osmium
 abundance and isotopic compositions of massive sulfides from modern
 deep-sea hydrothermal systems: Implications for vent associated ore forming
 processes. Earth Planet. Sci. Lett. 396, 223–234.
- 791

793 **Figure Captions**

Fig. 1. Locations of seafloor hydrothermal sulfide samples from the deep-sea
hydrothermal fields analyzed for noble gas concentrations and isotopic compositions
in this study: KHF–Kairei hydrothermal field; EHF–Edmond hydrothermal field;
CIR–Central Indian Ridge; SWIR–Southwest Indian Ridge; S99HF–Sonne 99
hydrothermal field; NFB–North Fiji Basin; EPR–East Pacific Rise; LHF–Logatchev
hydrothermal field; MAR–Mid-Atlantic Ridge.

800

Fig. 2. Concentrations of ⁴He in seafloor hydrothermal sulfide, sulfate and opal
mineral aggregate samples: Q-opal; Anh-anhydrite; Ba-barite; Sph-sphalerite;
Py-pyrite; Cpy-chalcopyrite.

804

805 **Fig. 3.** ³He/⁴He ratios of seafloor hydrothermal sulfide, sulfate (LHF, EHF) and opal (EHF, CIR) samples from this study and the literature. R_a is the atmospheric ${}^{3}\text{He}/{}^{4}\text{He}$ 806 ratio (1.4×10^{-6}) . Colored symbols represent results obtained in this work, gray shading 807 results from the literature. Literature data are from EPR 13°N, Stuart et al. (1995) and 808 Jean-Baptiste and Fouquet (1996); EPR 21°N, Turner and Stuart (1992) and Stuart et 809 al. (1994b); Middle Valley, Stuart et al. (1994a, b); TAG, Stuart et al. (1994b) and 810 Zeng et al. (2001); Snake Pit, Stuart et al. (1994b); JADE, Zeng et al. (2004), Hou et 811 812 al. (2005), and Lüders and Niedermann (2010); PACMANUS, Webber et al. (2011); 813 NFB, Lüders and Niedermann (2010).

815	Fig. 4. ³ He/ ⁴ He ratios of different mineral aggregates from seafloor hydrothermal
816	sulfide deposits. Atmospheric, MORB mantle, and OIB mantle data are from Ozima
817	and Podosek (2002) and Graham (2002). 2σ error limits are shown.

818

Fig. 5. Elemental abundance patterns (relative to atmospheric abundance and 40 Ar) of noble gases in seafloor hydrothermal sulfide, sulfate and opal mineral aggregates. The fractionation factor is defined as $({}^{i}X/{}^{40}Ar)_{sample}/({}^{i}X/{}^{40}Ar)_{air}$, where ${}^{i}X$ is a noble gas isotope. Fractionation patterns for dissolution equilibrium of noble gases in seawater are given for 0 °C, 25 °C, and 50 °C according to Smith and Kennedy (1983) and for 100 °C according to Crovetto et al. (1982).

825

Fig. 6. (a) ${}^{20}\text{Ne}/{}^{22}\text{Ne} - {}^{3}\text{He}/{}^{4}\text{He}$ systematics, and (b) ${}^{40}\text{Ar}/{}^{36}\text{Ar} - {}^{3}\text{He}/{}^{4}\text{He}$ systematics 826 827 of fluid inclusions in seafloor hydrothermal sulfide, sulfate and opal mineral 828 aggregates, compared with literature data for various mantle-derived samples (gray symbols). The plot was drawn according to the method outlined by Langmuir et al. 829 830 (1978): Mixing line 1 is between the MORB mantle and the atmosphere endmember components; mixing line 2 is between the OIB mantle and the atmosphere 831 end-member components. Atmospheric, MORB mantle, and OIB mantle data are from 832 833 Ozima and Podosek (2002), Graham (2002), and Lee et al. (2006). MORB values are from Ozima and Zashu (1983), Hiyagon et al. (1992), and Niedermann et al. (1997). 834 835 OIB samples are from Hiyagon et al. (1992), Honda et al. (1993), and Valbracht et al. 836 (1997).

837

Table 1 Description of seafloor hydrothermal sulfide samples analyzed for noble gas
concentrations and isotopic compositions in this study.

840

841	Table 2	Concentrations	and	isotopic	compositions	of	fluid	incl	usion-	hosted	He,	Ne
-----	---------	----------------	-----	----------	--------------	----	-------	------	--------	--------	-----	----

and Ar in seafloor hydrothermal sulfide, sulfate and opal mineral aggregate samples

- from the EPR near 13°N and 1-2°S, LHF, MAR near 13°S, KHF, EHF, A area, SWIR
- near 63.5°E, and S99HF. Gas concentrations are in units of 10⁻⁸ cm³ STP/g of mineral.
- They depend on crushing efficiency, which is estimated to be between 50% and 100%,
- and may in some cases have been reduced by partial gas loss in the vacuum line
- before sample crushing (see text). Error limits are 2σ .
- 848
- 849 **Table 3** Concentrations and isotopic compositions of fluid inclusion-hosted Kr and Xe

in seafloor hydrothermal sulfide, sulfate and opal mineral aggregate samples.

851

Field	Sample	Latitude	Longitude	Depth (m)	Description	Sulfide mineralogy
Fast-spreadin	g mid-ocean ridge					
13°N, EPR	TVG1-2	12°42.669′N	103°54.426′W	2,628	Fe-rich massive sulfides coated with tan Fe hydroxides, and small conduits	Py +++; Sp +, Cpy +
13°N, EPR	TVG1-3	12°42.669′N	103°54.426′W	2,628	Fe-rich massive sulfides coated with tan Fe hydroxides, and oxidized pyrite aggregates	Py +++; Cpy +, Sp +
13°N, EPR	TVG2-1	12°42.678′N	103°54.414′W	2,633	Fe-rich massive sulfides coated with tan Fe hydroxides and many elliptical cavities, showing development of mineral zoning	Py +++, Mc +++; Sp +
Ultra-fast spre	eading mid-ocean rid	lge				
1-2°S, EPR	S4-TVG1-1	1°22.130′S	102°37.360′W	2,747	Porous chimney fragment coated with tan Fe hydroxides and partially filled conduits	Py +++; Mc +, Cpy +; Sp +
1-2°S, EPR	S4-TVG1-2	1°22.130′S	102°37.360′W	2,747	Chimney fragment coated with tan Fe hydroxides	Py +++; Cpy ++, Mc ++; Sp +
1-2°S, EPR	S6-TVG3	2°09.102′S	102°38.760′W	2,921	Outer chimney wall fragment coated with red brown Fe hydroxides and white anhydrite layer	Mc +++, Py +++; Sp ++; Cpy +
Slow-spreadin	g mid-ocean ridge					
LHF, MAR	TVG1-10	14°45.186′N	44°58.772′W	3,025	Fragment with anhydrite, barite, amorphous silica, disseminated pyrite, marcasite and chalcopyrite	Anh+++, Ba+++; Cpy ++, Py ++, Mc++
13°S, MAR	S7-TVG4-2	13°17.203′8	14°24.837′W	2,311	Zn-Fe rich massive sulfide fragment coated with Fe hydroxides and Cu sulfides	Sp+++, Py+++; Cpy+
Intermediate-s	preading mid-ocean	ridge				
KHF, CIR	TVG9	25°19.221′S	70°02.420'E	2,437	Chimney fragment with finely bladed chalcopyrite	Py +++; Cpy +

 Table 1 Description of seafloor hydrothermal sulfide samples analyzed for noble gas concentrations and isotopic compositions in this study.

EHF, CIR	TVG12	23°52.678′S	69°35.808′E	3,293	Grey black Zn-rich massive sulfides coated with red to	Sp +++, Q+++; Py ++, Mc
					brown oxide crusts, amorphous silica, nodular structure in	++; Cpy+
					the outside	
EHF, CIR	TVG13-9.1	23°52.684′S	69°35.795′E	3,292	Irregular crust consisted of red brown to yellowish green	Anh+++, Py+++, Mc+++;
					oxide, anhydrite and gypsum, barite, with disseminated	Cpy++, Sp++, Gyp++; Ba+
					sulfides	
EHF, CIR	TVG13-9.2	23°52.684′S	69°35.795′E	3,292	Chimney fragment with red, brown and yellowish green	Mc+++, Anh+++; Gyp++,
					mixture of oxide, anhydrite and gypsum	Cpy++, Sp++, Py++; Ba+
EHF, CIR	S18-TVG9	23°52.638′S	69°35.850'E	3,282	Porous Fe-Cu rich sulfides with minor sulfates	Py+++; Mc++, Sp++,
						Cpy++; Ba+
Ultra-slow spre	ading mid-ocean ridge	2				
A area, SWIR	21VII-TVG22	37°56.316′S	49°15.894′E	1,443	Fe-rich chimney fragment coated with grey amorphous	Cpy+++, Py+++; Mc++, Sp+
					silica, conduits partially in-filled with oxides	
63.5°E, SWIR	S25-TVG21	27°57.042′S	63°32.484′E	3,666	Fe-rich massive sulfide fragment coated with Fe	Mc+++; Py++; Cpy++
					hydroxides and Cu sulfide	
Back-arc basin						
S99HF, NFB	26.1GTV	16°57.602′S	173°54.991′E	1,976	Inner Zn-rich chimney wall fragment with yellowish brown	Sp+++; Mc+, Cpy+
					oxides	
S99HF, NFB	26.2GTV	16°57.602′S	173°54.991′E	1,976	Grey Zn-rich chimney fragment with local honeycomb	Sp+++; Mc+, Cpy+
					structure and coarse black sphalerite crystals	
S99HF, NFB	42GTV	16°57.533′S	173°54.978′E	1,975	Cu-rich chimney fragment with conduits	Cpy+++; Py++, Mc++
S99HF, NFB	113.1GTV	16°57.322′S	173°54.970'E	1,967	Porous massive sulfide	Py+++; Cpy++, Mc++
S99HF, NFB	113.2GTV	16°57.322′S	173°54.970'E	1,967	Porous Fe-rich massive sulfide	Py+++; Mc++, Sp++, Cpy++

Py-pyrite; Mc-marcasite; Cpy-chalcopyrite; Sp-sphalerite; Anh-anhydrite; Gyp-gypsum; Ba-barite; Q-opal. +++: abundant (>30%); ++: major (5-30%); +: minor (\leq 5%).

Table 2 Concentrations and isotopic compositions of fluid inclusion-hosted He, Ne, and Ar in seafloor hydrothermal sulfide, sulfate and opal

mineral aggregate samples from the EPR near 13°N and 1-2°S, LHF, MAR near 13°S, KHF, EHF, A area, SWIR near 63.5°E, and S99HF. Gas

concentrations are in units of 10⁻⁸ cm³ STP/g of mineral. They depend on crushing efficiency, which is estimated to be between 50% and 100%,

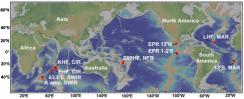
Sample	Mineral, Weight (g)	Analysis	⁴ He	²⁰ Ne	⁴⁰ Ar	$^{3}\text{He}/^{4}\text{He}(\mathbf{R}_{a})$	²⁰ Ne/ ²² Ne	²¹ Ne/ ²² Ne	⁴⁰ Ar/ ³⁶ Ar	³⁸ Ar/ ³⁶ Ar	
		#									
East Pacific Rise	near 13°N										
TVG1-2 (I)	Py, 0.60128	C190	16.41±0.82	1.179±0.071	355±21	7.79±0.24	-	-	299.9±3.0	-	
TVG1-2 (II)	Py, 0.12892	C197	22.1±1.1	0.581±0.035	357±13	7.94±0.46	9.820±0.059	0.02928±0.00065	300.06±0.95	0.18825 ± 0.00073	
TVG1-3	Ру, 0.62956	C191	7.40±0.37	0.840 ± 0.051	332±21	7.72±0.44		-	299.9±2.4	0.1890 ± 0.0013	
TVG2-1-1	Py, 0.44600	C192	17.62±0.88	0.502 ± 0.030	237±14	7.76±0.26	9.806±0.033	0.02952 ± 0.00043	300.9±2.2	$0.1877 {\pm} 0.0011$	
TVG2-1-2	Py, 0.46346	C193	11.71±0.59	1.153±0.069	538±32	7.72±0.24	9.777±0.034	0.02937±0.00036	298.5±1.1	0.18800 ± 0.00097	
East Pacific Rise	near 1-2°S										
S4-TVG1-1 (I)*	Ру, 0.78554	C170	0.765 ± 0.038	0.0321 ± 0.0021	28.4±4.6	8.1±0.71	9.748 ± 0.048	0.02930 ± 0.00094	298.4±1.4	$0.1886 {\pm} 0.0010$	
S4-TVG1-1 (II)	Ру, 0.56780	C179	2.21±0.11	0.278 ± 0.016	158±11	7.9±0.7	9.853±0.077	0.02896±0.00036	295.8±1.5	$0.1884{\pm}0.0011$	
S4-TVG1-2*	Py, 1.10150	C171	0.542 ± 0.027	0.1125 ± 0.0074	114±10	8.2±0.9	9.820±0.034	0.02889 ± 0.00041	297.0±2.3	$0.1885 {\pm} 0.0011$	
S6-TVG3*	Py, 0.88200	C172	4.18±0.21	0.794 ± 0.036	511±70	8.22±0.44	9.824±0.024	0.02873±0.00021	295.6±2.1	$0.1883 {\pm} 0.0010$	
Logatchev hydrot	Logatchev hydrothermal field, Mid-Atlantic Ridge										
TVG1-10-2	Anh+Ba, 0.60296	C201	$0.1634 {\pm} 0.0085$	3.88±0.21	3060±220	7.8±1.8	9.736±0.035	0.02877 ± 0.00031	299.8±1.4	$0.1884 {\pm} 0.0010$	
TVG1-10-1	Anh+Ba, 0.50910	C202	0.229 ± 0.012	5.61±0.29	3480±250	7.4±0.9	9.794±0.043	0.02911±0.00028	299.0±1.2	$0.1884{\pm}0.0011$	
Mid-Atlantic Ridg	ge near 13°S										

and may in some cases have been reduced by partial gas loss in the vacuum line before sample crushing (see text). Error limits are 2σ .

S7-TVG4-2	Ру, 0.59680	C189	0.327±0.016	0.213±0.017	169±10	7.1±1.8	-	-	298.7±1.8	0.1883±0.0011			
Kairei hydrothermal field, Central Indian Ridg e													
TVG9-1*	Ру, 0.57712	C173	4.80±0.24	0.531±0.036	308±27	7.68±0.27	9.856±0.027	0.02887±0.00033	297.5±1.6	0.18826±0.00095			
TVG9-2*	Ру, 0.57524	C174	5.05±0.25	1.033±0.045	518±45	7.52±0.49	9.866±0.022	0.02882±0.00023	297.5±1.2	0.18832±0.00095			
Edmond hydrothe	ermal field, Central Ind	dian Ridge	2										
TVG12-4 (I)*	Opal, 0.79852	C175	0.0174±0.0011	2.23±0.14	1140±150	4.9±2.2	-	-	294.2±2.4	0.1887±0.0010			
TVG12-4 (II)	Opal, 0.25438	C176	0.0283±0.0023	3.83±0.23	1380±160	8.1±5.8	-	-	296.7±1.7	0.1884±0.0011			
TVG12-5	Sph, 0.65574	K235	0.732 ± 0.044	3.25±0.17	1620±170	7.04±0.51	9.855±0.043	0.02835±0.00034	299.3±1.3	0.1898±0.0013			
TVG12-8	Sph, 0.66556	K232	0.1523±0.0077	0.1082 ± 0.0057	200±14	7.6±1.4	9.844±0.056	0.02877±0.00047	300.1±1.3	$0.1880{\pm}0.0011$			
TVG12-9	Sph, 0.65748	K233	0.206±0.010	0.343±0.018	383±26	5.0±1.8	9.831±0.037	0.02917±0.00043	300.6±1.3	0.1912±0.0011			
TVG12-11	Sph, 0.64258	K234	0.305±0.018	0.199±0.010	231±16	5.5±1.2	10.200 ± 0.044	0.02942±0.00049	295.8±1.3	0.1870±0.0012			
TVG12-14	Sph, 0.66484	K236	0.621±0.037	0.0741 ± 0.0041	202±14	7.9±1.0	9.816±0.073	0.02897±0.00069	299.9±1.1	0.1891 ± 0.0010			
TVG13-9.1	Anh/Ba, 0.60492	K239	0.719±0.036	1.562 ± 0.094	888±98	1.50±0.61	9.939±0.054	0.02878 ± 0.00038	298.4±1.6	0.1879±0.0016			
TVG13-9.2	Ру, 0.57428	C177	2.36±0.12	0.565±0.033	375±26	7.58±0.39	9.808±0.025	0.02901±0.00038	296.4±1.4	0.18818±0.00097			
S18-TVG9	Ру, 0.57318	C178	3.20±0.16	0.686 ± 0.040	424±29	7.22±0.40	9.841±0.025	0.02902±0.00033	297.2±1.3	0.18815±0.00092			
A area, Southwest	t Indian Ridge												
TVG22	Ру, 0.60364	K237	0.1218±0.0086	0.1355 ± 0.0077	265±18	8.5±1.9	9.797±0.068	0.02900 ± 0.00082	301.4±1.2	$0.1894{\pm}0.0011$			
Southwest Indian	Ridge near 63.5°E												
S25-TVG21	Ру, 0.59026	K238	0.869 ± 0.066	2.11±0.22	1340±130	$0.63^{+0.71}_{-0.63}$	9.892±0.055	0.02937±0.00048	299.2±1.2	0.1909±0.0013			
Sonne 99 hydroth	ermal field, North Fiji	i Basin, Ba	ick-arc Basin										
26.1GTV-1	Sph, 0.60020	C195	0.536 ± 0.027	0.0291 ± 0.0019	33.5±1.5	9.4±1.1	-	-	298.8±1.3	0.18816±0.00089			
26.1GTV-2	Sph, 0.61818	C196	0.1731 ± 0.0088	0.0564 ± 0.0042	192±12	9.8±4.5	-	-	297.6±1.5	$0.1888 {\pm} 0.0012$			
26.2GTV	Sph, 0.70824	C198	0.215±0.011	0.245±0.017	337±18	9.0±1.0	-	-	297.4±1.4	$0.1884{\pm}0.0011$			
42GTV	Сру+Ру, 0.61930	C199	0.192±0.010	0.307±0.019	183.9±9.6	8.1±2.2	-	-	295.9±2.5	$0.1890 {\pm} 0.0017$			
113.1GTV	Сру+Ру, 0.60398	C200	0.275±0.014	0.469 ± 0.030	794±41	10.4±1.0	-	-	296.5±1.4	$0.1890 {\pm} 0.0011$			

113.2GTV	Ру, 0.64228	C194	1.099±0.055	0.485 ± 0.029	999±81	8.71±0.55	9.752±0.054	0.02941±0.0004	4 296.2 ±1.8	0.1882 ± 0.0013
Atmosphere						1	9.80	0.0290	298.56	0.1885

"-" Indicates no data available due to experimental problems, notably high background of chemically active gases. $({}^{3}\text{He}/{}^{4}\text{He})_{a} = 1.39 \times 10^{-6}$. Atmosphere data from Ozima and Podosek (2002) for He and Ne and from Lee et al. (2006) for Ar, respectively. Samples denoted by * were baked for 24 hours at 100 °C before crushing extraction.


Table 3 Concentrations and isotopic compositions of fluid inclusion-hosted Kr and Xe in seafloor hydrothermal sulfide, sulfate and opal mineral

aggregate samples.

Sample	Mineral, Weight (g)	Analysis #	⁸⁴ Kr 10 ⁻¹²	¹³² Xe 10 ⁻¹²	¹²⁸ Xe/ ¹³² Xe	¹²⁹ Xe/ ¹³² Xe	¹³⁰ Xe/ ¹³² Xe	¹³¹ Xe/ ¹³² Xe	¹³⁴ Xe/ ¹³² Xe	¹³⁶ Xe/ ¹³² Xe	
East Pacific Rise	East Pacific Rise near 13°N										
TVG1-2 (I)	Ру, 0.60128	C190	261±16	65.6±5.6	0.0709 ± 0.0011	0.984 ± 0.010	0.1516 ± 0.0013	0.7896 ± 0.0072	0.3868 ± 0.0034	0.3278 ± 0.0040	
TVG1-2 (II)	Ру, 0.12892	C197	317±14	17.6±1.1	0.0723 ± 0.0018	0.988 ± 0.017	0.1532 ± 0.0061	0.797±0.016	0.391 ± 0.012	0.3302±0.0071	
TVG1-3	Ру, 0.62956	C191	252±16	27.2±2.3	0.0715 ± 0.0010	0.9871 ± 0.0088	0.1518 ± 0.0016	0.7900 ± 0.0057	0.3882 ± 0.0036	0.3294 ± 0.0038	
TVG2-1-1	Ру, 0.44600	C192	198±12	12.4±1.6	0.0718 ± 0.0022	0.983 ± 0.016	0.1513 ± 0.0026	0.790 ± 0.010	0.3872 ± 0.0066	0.3278 ± 0.0062	
TVG2-1-2	Ру, 0.46346	C193	415±25	$18.5^{\scriptscriptstyle +2.7}_{\scriptscriptstyle -1.8}$	0.0714 ± 0.0013	0.9873 ± 0.0090	0.1516 ± 0.0027	0.790 ± 0.011	0.3886 ± 0.0045	0.3297 ± 0.0060	
East Pacific Rise	East Pacific Rise near 1-2°S										
S4-TVG1-1 (I)*	Ру, 0.78554	C170	25.5±2.1	1.73±0.12	0.0703 ± 0.0053	0.980 ± 0.025	0.1524 ± 0.0093	0.800 ± 0.019	0.387 ± 0.010	0.329±0.013	
S4-TVG1-1 (II)	Ру, 0.56780	C179	149±11	10.93+0.900.80	0.0728 ± 0.0022	0.983 ± 0.011	0.1510 ± 0.0028	0.7855 ± 0.0092	0.3865 ± 0.0049	0.3272 ± 0.0040	
S4-TVG1-2*	Ру, 1.10150	C171	82.0 ± 6.2	$4.49^{+0.39}_{-0.23}$	0.0719 ± 0.0016	0.979 ± 0.012	0.1516 ± 0.0026	0.785 ± 0.011	0.3849 ± 0.0071	0.3273 ± 0.0059	
S6-TVG3*	Ру, 0.88200	C172	418±46	20.7±1.1	0.0724 ± 0.0015	0.9825 ± 0.0078	0.1520 ± 0.0021	0.7891 ± 0.0049	0.3871 ± 0.0036	0.3284 ± 0.0032	
Logatchev hydro	othermal field, Mid-Atl	antic Ridge									
TVG1-10-2	Anh+Ba, 0.60296	C201	2480±190	106.6±6.5	0.07063±0.00085	50.987 ± 0.011	0.1518 ± 0.0017	0.7861 ± 0.0060	0.3837 ± 0.0056	0.3252 ± 0.0061	
TVG1-10-1	Anh+Ba, 0.50910	C202	2850±230	129.9±8.1	0.07127±0.00083	80.9863 ± 0.0074	0.1520 ± 0.0011	0.7892 ± 0.0052	0.3874 ± 0.0027	0.3285 ± 0.0033	
Mid-Atlantic Rie	dge near 13°S										
S7-TVG4-2	Ру, 0.59680	C189	142.6±7.2	9.79±0.70	0.0715 ± 0.0031	0.984 ± 0.010	0.1513 ± 0.0032	0.787 ± 0.013	0.3876 ± 0.0049	0.3287 ± 0.0083	
Kairei hydrother	Kairei hydrothermal field, Central Indian Ridge										
TVG9-1*	Ру, 0.57712	C173	270±18	$11.70^{+0.83}_{-0.61}$	0.0734 ± 0.0027	0.984 ± 0.012	0.1522 ± 0.0019	0.788 ± 0.012	0.3860 ± 0.0065	0.3277 ± 0.0054	
TVG9-2*	Ру, 0.57524	C174	455±30	$16.6^{+1.1}_{-0.8}$	0.0732 ± 0.0012	0.9828 ± 0.0080	0.1514 ± 0.0021	0.7873 ± 0.0069	0.3874 ± 0.0043	0.3285 ± 0.0049	
Edmond hydroth	Edmond hydrothermal field, Central Indian Ridge										

TVG12-4 (I)*	[«] Q, 0.79852	C175	1460±140) 120±40	0.07094±0.0006	90.9800±0.0048	0.15174±0.00082	20.7872 ± 0.0031	0.3874 ± 0.0018	0.3286 ± 0.0025		
TVG12-4 (II)	Q, 0.25438	C176	1820±180) 184±21	0.0714 ± 0.0010	0.9835 ± 0.0057	0.15209±0.00079	90.7883 ± 0.0048	0.3877 ± 0.0017	0.3292 ± 0.0026		
TVG12-5	Sp, 0.65574	K235	1290±110) 59.1±4.3	0.0718 ± 0.0018	0.989 ± 0.018	0.1518 ± 0.0099	0.7870 ± 0.0067	0.3860 ± 0.0057	0.3252 ± 0.0070		
TVG12-8	Sp, 0.66556	K232	157±11	9.14±0.75	0.0727 ± 0.0017	$0.987 {\pm} 0.023$	0.1511 ± 0.0042	0.793 ± 0.011	0.3868 ± 0.0097	0.326±0.013		
TVG12-9	Sp, 0.65748	K233	301±22	15.2 ± 1.2	$0.0719{\pm}0.0031$	0.989 ± 0.021	0.1519 ± 0.0031	0.7897 ± 0.0086	0.3864 ± 0.0065	0.3265 ± 0.0090		
TVG12-11	Sp, 0.64258	K234	161±11	8.27 ± 0.62	0.0722 ± 0.0025	0.989 ± 0.023	0.1530 ± 0.0056	0.790 ± 0.015	0.386 ± 0.011	0.3266 ± 0.0095		
TVG12-14	Sp, 0.66484	K236	155±12	8.41±0.82	0.0728 ± 0.0039	0.993 ± 0.027	0.1523 ± 0.0042	0.795 ± 0.017	0.388 ± 0.012	0.327 ± 0.010		
TVG13-9.1	Anh/Ba, 0.60492	K239	754±82	35.9 ± 3.8	0.0718 ± 0.0017	0.990 ± 0.017	0.1524 ± 0.0029	0.790 ± 0.012	0.3841 ± 0.0051	0.3261 ± 0.0082		
TVG13-9.2	Ру, 0.57428	C177	289±18	17.04 ± 0.94	0.0732 ± 0.0015	0.9813 ± 0.0098	0.1522 ± 0.0020	0.789 ± 0.010	0.3876 ± 0.0044	0.3271 ± 0.0044		
S18-TVG9	Ру, 0.57318	C178	308±19	15.33±0.89	0.0729 ± 0.0019	0.982 ± 0.010	0.1520±0.0033	0.7868 ± 0.0091	0.3868 ± 0.0049	0.3268 ± 0.0065		
A area, South	A area, Southwest Indian Ridge											
TVG22	Ру, 0.60364	K237	251±18	14.5 ± 1.2	0.0718 ± 0.0025	$0.990 {\pm} 0.018$	0.1538 ± 0.0037	0.797 ± 0.011	0.3883 ± 0.0082	0.3285 ± 0.0087		
Southwest Ind	lian Ridge near 63.5°E											
S25-TVG21	Ру, 0.59026	K238	1020±120) 142±16	0.0724 ± 0.0017	0.989 ± 0.018	0.1520 ± 0.0025	0.7916±0.0094	0.3871 ± 0.0055	0.3259 ± 0.0074		
Sonne 99 hyd	rothermal field, North I	Fiji Basin, B	ack-arc Bas	rin								
26.1GTV-1	Sp, 0.60020	C195	31.8±1.6	2.82 ± 0.53	0.0705 ± 0.0042	0.982 ± 0.028	0.1498 ± 0.0056	0.784 ± 0.013	0.3881 ± 0.0069	0.3294 ± 0.0074		
26.1GTV-2	Sp, 0.61818	C196	147.2±7.2	2 8.93±0.68	0.0714 ± 0.0017	$0.987 {\pm} 0.018$	0.1524 ± 0.0053	0.791 ± 0.012	0.3891 ± 0.0067	0.3308 ± 0.0095		
26.2GTV	Sp, 0.70824	C198	267±16	$27.0{\pm}8.9$	0.0716 ± 0.0022	0.990 ± 0.014	0.1518 ± 0.0026	0.791 ± 0.010	0.3883 ± 0.0059	0.3289 ± 0.0066		
42GTV	Сру+Ру, 0.61930	C199	128±17	$24^{+31}24$	0.0719 ± 0.0025	0.987 ± 0.015	0.1526 ± 0.0042	0.789 ± 0.012	0.3865 ± 0.0064	0.3287 ± 0.0070		
113.1GTV	Сру+Ру, 0.60398	C200	545±33	68±21	0.0711 ± 0.0017	0.9858 ± 0.0097	0.1515 ± 0.0020	0.7864 ± 0.0096	0.3834 ± 0.0047	0.3247 ± 0.0074		
113.2GTV	Ру, 0.64228	C194	901±71	53.4±3.2	0.0713 ± 0.0010	0.9871 ± 0.0077	0.1516 ± 0.0025	0.7919 ± 0.0055	0.3863 ± 0.0053	0.3275 ± 0.0049		
Atmospere					0.07136	0.9832	0.15136	0.7890	0.3879	0.3293		

Atmosphere data from Ozima and Podosek (2002).

