English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Von der Gesteinsprobe bis zur Plattengrenze : Skalenübergreifende Analyse von Bruchprozessen

Authors
/persons/resource/bohnhoff

Bohnhoff,  Marco
Vol. 6, Issue 1 (2016), GFZ Journal 2016, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Geomechanics and Rheology, 4.0 Geomaterials, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kwiatek

Kwiatek,  Grzegorz
Vol. 6, Issue 1 (2016), GFZ Journal 2016, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Geomechanics and Rheology, 4.0 Geomaterials, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dre

Dresen,  Georg
Vol. 6, Issue 1 (2016), GFZ Journal 2016, System Erde : GFZ Journal, Deutsches GeoForschungsZentrum;
4.2 Geomechanics and Rheology, 4.0 Geomaterials, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
Fulltext (public)

GFZ_syserde.06.01.08.pdf
(Publisher version), 404KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bohnhoff, M., Kwiatek, G., Dresen, G. (2016): Von der Gesteinsprobe bis zur Plattengrenze: Skalenübergreifende Analyse von Bruchprozessen. - System Erde, 6, 1, 50-55.
https://doi.org/10.2312/GFZ.syserde.06.01.8


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1504389
Abstract
Rupture processes show strong similarities on broad spatial scales suggesting that in parts the governing physics for microcrack formation in the laboratory or a large earthquake along a tectonic plate boundary are the same. We discuss examples ranging from rock deformation experiments in the laboratory under controlled boundary conditions, induced seismicity in mines and geological reservoirs to natural earthquakes posing tremendous seismic hazard to population centers. We describe fundamental relations for the entire bandwidth of rupture processes involving fractures, faults and shear zones and their seismic characteristics such as b-value or seismic source properties. Laboratory tests on small-scale rock samples allow studying aspects of processes that control earthquake nucleation and rupture propagation. However, up-scaling of laboratory results to the field scale requires that dominant deformation processes remain the same on vastly different scales, and that potential effects of changing kinematic boundary conditions may successfully be accounted for by appropriate constitutive equations. Our approach shows that constitutive models capturing fundamental physical processes on the laboratory scale may be successfully applied to improve process understanding of deformation on the field scale with the potential to improve seismic hazard estimation.