

Originally published as:

Zhang, Y., Xiao, X., Jin, C., Dong, J., Zhou, S., Wagle, P., Joiner, J., Guanter, L., Zhang, Y., Zhang, G., Qin, Y., Wang, J., Moore, B. (2016): Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. *- Remote Sensing of Environment*, *183*, pp. 154–169.

DOI: http://doi.org/10.1016/j.rse.2016.05.015

Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America

3	Yao Zhang ¹ , Xiangming Xiao ^{1,2,*} , Cui Jin ¹ , Jinwei Dong ¹ , Sha Zhou ³ , Pradeep Wagle ¹ , Joanna Joiner ⁴ , Luis
4	Guanter ⁵ , Yongguang Zhang ⁶ , Geli Zhang ¹ , Yuanwei Qin ¹ , Jie Wang ¹ , Berrien Moore III ⁷

6	¹ Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman,
7	OK 73019, USA; ² Institute of Biodiversity Science, Fudan University, Shanghai, 200433, China; ³ State Key
8	Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing,
9	China; ⁴ NASA Goddard Space Flight Center, Greenbelt, MD, USA; ⁵ Helmholtz Centre Potsdam, German
10	Research Center for Geosciences (GFZ), Telegrafenberg A17, 14473 Potsdam, Germany; ⁶ Jiangsu Provincial Key
11	Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences,
12	Nanjing University, 210023 Nanjing, China; ⁷ College of Atmospheric and Geographic Sciences, University of
13	Oklahoma, Norman, OK 73019, USA
14	
15	*Corresponding Author: Prof. Xiangming Xiao (<u>xiangming.xiao@ou.edu</u>)
16	
17	Citation: Zhang, Y., Xiao, X., Jin, C., Dong, J., Zhou, S., Wagle, P., Joiner, J., Guanter, L., Zhang, Y., Zhang, G.,
18	Qin, Y., Wang, J., & Moore, B.III. (2016). Consistency between sun-induced chlorophyll fluorescence and gross
19	primary production of vegetation in North America. Remote Sensing of Environment, 183, 154-169
20	

21 Abstract

22 Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In 23 this study, we estimate GPP in North America (NA) using the satellite-based Vegetation 24 25 Photosynthesis Model (VPM), MODIS images at 8-day temporal and 500 m spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional 26 27 Reanalysis) climate data. The simulated GPP (GPP_{VPM}) agrees well with the flux tower derived GPP (GPP_{EC}) at 39 AmeriFlux sites (155 site-years). The GPP_{VPM} in 2010 is spatially 28 aggregated to 0.5 by 0.5° grid cells and then compared with sun-induced chlorophyll 29 fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is 30 31 directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP_{VPM} and GOME-2 SIF show good consistency. At the biome scale, the relationship between 32 GPP_{VPM} and SIF shows strong linear relationships ($R^2 > 0.95$) and small variations in slopes 33 $(4.60 - 5.55 \text{ g C m}^{-2} \text{ day}^{-1} / \text{ mW m}^{-2} \text{ nm}^{-1} \text{ sr}^{-1})$. The total annual GPP_{VPM} in NA in 2010 is 34 approximately 13.53 Pg C year⁻¹, which accounts for ~11.0% of the global terrestrial GPP and 35 is within the range of annual GPP estimates from six other process-based and data-driven 36 37 models $(11.35 - 22.23 \text{ Pg C year}^{-1})$. Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. 38 39 The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models. 40

42 Key words: Vegetation Photosynthesis Model (VPM); Light use efficiency; Remote sensing;
43 SIF; MODIS; Carbon cycle; GPP product

44 1. Introduction

Carbon dioxide fixed through photosynthesis by terrestrial vegetation is known as gross 45 46 primary production (GPP) at the ecosystem level. Increased carbon uptake during the past 47 decades helped offset growing CO₂ emissions from fossil fuel burning and land cover change and mitigate the increase of atmospheric CO₂ concentration and global climate warming 48 (Ballantyne et al. 2012). A variety of approaches have been used to estimate GPP of terrestrial 49 50 ecosystems, and they can be grouped into four categories: 1) process-based GPP models; 2) satellite-based production efficiency models (PEM); 3) data-driven GPP models upscaled from 51 52 eddy covariance data; and 4) models based on sun-induced chlorophyll fluorescence (SIF) (Fig. 1). However, large uncertainty still remains regarding the spatial distribution and seasonal 53 dynamics of GPP, which limits our capability to address scientific questions related to the 54 increasing seasonal amplitude and interannual variation of atmospheric CO₂ (Graven et al. 55 2013; Poulter et al. 2014; Forkel et al. 2016). An accurate estimation of GPP at regional and 56 57 global scales is essential for a better understanding of the underlying mechanisms of ecosystem-climate interactions and ecosystem response to extreme climate events, such as 58 59 drought, heat wave, and flood, etc. (Beer et al. 2010; Yu et al. 2013; Zhang et al. 2016).

60 Many process-based biogeochemical models employ the enzyme kinetics theory, most 61 well-known as encapsulated by Farquhar et al. (1980) and its modification for C4 plants

(Collatz et al. 1992). Some process-based models employ the light-use-efficiency (LUE)concept to estimate GPP (Zeng et al. 2005). These models also take multiple ecologicalprocesses into consideration so that they can be coupled with general circulation models(GCMs) to predict feedbacks related to the global warming and CO₂ fertilization (Booth et al.2012; Keenan et al. 2012; Piao et al. 2013; Xia et al. 2014). However, these models are oftenrun at coarse spatial resolution and the simulation results vary enormously even with the sameset of meteorological input datasets (Coops et al. 2009).

The remote sensing based PEMs estimate GPP as the product of the energy absorbed by 69 70 plants (absorbed photosynthetically active radiation, APAR) and LUE that converts energy to carbon fixed during the photosynthesis process (Monteith 1972). These models can be further 71 divided into two subcategories (Dong et al. 2015a; Xiao et al. 2004a). The FPAR_{canopy} based 72 models, including the Carnegie Ames Stanford Approach (CASA) (Potter et al. 1993), the 73 MODIS GPP algorithm (Photosynthesis, PSN) (Running et al. 2004; Zhao et al. 2005), and the 74 EC-LUE model (Yuan et al. 2007), use the radiation absorbed by vegetation canopy. The 75 76 FPAR_{chl/areen} based models use radiation absorbed by chlorophyll or green leaves and include the Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004a; Xiao et al. 2004b), 77 Greenness and Radiation (GR) model (Gitelson et al. 2006), and the Vegetation Index (VI) 78 79 model (Wu et al. 2010b).

The eddy covariance (EC) technique provides estimates of GPP by partitioning measured net ecosystem CO₂ exchange (NEE) between land and the atmosphere into GPP and ecosystem respiration (R_e) (Baldocchi et al. 2001). Over the past decades, the EC technique has been widely applied to measure NEE of various biome types throughout the world, and a large
amount of GPP data (GPP_{EC}) has been accumulated (Baldocchi 2014; Baldocchi et al. 2001).
A number of statistical models have been developed to upscale GPP_{EC} from individual sites to
the regional scales (Jung et al. 2009; Jung et al. 2011; Xiao et al. 2010; Xiao et al. 2014; Yang
et al. 2007). These algorithms, such as model tree ensembles (MTE) or regression tree
approaches, build a series of rules through data mining that relate *in situ* flux observations to
satellite-based indices and climate data.

Solar-induced chlorophyll fluorescence (SIF), a byproduct of the vegetation photosynthesis 90 91 process, has been recently retrieved using multiple satellite platforms/instruments such as the Greenhouse gases Observing SATellite (GOSAT) (Frankenberg et al. 2011; Guanter et al. 2012; 92 Joiner et al. 2012; Joiner et al. 2011), the Global Ozone Monitoring Instrument 2 (GOME-2) 93 94 (Joiner et al. 2013), and the Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al. 2014). Recent field studies and theory suggest that SIF contains information from both APAR and 95 LUE that is complementary to vegetation indices such as the normalized difference vegetation 96 index (NDVI) (Guanter et al. 2013; Rossini et al. 2015; Yang et al. 2015). A simple regression 97 model based on space-borne SIF has been developed to estimate cropland GPP (Guanter et al. 98 99 2014). Zhang et al. (2014) have also shown the potential of SIF data to improve carbon cycle models and provide accurate projections of agricultural productivity (Guan et al. 2015). 100

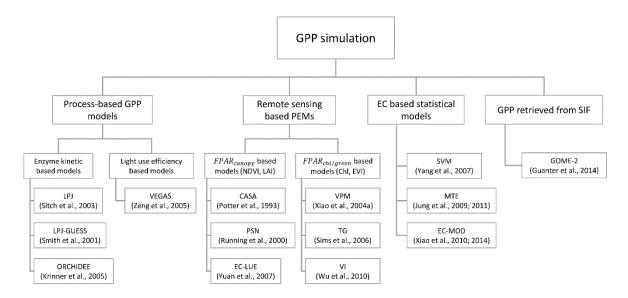


Fig. 1. A list of different approaches and models (as examples) to estimate gross primaryproduction (GPP) of vegetation.

Over the past several years, a number of studies have run the VPM with in situ climate data 106 at various eddy flux tower sites. The resulting GPP_{VPM} was evaluated with GPP_{EC} at different 107 ecosystem types, including forests (Xiao et al. 2004a; 2004b; 2005), croplands (Kalfas et al. 108 2011; Wagle et al. 2015), savannas (Jin et al. 2013), and grasslands (He et al. 2014; Wagle et 109 al. 2014). Wu et al. (2010a) compared GPP from four models driven by remotely sensed data 110 at the Harvard forest site and found that VPM performed best in terms of capturing the seasonal 111 112 dynamics of GPP. Yuan et al. (2014) compared seven LUE based models at 157 eddy flux sites and showed that VPM had a moderate rank of performance. Dong et al. (2015a) used four EVI-113 based models to estimate GPP of grasslands and croplands under normal and severe drought 114 115 conditions, and reported that VPM performed better than other models in capturing the impacts 116 of drought on GPP. This was mostly because VPM uses Land Surface Water Index (LSWI) that is sensitive to water stress (Wagle et al. 2014; 2015), while the other three models lack a water 117

stress scalar. Recently, simulations of VPM on the regional scale, driven by regional climate
data, have been carried out in the Tibetan Plateau (He et al. 2014) and China (Chen et al. 2014),
where only limited GPP_{EC} data are available for model calibration and validation.

In this study, we aim to assess the feasibility and performance of the VPM model in 121 122 estimating GPP across North America (NA) and explore the relationship between SIF and 123 GPP_{VPM} at continental scale. The selection of the NA as study area is based on two facts: (1) 124 large uncertainties exist in the GPP estimates from various models (ranging from 12.2 to 32.9 Pg C year⁻¹) (Huntzinger et al. 2012); and (2) a large number of eddy flux sites are available in 125 126 NA, which provides an opportunity for a thorough validation. The specific objectives of this study are to: (1) implement the VPM simulation at the continental scale over NA; (2) evaluate 127 the performance of VPM at individual sites using GPP_{EC} data from 39 flux tower sites (155 128 site-years); (3) compare GPP_{VPM} with GOME-2 SIF data at 0.5° (latitude/longitude) resolution 129 across NA; and (4) use of GOME-2 SIF as a reference to compare with GPP estimates from 130 other six models. In this paper, we report (1) multi-year GPP_{VPM} and GPP_{EC} at individual flux 131 tower sites, dependent upon availability of GPP_{EC} data, and (2) GPP_{VPM} in 2010 across NA. 132

133 2. Materials and Method

134 2.1. Regional datasets for VPM simulations across North America

135 **2.1.1. Climate data**

136 The VPM model uses photosynthetically active radiation (PAR) and temperature data as137 climate input data. We use the National Center for Environmental Prediction-North America

Regional Reanalysis (NCEP-NARR) datasets (Mesinger et al. 2006) for 2000-2014. The 138 original three hourly data are first aggregated into 8-day averages to match the temporal 139 140 resolution of MODIS vegetation indices. The day-time mean air temperature is obtained by averaging the temperature between 6 am to 6 pm local time. Zhao et al. (2006) reported that 141 the NCEP-NARR product overestimates the surface shortwave radiation when comparing with 142 143 the in situ observation at the flux tower sites. Jin et al. (2015) also compared the NCEP-NARR 144 radiation data with in situ radiation measurements at 37 AmeriFlux sites and reported a bias correction factor of 0.8. In this study, we applied this factor to adjust the radiation data. 145

In order to run VPM at a 500 m spatial resolution, we use a non-linear spatial interpolation method (Zhao et al. 2005) to downscale the NCEP-NARR radiation and temperature dataset from the spatial resolution of $0.25^{\circ} \times 0.25^{\circ}$ to 500-m. It uses a fourth power of a cosine function and adopts the weighted distance from the nearest four grid cells to calculate a value for each output pixel at MODIS resolution. The distance factor (D_i) for the four nearby grid cells can be calculated as follows:

152
$$D_i = \cos^4\left(\frac{\pi}{2} \times \left(\frac{d_i}{d_{max}}\right)\right) \qquad i = 1,2,3,4 \tag{1}$$

where d_i and d_{max} indicate the distance between the center of the 500 m MODIS pixel and each of the four vertex grid cells from NCEP-NARR data, and the maximum distance between the four vertex NCEP-NARR grid cells, respectively. For each MODIS pixel, the weight from the four surrounding NCEP-NARR grid cells can be calculated as:

157
$$W_i = \frac{D_i}{\sum_{i=1}^4 D_i}$$
 (2)

158 The final value for each interpolated MODIS pixel (V) can be expressed as a weighted

159 average:

160
$$V = \sum_{i=1}^{4} (W_i * V_i)$$
(3)

161 where V_i is the value for the four surrounding grid cell values of NCEP-NARR data.

162 **2.1.2. MODIS data**

163 2.1.2.1. MODIS surface reflectance and vegetation indices

The MODIS MOD09A1 surface reflectance product (500 m spatial resolution and 8-day
temporal resolution) is used to calculate the enhanced vegetation index (EVI) (Huete et al. 2002)
and LSWI as inputs to the VPM. LSWI is calculated as the normalized difference between NIR
(0.78-0.89µm) and SWIR (1.58-1.75µm) and is sensitive to water content. Therefore, LSWI is
a good indicator of water stress from the vegetation canopy and soil background (Xiao et al.
2002). These two indices are calculated as follows:

170
$$EVI = 2.5 \times \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + (6 \times \rho_{red} - 7.5 \times \rho_{blue}) + 1}$$
(4)

171
$$LSWI = \frac{\rho_{nir} - \rho_{swir}}{\rho_{nir} + \rho_{swir}}$$
(5)

A temporal gap-fill algorithm is applied to the EVI time series data. The data quality is checked using the quality flag layer, and those observations not affected by cloud and climatological aerosols are considered 'GOOD' quality (MOD35 cloud = 'clear'; aerosol quantity = 'low' or 'average'). Each pixel is temporally linearly interpolated using only goodquality EVI observations within each year. A Savitzky–Golay filter is then applied to each pixel to eliminate high frequency noise (Chen et al. 2004). If a pixel has fewer than three out of 46 good observations for one year, the original data (no gap-filled) are used. Fortunately, this happens only for < 0.5% of the total pixels and the majority of those are in less productive,
boreal areas.

181 2.1.2.2. MODIS land cover data

182 The MODIS MCD12Q1 land cover product at 500-m spatial resolution (Friedl et al. 2010) includes annual land cover types from 2001 to 2013. We use MCD12Q1 data in 2001 to 183 184 represent year 2000, and MDD12Q1 data in 2013 to represent year 2014, which allows us to have a full time series of land cover types for 2000-2014. The IGBP land cover classification 185 scheme in the dataset is used to provide biome specific information for the VPM. A lookup-186 table (LUT) is used to get the essential parameters including maximum LUE as well as the 187 maximum, minimum, and optimum temperatures for vegetation photosynthesis (see Appendix 188 Table A1). 189

In order to investigate the relationship between GPP_{VPM} and SIF (0.5° latitude and 190 191 longitude resolution) in different vegetation/biome types, we also aggregate the original 500 m land cover data to 0.5° grid cells using the following procedure. The original IGBP land cover 192 193 data are first merged and reprojected onto the longitude-latitude projection with the original 194 spatial resolution. We calculate the frequency (number of 500 m pixels) of individual vegetation types within a $0.5^{\circ} \times 0.5^{\circ}$ grid cell. Then, for each $0.5^{\circ} \times 0.5^{\circ}$ grid cell, if one 195 vegetation type is dominant (> 75% of the grid cell), this grid cell is assigned that vegetation 196 197 type; if no land cover type is dominant, the grid cell is not assigned a type.

198 2.1.2.3. MODIS land surface temperature data

199 The MODIS MYD11A2 land surface temperature dataset is used to derive the thermal 200 growing season and eliminate the snow cover period, which avoids the effect of snow cover in 201 retrieving the yearly maximum LSWI. The MYD11A2 data set is chosen because it provides observations at 1:30 am, which is close to the daily minimum temperature. For each pixel each 202 year, the thermal growing season is defined using the nighttime land surface temperature (Dong 203 204 et al. 2015b). Once three consecutive 8-day's in the spring have nighttime temperatures above 5°C, the thermal growing season begins; when three consecutive 8-day's in the fall have 205 nighttime temperatures below 10°C, the thermal growing season ends. A detailed application 206 207 of this temperature-based phenology was recently reported (Zhang et al. 2015).

208 2.2. Datasets used to evaluate and compare VPM simulations across North America

209 2.2.1. CO₂ eddy flux data from AmeriFlux tower sites

CO₂ flux data from 39 AmeriFlux sites are downloaded from the AmeriFlux data portal
(http://ameriflux.ornl.gov/). These flux sites cover most of the major biomes in NA (DBF, ENF,
MF, GRA, CRO, CSH, OSH, WET and WSA) (Table 1). The 8-day level-4 gap-filled flux data
with the Marginal Distribution Sampling (MDS) method is used (Reichstein et al. 2005). GPP_{EC}
estimates from individual sites are used to evaluate GPP_{VPM}.

215 2.2.2. Solar-induced chlorophyll fluorescence (SIF) data from GOME-2

The latest version (v26) of monthly SIF data from the GOME-2 instrument onboard
Eumetsat's MetOp-A satellite is used in this study and available to the public at http://acdb-

ext.gsfc.nasa.gov/People/Joiner/my gifs/GOME F/GOME-F.htm (Joiner et al. 2014). GOME-218 2 captures earth radiation in the range from ~ 600 to 800 nm with a spectral resolution of ~ 0.5 219 nm at a nominal nadir footprint of $40 \times 80 \text{ km}^2$ in the nominal observing configuration. 220 221 Wavelengths around 740 nm at the far-red peak of the SIF emission are used for SIF retrievals 222 with a principal component analysis approach to account for atmospheric absorption. The 223 results are then quality-controlled (e.g., heavily cloud contaminated data removed) and aggregated to monthly means at $0.5^{\circ} \times 0.5^{\circ}$ spatial resolution (Joiner et al. 2013). In this study, 224 we use GOME-2 SIF data for the period from January 2010 to February 2011. 225

226 2.2.3. GPP data from other six models

227 The GPP data from the four process-based models (LPJ, LPJ-GUESS, ORCHIDEE, and 228 VEGAS) are part of the TRENDY projects (Sitch et al., 2008), which intended to compare 229 trends in net land-atmosphere carbon exchange over the period 1980 – 2010 (Table 3). These 230 four models, driven by the CRU+NCEP climate data and global annual atmospheric CO₂, are 231 chosen because they have different algorithms to simulate GPP at 0.5°×0.5° spatial resolution. Another two models involved in the comparison are the MPI-BGC and MODIS PSN. The 232 MPI-BGC estimates GPP by upscaling global CO₂ flux observations using a Model Tree 233 234 Ensemble approach (Jung et al. 2009). MODIS PSN employs a production-efficiency approach and uses the MODIS fraction of photosynthetically active radiation product (MOD15A2) and 235 meteorological data (Running et al. 2004). The C55 version of MODIS PSN product 236 (MOD17A2 C55) is used. 237

2.3. A brief description of the Vegetation Photosynthesis Model (VPM)

The satellite-based VPM (Xiao et al., 2004a, b) uses the product of light use efficiency (LUE, ε_g), and absorbed photosynthetically active radiation by chlorophyll (*APAR_{chl}*) to estimate GPP as follows (Fig. 2):

$$GPP = \varepsilon_g \times APAR_{chl} \tag{6}$$

243 VPM uses the fraction of absorbed photosynthetic active radiation by chlorophyll 244 (fAPAR_{chl}) to estimate $APAR_{chl}$. The fAPAR_{chl} is estimated from a linear function of EVI 245 where the coefficient α is set to be 1.0 (Xiao et al. 2004a).

$$APAR_{chl} = fAPAR_{chl} \times PAR \tag{7}$$

$$fAPAR_{chl} = \alpha \times EVI \tag{8}$$

248 The light-use-efficiency (ε_g) in the VPM is a down-regulation of maximum LUE (ε_0) by

temperature (T_{scalar}) and water stress limitation (W_{scalar}) on photosynthesis as follows:

250
$$\varepsilon_g = \varepsilon_0 \times T_{scalar} \times W_{scalar} \tag{9}$$

 ϵ_0 is a biome-specific parameter and differs for C3 and C4 plants. The ϵ_0 values are obtained from a lookup-table (LUT) using the MODIS land cover data. T_{scalar} is estimated from the equation used in the Terrestrial Ecosystem Model (TEM) (Raich et al. 1991).

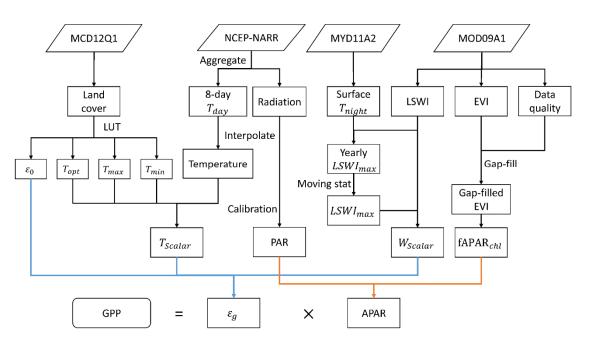
254
$$T_{scaler} = \frac{(T - T_{max}) \times (T - T_{min})}{(T - T_{max}) \times (T - T_{min}) - (T - T_{opt})^2}$$
(10)

where T_{min} , T_{max} and T_{opt} are the minimum, maximum, and optimum temperatures for vegetation photosynthesis, respectively. These parameters are biome specific and are also obtained from the LUT. The limitation from water stress is estimated from LSWI:

258
$$W_{scalar} = \frac{1 + LSWI}{1 + LSWI_{max}}$$
(11)

 $LSWI_{max}$ is the maximum LSWI during the growing season over several years. We 259 delineate the $LSWI_{max}$ for plant growing season from the following steps: (1) during the 260 growing season period pre-defined by the LST, LSWI_{max} is retrieved as the yearly maximum 261 LSWI. If temperature-based identification of the growing season fails in the boreal region 262 where nighttime temperature is always below 10°C, the growing season is set to be June to 263 264 August. (2) LSWI will have an abnormally high value if snow exists and a lower value during 265 drought periods. To eliminate these abnormal values and take the land cover change into consideration, we further calculate the $LSWI_{max}$ using a moving-window statistical algorithm: 266 267 we select a window of five years and pick the second largest maximum LSWI in this period.

268



269

Fig. 2. Flowchart of the data processing procedures for vegetation photosynthesis model(VPM).

273 **3. Results**

274 3.1. Seasonal dynamics of GPP at individual flux tower sites

275	Fig. 3 shows the seasonal dynamics and interannual variations of GPP_{EC} and GPP_{VPM}
276	across the 39 flux tower sites. The VPM accurately predicts the seasonality and magnitude of
277	GPP for most natural vegetation (vegetation types other than cropland and cropland/natural
278	vegetation mosaic in IGBP classification) (Fig. 3). Table 1 summarizes the correlation between
279	GPPEC and GPPVPM at individual sites over years. Nearly two thirds of the natural biomes sites
280	have a RMSE < 1.5 g C m ⁻² day ⁻¹ . Cropland sites have slightly larger RMSE values of 2.20 –
281	$3.06 \text{ g C m}^{-2} \text{ day}^{-1}$

Table 1. Descriptions of the 39 flux tower sites used in this study. IGBP class, R², and RMSE
 are the International Geosphere-Biosphere Programme land cover classification, coefficient of
 determination, and root mean square error of the regression analysis between tower-based gross
 primary production (GPP_{EC}) and simulated GPP (GPP_{VPM}) using vegetation photosynthesis
 model.

ID	NAME	LAT	LON	IGBP class	Years used	R ²	RMSE	Reference
US-Bo1	Bondville	40.0062	-88.2904	CRO	2001- 2006	0.83	2.20	Hollinger et al. (2005)
US-Ne1	Mead irrigated continuous	41.1651	-96.4766	CRO	2001- 2005	0.91	3.06	Suyker et al. (2005)
US-Ne2	Mead irrigated rotation	41.1649	-96.4701	CRO	2001- 2005	0.91	2.71	Suyker et al. (2005)
US-Ne3	Mead rainfed rotation	41.1797	-96.4397	CRO	2001- 2005	0.85	2.76	Suyker et al. (2005)
US-Ro1	Rosemount- G21	44.7143	-93.0898	CRO	2004- 2006	0.80	2.45	Griffis et al. (2005)
US-Ro3	Rosemount- G19	44.7217	-93.0893	CRO	2004- 2006	0.81	2.22	Griffis et al. (2005)

US-KS2	Kennedy Space Center	28.6086	-80.6715	CSH	2004- 2005	0.72	0.96	Dijkstra e al. (2002)
US-Los	Lost Creek	46.0827	-89.9792	CSH	2001- 2002	0.90	1.59	Sulman e al. (2009)
US-Bar	Bartlett Experimental Forest	44.0646	-71.2881	DBF	2004- 2006	0.93	1.33	Jenkins e al. (2007)
US-Hal	Harvard Forest	42.5378	-72.1715	DBF	2000- 2006	0.83	2.05	Urbanski e al. (2007)
US-LPH	Little Prospect Hill	42.5419	-72.1850	DBF	2001- 2005	0.91	1.30	Vanderhoof et al. (2013)
US-MMS	Morgan Monroe State Forest	39.3232	-86.4131	DBF	2005- 2007	0.91	1.59	Schmid e al. (2000)
US-MOz	Missouri Ozark Site	38.7441	-92.2000	DBF	2000- 2006	0.89	1.37	Gu et al (2006)
US-UMB	Univ. of Mich. Biological Station	45.5598	-84.7138	DBF	2000- 2006	0.97	0.78	Gough et a (2008)
US-WCr	Willow Creek	45.8059	-90.0799	DBF	2002- 2005	0.96	1.05	Cook et a (2004)
CA-NS1	UCI-1850 burn site	55.8792	-98.4839	ENF	2003- 2005	0.65	1.00	Goulden e al. (2006)
CA-NS2	UCI-1930 burn site	55.9058	-98.5247	ENF	2002- 2005	0.70	0.88	Goulden e al. (2006)
CA-NS3	UCI-1964 burn site	55.9117	-98.3822	ENF	2002- 2005	0.92	1.49	Goulden e al. (2006)
CA-NS4	UCI-1964 burn site wet	55.9117	-98.3822	ENF	2003- 2004	0.84	1.08	Goulden e al. (2006)
CA-NS5	UCI-1981 burn site	55.8631	-98.4850	ENF	2002- 2005	0.89	1.13	Goulden e al. (2006)
US-Blo	Blodgett Forest	38.8953	-120.6328	ENF	2000- 2006	0.74	1.58	Goldstein e al. (2000)
US-Fmf	Flagstaff Managed Forest	35.1426	-111.7273	ENF	2007	0.63	0.95	Dore et a (2008)
US-Ho1	Howland Forest (main tower)	45.2041	-68.7402	ENF	2000- 2004	0.88	0.84	Hollinger e al. (2004)
US-Ho2	Howland Forest (west tower)	45.2091	-68.7470	ENF	2000- 2004	0.69	0.98	Hollinger e al. (2004)

	Metolius-				2002,			T. 4 1
US-Me2	intermediate aged pine	44.4523	-121.5574	ENF	2004- 2007	0.91	1.03	Law et al. (2004)
US-Me3	Metolius- second young aged pine	44.3154	-121.6078	ENF	2004- 2005	0.69	1.26	Law et al. (2000)
US-Me5	Metolius-first young aged pine	44.4372	-121.5668	ENF	2000- 2002	0.94	0.60	Law et al. (2000)
US-NC1	North Carolina Clearcut	35.8115	-76.7115	ENF	2005- 2006	0.95	0.93	Noormets et al. (2010)
US-Wi0	Wisconsin young red pine	46.6188	-91.0814	ENF	2002	0.81	1.79	Sun et al. (2008)
US-Wi4	Wisconsin mature red pine	46.7393	-91.1663	ENF	2002- 2005	0.92	0.81	Sun et al. (2008)
US-ARb	ARM SGP burn	35.5497	-98.0402	GRA	2005- 2006	0.91	1.99	Fischer et al. (2007)
US-ARc	ARM SGP control	35.5465	-98.0400	GRA	2005- 2006	0.91	2.07	Fischer et al. (2007)
US-Goo	Goodwin Creek	34.2547	-89.8735	GRA	2004- 2006	0.68	1.93	Wilson and Meyers (2007)
US-Wlr	Walnut River Watershed	37.5208	-96.8550	GRA	2002- 2004	0.94	0.81	Coulter et al. (2006)
US-Syv	Sylvania Wilderness Area	46.2420	-89.3477	MF	2001- 2006	0.92	1.12	Desai et al. (2005)
CA-NS6	UCI-1989 burn site	55.9167	-98.9644	OSH	2002- 2005	0.87	0.69	Goulden et al. (2006)
CA-NS7	UCI-1998 burn site	56.6358	-99.9483	OSH	2002- 2005	0.86	0.63	Goulden et al. (2006)
US-Ivo	Ivotuk	68.4865	-155.7503	WET	2004, 2006	0.67	0.80	Epstein et al. (2004)
US-FR2	Freeman Ranch- Mesquite Juniper	29.9495	-97.9962	WSA	2004- 2006	0.73	1.13	Heinsch et al. (2004)

288 CRO: cropland; CSH: closed shrublands; DBF: deciduous broadleaf forests; ENF:
289 evergreen needleleaf forest; GRA: grassland; MF: mixed forest; OSH: open shrublands; WET:
290 wetland; WSA: woody savannas.

292	Fig. 4 shows the comparison between GPP_{EC} and GPP_{VPM} at biome levels. When
293	compared to GPP _{EC} , GPP _{VPM} underestimate by 4% (according to regression slope and hereafter)
294	for deciduous broadleaf forests (DBF), 8% for mixed forests (MF), and 16% for evergreen
295	needleleaf forests (ENF). GPP $_{VPM}$ and GPP $_{EC}$ agree well for closed shrubland (2%) and open
296	shrubland (4%). For grassland and woody savannas (WSA), the biases are < 8%. When all
297	natural biome sites are combined, GPP $_{VPM}$ is slightly lower than GPP $_{EC}$, approximately 8% (y
298	= 0.92x, R^2 = 0.85) (Fig. 4). For cropland sites (cropland and cropland/natural vegetation
299	mosaic in IGBP classification), GPP _{VPM} is lower than GPP _{EC} by 23% ($y = 0.77x$, $R^2 = 0.82$).
300	When all 39 sites are lumped together, the difference between GPP_{VPM} and GPP_{EC} is
301	approximately 13% (y = 0.87x, $R^2 = 0.82$). The LUE parameter in VPM improves the
302	predictability of GPP, as represented by the decreased coefficient of determination (R^2) in the
303	VPM model sensitivity analysis for both natural biomes and all biomes sites when LUE
304	parameter is removed (Fig. A1).

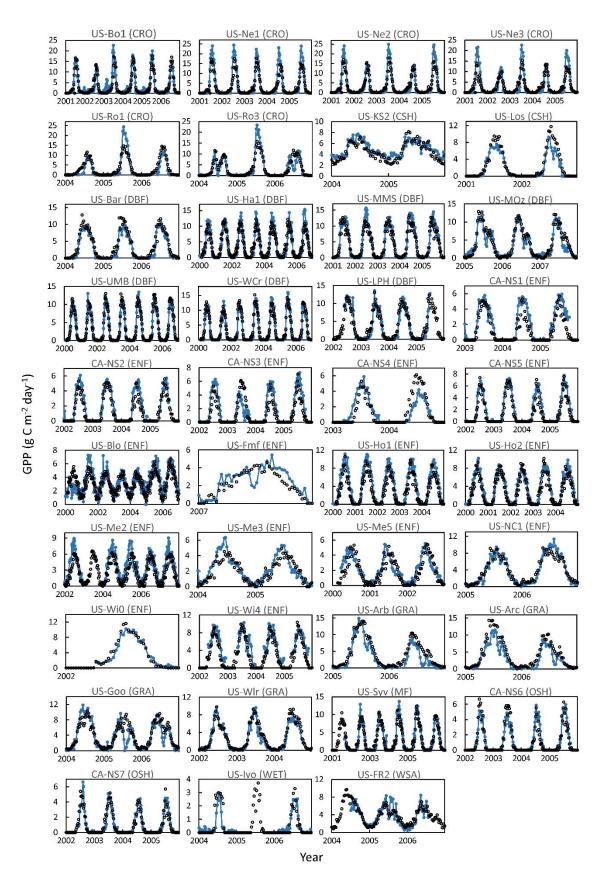
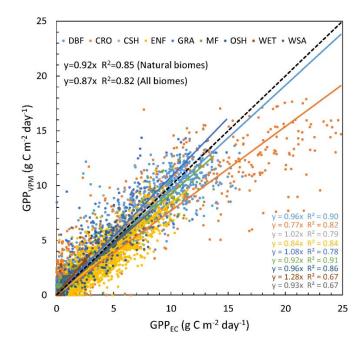


Fig. 3. Seasonal dynamics and interannual variations of the tower-based (GPP_{EC}) and the modeled (GPP_{VPM}) gross primary production at 39 flux sites at 8-day intervals. The blue lines

represent the GPP_{EC} and the black circles represent the GPP_{VPM}. The ticks on the x-axis
 represent the first date of the corresponding year.

311



312

Fig. 4. A comparison of the tower-based (GPP_{EC}) and the modeled (GPP_{VPM}) gross primary
production by biome types. Data are pooled across the study period for each biome. The dash
line is 1:1 line and solid lines are linear regression lines forced to pass the origin.

316

317 3.2. Spatial patterns of GPP_{VPM} across North America in 2010 at 500-m spatial resolution

Fig. 5A shows the spatial distribution of annual GPP_{VPM} for 2010 across NA. The highest GPP_{VPM} (> 2,000 g C m⁻² year⁻¹) occurs in the southernmost tropical regions. GPP_{VPM} decreases along a latitudinal gradient in the eastern region, owing to the decreasing temperature and growing season length. GPP_{VPM} also decreases along a longitudinal gradient from east (dominated by forest) to west (dominated by grasslands and desert). Fig. 5B shows the spatial distribution of the maximum daily GPP_{VPM} in 2010. The highest value is ~20 g C m⁻² day⁻¹ for the Midwest Corn Belt. The southeastern U.S. has a relatively low value as compared with the mid-latitude region (35°N - 45°N). The biggest contrast between annual GPP_{VPM} and maximum
daily GPP_{VPM} is found in the tropical and western coastal regions, where annual GPP_{VPM} is
highest while the maximum daily GPP_{VPM} is moderate.

328

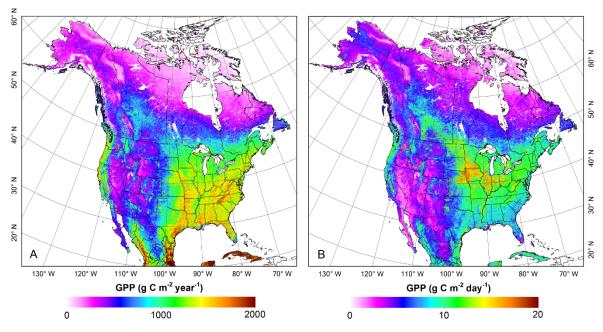


Fig. 5. Spatial distribution of modeled (A) annual GPP_{VPM} and (B) maximum daily GPP_{VPM}
for year 2010.

332

329

GPP_{VPM} varies significantly across biomes (Table 2). The most productive ecosystem is the 333 evergreen broadleaf forest with an annual GPP_{VPM} of > 2,000 g C m⁻² year⁻¹. Open shrubland 334 and savannas are the least productive with an annual GPP_{VPM} < 375 g C m⁻² year⁻¹. Grassland, 335 336 savannas, and shrublands have relatively high spatial variance because of the extensive distribution and high sensitivity to soil water. All natural vegetation contribute about 70% of 337 the total GPP_{VPM}, with an average of 600.88 g C m⁻² year⁻¹. Croplands accounts for about 27% 338 of the total GPP but with a nearly doubled photosynthetic capacity (1,194.27 g C m⁻² year⁻¹) 339 compared with the mean of natural vegetation. The maximum daily GPP_{VPM} for different 340

341	biomes varies from 3.59 to 12.00 g C m ⁻² day ⁻¹ . Croplands have the largest GPP _{VPM} magnitudes
342	(9.94 to 12.00 g C m ⁻² day ⁻¹). Forest ecosystems have a relatively higher maximum
343	photosynthetic rate (8.79 g C m ⁻² day ⁻¹) compared with other natural vegetation types (4.65 g
344	C m ⁻² day ⁻¹). The inconsistency between annual GPP _{VPM} sums and maximum daily GPP _{VPM}
345	may be mainly attributed to different growing season lengths that are affected by temperatures
346	and rainfall.

Table 2. The magnitudes and annual sums of simulated gross primary production (GPP_{VPM})
of different biomes in North America (170°~50°W, 20°~80°N) for year 2010.

IGBP class	Average annual GPP (g C m ⁻² year ⁻¹)	Standard deviation of annual GPP (g C m ⁻² year ⁻¹)	Average maximum daily GPP (g C m ⁻² day ⁻¹)	Standard deviation of maximum daily GPP (g C m ⁻² day ⁻ ¹)	Total (Pg C year ⁻¹)
ENF	638.45	255.53	5.90	1.55	1.32
EBF	2038.76	448.32	9.63	1.71	0.16
DBF	1443.95	188.49	11.09	1.47	0.75
MF	1030.24	330.46	8.53	1.78	1.94
OSH	349.30	224.44	3.59	1.31	1.48
WSA	815.81	543.79	6.27	2.29	1.50
SAV	377.65	267.02	4.17	1.27	0.20
GRA	457.50	380.74	4.24	2.59	2.00
WET	539.26	253.98	5.00	1.41	0.21
CRO	1157.99	390.54	12.00	3.09	2.15
CNV	1248.95	317.55	9.94	1.67	1.54

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest; OSH: open shrubland; WSA: woody savannas; SAV: savannas; GRA: grassland; WET: wetland; CRO: cropland; CNV: cropland/natural vegetation mosaic.

354

Fig. 6 shows the frequency distribution of annual GPP_{VPM} and maximum daily GPP_{VPM} for all pixels in NA and their distribution in the climate space. More than 70% of pixels have relatively low productivity, i.e., annual GPP_{VPM} less than 1,000 g C m⁻² year⁻¹ or maximum

daily GPP_{VPM} less than 10 g C m⁻² day⁻¹. We also plot the distribution of the 39 flux tower sites 358 in NA based on the annual and maximum daily GPPEC (Fig. 6). The distribution of the flux 359 360 tower sites cover the broad range of maximum daily GPP_{VPM}, and most of them are located in regions with moderate annual GPP (1,000 - 1,800 g C m⁻² year⁻¹). In the two-dimensional 361 362 climate space described by mean annual temperature (MAT) and mean annual precipitation 363 (MAP) (Fig. 6C, D), the flux tower sites distribution covers most of the climate space. The 364 annual GPP_{VPM} generally increases with MAT mad MAP, while the daily maximum GPP_{VPM} is 365 highest in moderate MAT and MAP regions.

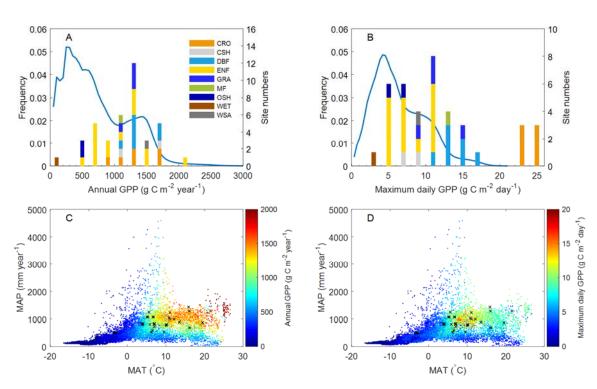


Fig. 6. The frequency distribution of GPP_{VPM} of the (A) annual GPP and (B) maximum daily GPP compared to the flux site distribution and their distribution in the climate space defined by mean annual temperature (MAT) mean annual precipitation (MAP) (C, D). The blue curves in (A and B) indicate the frequency distribution calculated from Fig. 5. The annual and maximum daily GPP for the flux tower sites are from the 39 sites used in our study. Black crosses in (C and D) represent the location of 39 flux tower sites in the climate space.

Precipitation data from GPCC (Global Precipitation Climatology Centre) and temperature datafrom NCEP-NARR are used to generate the climate space.

377

378 3.3. Spatial-temporal comparison between GPP_{VPM} and SIF across NA in 2010 at 0.5 379 degree spatial resolution

We aggregate the 8-day 500-m GPP_{VPM} estimates to the seasonal (3-month interval) and 380 0.5° latitude/longitude grid to compare with the seasonal SIF data. Both GPPVPM and GOME-381 2 SIF data have strong seasonal dynamics and spatial variation across NA (Fig. 7, 8). 382 During spring (March to May), both GPPVPM and GOME-2 SIF are relatively high in the 383 southeastern part of the United States (Fig. 7), where forests dominate and plants grow through 384 385 the spring. Both GPP_{VPM} and GOME-2 SIF are also high in California, where the 386 Mediterranean climate (warm and wet spring and dry summer) is located (Ma et al. 2007; Xu 387 and Baldocchi 2004). In comparison, the rest of lands with low temperature and/or rainfall in 388 NA have low GPP_{VPM} and GOME-2 SIF values.

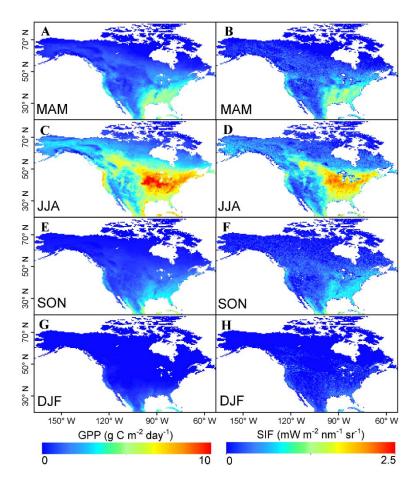


Fig. 7. A comparison of seasonal average solar-induced fluorescence (SIF) from the GOME-2
satellite instrument and simulated gross primary production (GPP_{VPM}) during the period of
March 2010 through February 2011. MAM, JJA, SON, and DJF correspond to spring, summer,
fall, and winter, respectively.

396	In summer months (June to August), the Corn Belt in mid-west U.S. and southwestern
397	Canada has the highest GPP _{VPM} and SIF. This is supported by the eddy flux data: GPP_{EC} for
398	maize is > 25 g C m ⁻² day ⁻¹ during summer, much higher than that of the forest ecosystems.
399	Overall, summer months contribute > 62% of the annual GPP in NA, 42% of which come from
400	Canada and 45% from the conterminous U.S. SIF data also show the highest values in the Corn
401	Belt and lowest in the western and northern regions, consistent with the GPP_{VPM} .
402	In the fall (September to November), both GPPVPM and SIF drop substantially in the mid-

west region due to crop harvesting. Similar to spring, the high photosynthesis rate also
corresponds to a long growing season in the southeastern U.S., but the value is smaller than
spring. The eastern and western coasts of Mexico as well as Cuba still fix carbon at a rate of
more than 5 g C m⁻² day⁻¹. In Alaska and northern Canada, all vegetation goes to dormancy,
and both GPP_{VPM} and SIF values are close to 0. These spatial patterns are also evident in the
SIF data.

During the winter (December through February), only the very southern part of the U.S.,
California, and coastal regions of Mexico and Cuba have moderate GPPvPM and SIF values.
All the other regions do not show any sign of photosynthesis activities, and both GPPvPM and
SIF values are close to zero.

413 4. Discussion

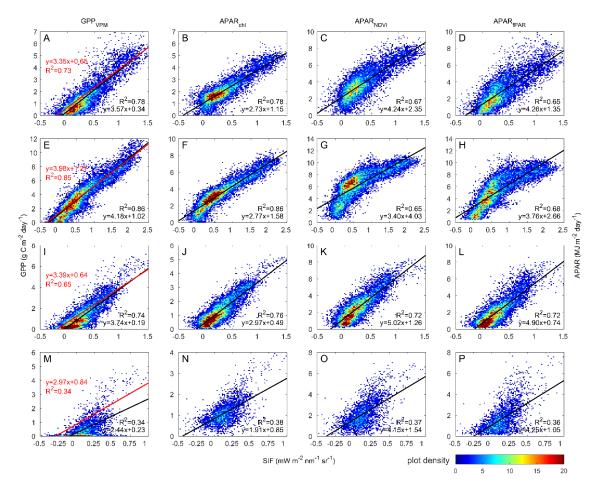
414 **4.1.The relationship between SIF and GPP**

SIF is emitted during the vegetation photosynthetic process. Absorbed energy by 415 416 chlorophyll is partitioned into SIF, photochemical quenching (PQ, energy used for 417 photosynthesis), non-photochemical quenching (NPQ, energy partitioned to heating), and efficiency loss (Baker 2008). Previous studies have shown that SIF is positively correlated with 418 419 PQ when light is moderate or high or environmental stress exists (Flexas et al. 2000; Lee et al. 2015; Porcar-Castell et al. 2006; Soukupová et al. 2008). However, the relationship between 420 GPP and SIF emission at far-red peak (SIF₇₄₀ used in our study) is also affected by the SIF 421 contribution from photosystem II and photosystem I, alternative sinks of energy, 422

photorespiration, internal CO₂ concentration of leaves and enzyme activities, etc. (PorcarCastell et al. 2014). Although SIF measurements from satellite provide a direct and independent
estimations of photosynthetic activity which is different from reflectance based vegetation
indices, the GPP-SIF relationship still needs intensive investigation.

427 Several studies (Joiner et al. 2014; Zhang et al. 2014; Wagle et al. 2016) have reported on 428 the direct comparison between satellite-derived SIF data (0.5° grid cell) and in situ GPPEC from 429 flux sites that often have footprint sizes of a few hundreds of meters, but such comparisons is problematic owing to spatial mismatches and heterogeneity due to mixed land cover types 430 431 within a given 0.5° grid cell (Zhang et al. 2014). In this study, the VPM simulations are aggregated to the same spatial resolution as the GOME-2 SIF data. Fig. 8 shows the correlation 432 between GPP_{VPM} and the SIF data for the four seasons. In spring, summer, and fall, GPP_{VPM} 433 shows a very high correlation with SIF. The coefficient of determination ranges from 0.74 to 434 0.86, and the GPP_{VPM}-SIF correlation increases with the increase in daily GPP or SIF value 435 (from early to peak growing season). This high spatial correlation confirms our comparison in 436 section 3.3 and can be further explained by the APAR_{chl} used in the VPM. Both APAR_{NDVI} 437 (NDVI*PAR) and APAR_{fPAR} (fPAR*PAR) have lower correlation with SIF compared with 438 439 APAR_{chl}; an obvious saturation can be found in summer where SIF continues to increase while 440 APAR_{NDVI} and APAR_{fPAR} tend to saturate. The regression slope between APAR_{chl} and SIF are 441 also more stable during the growing season (2.82 ± 0.13) . As SIF is reemitted from the photosystem II, the higher correlation between SIF and APARchl also suggests that EVI can be 442 a good proxy of light absorbed by chlorophyll. In the winter, however, the correlations between 443

SIF and GPP_{VPM} and APAR are much weaker mostly due to the very low SIF signal and relatively lower signal-to-noise ratio. We also calculate the regression between GPP_{VPM} and SIF for points with GPP_{VPM} > 1 g C m⁻² day⁻¹ (to eliminate some low values with relatively higher bias during the non-growing season). The range of the regression slopes are narrower when only data for the period of GPP_{VPM} > 1g C m⁻² day⁻¹ are used as compared to all data points (SD_{slope}=0.42 vs. 0.74).



451

452 Fig. 8. Relationship between SIF and GPP_{VPM} (A, E, I, M), APAR_{chl} (EVI*PAR) (B, F, J, N),

453 APAR_{NDVI} (NDVI*PAR) (C, G, K, O) and APAR_{fPAR} (fPAR*PAR) (D, H, L, P) for four seasons

454 (by row from first to fourth: spring, summer, autumn, winter) in North America in 2010. EVI

and NDVI are from monthly 0.05° MOD13C1 C5, fPAR is from 8-day 1km MOD15A2 C5,

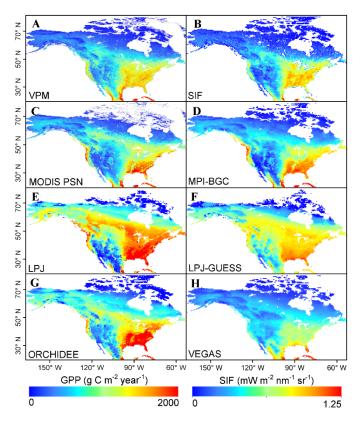
all of which are aggregated to seasonal and 0.5-degree spatial resolution. Black lines areregression for all the points, and the red lines are the regressions between GPP_{VPM} and SIF with

460 **4.2.**Comparison of SIF and GPP estimates in North America from several models

461	A number of models have reported annual total GPP in NA (Huntzinger et al. 2012; Xiao
462	et al. 2014). The annual GPP _{VPM} is 13.53 Pg C in 2010. We further compared GPP _{VPM} with
463	GPP from six other models (MODIS PSN, MPI-BGC, LPJ, LPJ-GUESS, ORCHIDEE, and
464	VEGAS) (Fig. 9). The VPM-based GPP estimates are close to the average of these six models
465	(15.75 Pg C year ⁻¹) (Table 3). Three process-based models (LPJ, LPJ-GUESS, and ORCHIDEE)
466	predict very high GPP for the southeastern U.S., which may be caused by different approaches
467	they employed (enzyme kinetic vs. LUE).

468 Because SIF is directly retrieved from satellite and has a very good correlation with data driven model-based GPP (Frankenberg et al. 2011; Wagle et al. 2016), we use SIF as a reference 469 470 to compare the spatial variations in GPP of all models. ORCHIDEE, PSN, MPI-BGC, and 471 VPM show high consistency with SIF data. The major difference is the relative underestimation 472 at the Corn-Belt and overestimation in the western coast along the U.S./Canada border in ORCHIDEE, PSN, and MPI-BGC. Recent studies reveal that cropland, especially maize in the 473 U.S., makes a large contribution to the seasonal swing of atmospheric CO₂ concentration (Gray 474 et al. 2014; Zeng et al. 2014). The high GPP values in this region are often underestimated by 475 models (Guanter et al. 2014). Beer et al. (2010) also suggest that given the limited C4 476 vegetation flux data availability, great uncertainty remains in estimating the contribution of C4 477 478 plants while upscaling eddy flux observations. A similar issue is also found in a study focused

on the conterminous U.S. (Xiao et al. 2010), which may explain the underestimation of the regional GPP sums. GPP_{VPM} and SIF data show similar spatial patterns for the mid-western Corn Belt (r = 0.87, p < 0.001) where a previous study showed SIF at a monthly scale has a high correlation with GPP (Guanter et al. 2014); this also supports that the spatial variation of GPP_{VPM} for croplands is to some degree an improvement over the other six models.



485

Fig. 9. Comparison of annual gross primary production (GPP) from different LUE-based
models (A, C), data-driven model (D), process-based models (E, F, G, H), and with solarinduced fluorescence (SIF) (B). Data are shown for the year 2010.

Table 3. Annual gross primary production (GPP) of North America (170°~50°W, 20°~80°N)
estimated from different models for year 2010.

	5	
Models	Annual GPP (Pg C year ⁻¹)	Reference
LPJ	22.23	Sitch et al. (2003)
LPJ-GUESS	19.84	Smith et al. (2001)
ORCHIDEE	17.52	Krinner et al. (2005)

VEGAS	11.35	Zeng et al. (2005)
MODIS GPP	13.13	Zhao et al. (2005)
MPI-BGC	12.70	Jung et al. (2011)
VPM	13.53	This study

493	Several previous studies indicate that the relationships between GPP and SIF should be
494	different across biomes (Damm et al. 2015; Guanter et al. 2012; Guanter et al. 2014; Parazoo
495	et al. 2014; Verrelst et al. 2015). This ecosystem-dependent GPP-SIF relationship is determined
496	by different SIF contribution from both photosystem I and photosystem II, uncertainty in NPQ,
497	and structural interference of SIF leaving the canopy (Damm et al. 2015; Verrelst et al. 2015).
498	Here we compare SIF with GPP estimates from three diagnostic models (VPM, MPI-BGC, and
499	MODIS PSN) and APAR _{chl} , as well as the relationship between SIF _{yield} (SIF/APAR _{chl}) and LUE
500	(Fig. 10). Being consistent with a previous study at site level (Yang et al. 2015), we also find
501	that SIF contains the information of LUE, represented by a high correlation between SIF_{yield}
502	(SIF/APAR _{chl}) and LUE _{VPM} (Fig. 10E). This also partially supports the GPP-SIF relationship.
503	However, due to the spatial inconsistency, we did not directly compare GOME-2 SIF _{yield} with
504	LUE _{EC} , more canopy or ecosystem level SIF measurement from in situ or airborne
505	spectrometers will enable this kind of comparison in the near future. In terms of inter-model
506	comparison, VPM and MPI-BGC show higher average R^2 (0.86 and 0.89, respectively) for
507	individual biomes than does MODIS PSN (0.83). The data points are also more scattered in the
508	MODIS PSN than in other two models. Different biome types also show distinct differences in
509	slopes (4.03 – 8.9 for VPM, 3.73 – 7.83 for MPI-BGC, and 2.76 – 11.12 for MODIS PSN). For
510	the most highly productive biomes (average SIF > 1 mW m ⁻² nm ⁻¹ sr ⁻¹), the correlations

511	between predicted GPP and SIF are very high ($R^2 > 0.95$) except for EBF; this may be caused
512	by cloud and/or aerosol contamination of the satellite data. The range of slopes for these biomes
513	also shows less variation $(4.60 - 5.55 \text{ for VPM}, 4.02 - 5.72 \text{ for MPI-BGC}, \text{ and } 3.60 - 6.02 \text{ for MPI-BGC}$
514	MODIS PSN). In contrast, the less productive regions usually have lower regression
515	coefficients and more variable slopes. This may be partially due to the higher relative error for
516	the GOME-2 SIF data (Joiner et al. 2013) and GPP models. SIF retrievals from later satellites
517	(OCO-2, FLEX - Fluorescence Explorer, Sentinel-5 Precursor) will have better accuracy
518	(Frankenberg et al. 2014; Guanter et al. 2015; Kraft et al. 2013) and can be used to improve
519	and benchmark GPP for land models (Lee et al. 2015; Luo et al. 2011; Zhang et al. 2014).

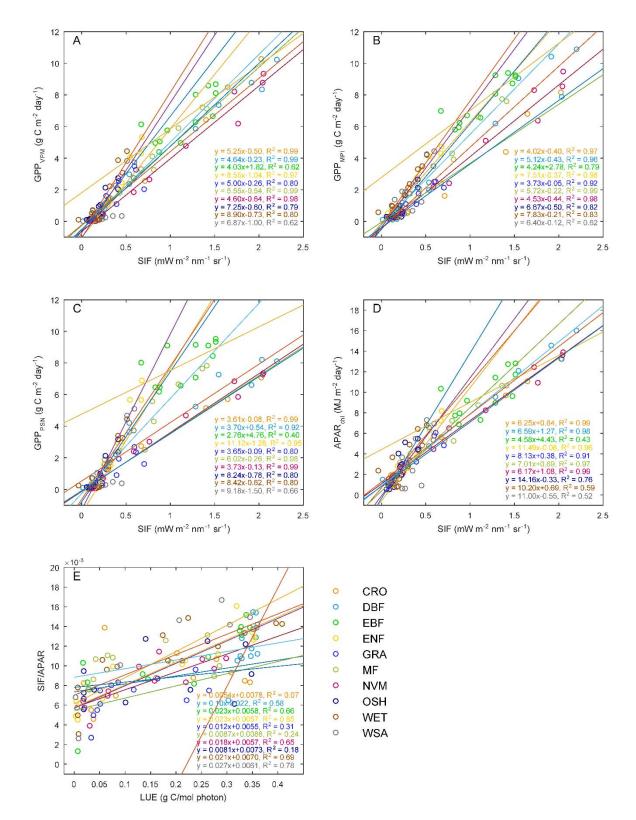
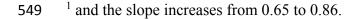


Fig. 10. A comparison for relationship between GPP_{VPM} and SIF (A), GPP_{MP1} and SIF (B),
GPP_{PSN} and SIF (C), APAR_{chl} (EVI*PAR) and SIF (D), SIF_{yield} (SIF/APAR) and LUE_{VPM} (E)
for different biome types in North America in 2010. For each month each biome type, a value
is given by spatially averaging all the grid cells with in this biome type.

527 4.3. Sources of uncertainty for VPM simulations in North America

Maps of land cover types affect GPP estimates as the LUE parameter used in the model 528 529 varies with biomes. In this study, the MOD12 land cover dataset lists croplands as one category 530 and does not distinguish between C3 and C4 crops. Both C3 and C4 crops have different 531 photosynthetic pathways and light use efficiency (Kalfas et al. 2011; Yuan et al. 2015): C4 crops (e.g., maize) have a higher GPP_{EC} than do C3 crops (Fig. 3). Thus, the LUE 532 533 parameterization of croplands for each year depends upon our knowledge of crop types and rotation. For VPM simulations at the continental scale, there are four options to address this 534 535 problem in a MODIS cropland pixel: (1) assume 100% C3 plants, (2) assume 100% C4 plants, (3) assume C3+C4 mixing ratio as 50% each, and (4) use known C3+C4 mixing ratio from 536 537 other data sources (in situ data, or other maps). Because there is no yearly map of C3/C4 mixing 538 ratio across NA, we simply chose the third option in this study. Therefore, GPP_{VPM} would either 539 overestimate GPP for C3 plants (soybean, wheat, etc.) or underestimate for C4 plants (corn, 540 sugar cane, etc.) in those pure pixels. In those C3/C4 mixed pixels, however, these artifacts 541 (under- or over-estimation) can be partially alleviated. For example, both maize and soybean are grown in rotation at the US-Bo1 site within a 50 m radius, but within a 500 m radius of the 542 543 flux tower site, corn and soybean areas have a mixing ratio of 50% each over the years. The GPP_{VPM}, driven by averaged LUE for C3 and C4 crops, captures both the seasonality and the 544 545 magnitude at this site (Fig. 11A). For pure pixels, VPM would provide better results if a specific crop type is given and an appropriate LUE value is used. We use the LUE value for C4 plants 546 547 at the US-Ne1 site where maize is grown throughout the period (Fig. 11B). This modification



550

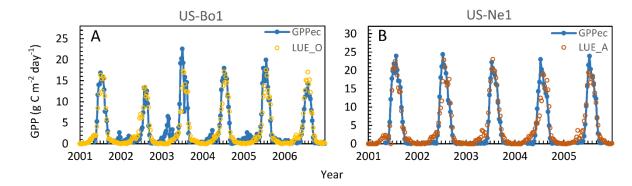


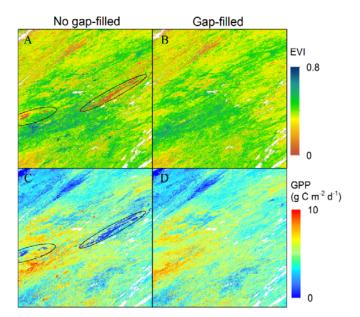
Fig. 11. Seasonal dynamics and interannual variations of the tower-based (GPP_{EC}) and the modeled (GPP_{VPM}) gross primary production at two flux tower sites at 8-day intervals at a maize/soybean rotation site (US-Bo1) (A) and a continuous maize site (US-Ne1) (B). Blue lines represent estimated GPP from flux tower, yellow circles represent the present simulation result using the original LUE (LUE_O) and brown circles represent improved simulation result using an alternative LUE (LUE_A) for C4 plant.

558

551

559 In our study, all cropland flux tower sites are located in the mid-west Corn Belt and altogether we have 16 corn years and 11 soybean years. As we use an average LUE of C3 and 560 561 C4 for croplands, the model may underestimate GPP at the site scale owing to more corn years (Fig. 4.). At a regional scale, the bias mainly depends on the C3 and C4 crop mixing ratios 562 within individual pixels. In the U.S. Midwest where C4 crops (e.g., maize) are dominant, the 563 VPM simulation may underestimate cropland production while in California or the Mississippi 564 River Basin, where C3 crops are dominant, the VPM simulation may overestimate. Therefore, 565 the lack of crop plant functional type (C3 and C4) is likely the largest source of uncertainty in 566 the GPP_{VPM}. This clearly highlights the need to generate annual maps of plant functional types 567 568 (C3 and C4) in NA in the near future. In addition, the mismatch between the flux tower footprint and the MODIS pixel, and the land cover fragmentation within each MODIS pixel are also
critical issues when using EC data for model validation. All flux towers should be evaluated
using footprint models and high resolution satellite images to provide the representativeness
for the MODIS pixel (Chen et al. 2012).

573 Image data quality is always an important issue for the application of remote sensing. In 574 this study, we use the vegetation indices calculated directly from the MODIS surface reflectance product. These indices are subject to atmospheric contamination (i.e., clouds, 575 aerosols) and often result in a lower-than-normal value for EVI, especially in those regions 576 577 where cloud and aerosol are persistent (boreal and tropical regions in our study). The effect of the atmospheric contamination can be partially eliminated through a gap-fill method. Fig. 12 578 shows the comparison between the gap-filled and no gap-filled results. Obvious cloud 579 contamination is marked in the black ellipse in Fig. 12A, C. The gap-fill method used in our 580 581 study not only temporally interpolates the low values that are marked as cloud or aerosol contaminated by the quality control layer, but also removes the noises caused by other factors. 582 583 Some extremely high value data (dark green dots) in Fig. 12A are also temporally smoothed, as shown in Fig. 12B. The use of this gap-fill method also results in different regional GPP 584 585 estimates. The GPP estimate without the gap-fill method shows a total GPP of NA in 2010 as 13.23 Pg C, while the gap-filled method leads to an annual GPP estimation of 13.53 Pg C. In 586 587 addition, the GPP simulations with the gap-filled processing are more stable when conducting 588 interannual comparisons or trend analyses.



590

Fig. 12. Comparison between no gap-filled and gap-filled enhanced vegetation index (EVI)
and the corresponding modeled gross primary production (GPP_{VPM}). The low value in (A) and
(C) are marked out using ellipses. The scene is from the tile h11v03 during the mid-growing
season on August 13th, 2010.

595

596 Climate data input is another potential uncertainty source for VPM simulation. Previous studies show that VPM accurately simulates GPP at flux tower sites, when driven by in situ 597 (site-specific) meteorological data and parameters (Jin et al. 2013; Kalfas et al. 2011; Wagle et 598 599 al. 2014; Xiao et al. 2004a; Xiao et al. 2004b). As radiation is one of the direct inputs to model GPP, the accuracy of radiation directly influences GPP simulation. Recent studies which 600 employ different models (MODIS PSN, EC-LUE) to investigate the performance of multiple 601 602 meteorological datasets in estimating regional GPP report that the NCEP product overestimates radiation as compared with meteorological stations in U.S. and China (Cai et al. 2014; Zhao et 603 al. 2006). Jin et al. (2015) assesses the feasibility of using large scale reanalysis meteorological 604 data (NCEP-NARR) to drive VPM at cropland flux tower sites, and the resultant GPPVPM 605 606 agrees well with GPPEC at those sites. Our validation at the site level shows that VPM

accurately simulates GPP across different natural biome types in NA using the regional
reanalysis meteorological data and biome specific parameters, suggesting that the recalibrated
NCEP-NARR radiation product can be used to estimate regional GPP effectively in NA.

611 **5.** Conclusions

612 In this study, we use VPM, climate reanalysis data, and MODIS products (vegetation indices, land cover, and LST) to simulate GPP of North America. GPPVPM agrees well with 613 614 GPPEC at individual flux tower sites and the GOME-2 SIF data across North America. The 615 comparison between SIF and GPP_{VPM} showed very high spatial-temporal consistency during 616 the growing season, mostly due to the close relationship between SIF and APARchl. The quality of GOME-2 SIF data may limit its application for evaluating the seasonal variation of GPP for 617 very low productive biome types. The results from this study clearly demonstrate the potential 618 of VPM for estimating GPP at the continental scale, and highlights the value of GOME-2 SIF 619 620 data for evaluation of various LUE-based and process-based GPP models. The resultant high spatial and temporal resolution GPP_{VPM} dataset in North America will be provided to the public, 621 622 which can be further used in a wide variety of applications, especially in those studies related to trend analysis, regional disturbance evaluation, model comparison, and the carbon cycle 623 624 under global climate change.

626 Acknowledgement

627 We acknowledge M. Reichstein for providing the MPI-BGC dataset, and the Numerical 628 Terradynamic Simulation Group at the University of Montana for providing the improved 629 MOD17 GPP dataset. We thank the TRENDY modelers for contributing model output: B. 630 Poulter (LPJ), A. Ahlström (LPJ-GUESS), N. Viovy (ORCHIDEE), and N. Zeng (VEGAS). This study is supported in part by a research grant (Project No. 2013-69002) through the USDA 631 632 National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and 633 634 Change, and a research grant (IIA-1301789) from the National Science Foundation EPSCoR. Flux data were obtained from the AmeriFlux database (http://ameriflux.ornl.gov/). Funding for 635 636 AmeriFlux data resources is provided by the U.S. Department of Energy's Office of Science. US-UMB site is supported by the Department of Energy [Award No. DE-SC0006708] and by 637 638 an Ameriflux Core Site award; US-NC1 site is supported by USDA FS EFETAC cooperative 639 agreements [03-CA-11330147-073] and [04-CA-11330147-238]; US-Ro1 and US-Ro3 data 640 courtesy of TJ Griffis and JM Baker, funding provided by US DOE Ameriflux program and 641 USDA-ARS; US-IVO site is supported by National Science Foundation [Award No. OPP 642 0421588/ARC-1204263] and DOE grant [DE-FC02-06ER64159]. We thank Ms. Sarah Xiao at Yale University for the English editing of the manuscript. 643

644

646 Appendix

647 Table A1

648 Biome specific lookup-table (LUT) used in the VPM model.

 1 1	· ·	/											
IGBP class	ENF^1	EBF^2	DNF	DBF^1	MF^2	CSH^2	OSH^2	WSA ²	SAV^2	GRA ²	WET	CRO ³	NVM
T_{min} (°C)	-1	2	-1	-1	-1	-1	1	-1	1	0	-1	-1	0
T_{opt} (°C)	20	28	20	20	19	25	31	24	30	27	20	30	27
T_{max} (°C)	40	48	40	40	48	48	48	48	48	48	40	48	48
$\varepsilon_0 (g C m^{-2} day^{-1} /W m^{-2})$	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.108	0.078

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous broadleaf forests; MF:
 mixed forest; CSH: closed shrublands; OSH: open shrublands; WSA: woody savannas; SAV: savannas; GRA: grassland; WET: wetland; CRO:
 cropland; NVM: cropland/natural vegetation mosaic.

652 We use a similar temperature limitation from the Terrestrial Ecosystem Model and the T_{min} , T_{opt} , T_{max} used in this table are given by ¹Aber et

al. (1996) ²McGuire et al. (1992) and ³Wagle et al. (2015) and Kalfas et al. (2011). For some biome types (DNF, WET, NVM) which we did not

654 find reference for temperature parameters, we use parameters from similar ecosystems (e.g. ENF for DNF and WET, GRA for NVM). ε_0 for C3

plants are estimated from the Wagle et al. (2014), ε_0 for C4 crops is from Kalfas et al. (2011). Cropland is regarded as the half-half C3/C4

therefore uses an average value.

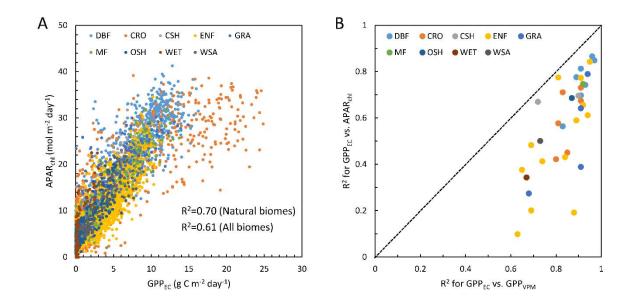


Fig. A1. (A) A comparison between GPP_{EC} and APAR_{chl} for all 39 sites using 8-day data. (B)

660 comparison between the coefficient of determination (R^2) between GPP_{EC} vs. GPP_{VPM}, and

661 GPP_{EC} vs. APAR_{chl} for individual sites.

662

663 **References**

Aber, J.D., Reich, P.B., & Goulden, M.L. (1996). Extrapolating leaf CO2 exchange to the 664 665 canopy: a generalized model of forest photosynthesis compared with measurements by 666 eddy correlation. Oecologia, 106, 257-265 Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. 667 668 Plant Biol. Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the 669 670 atmosphere - the state and future of the eddy covariance method. Glob Chang Biol, 20, 671 3600-3609

- Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer,
 C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X.H., Malhi,
 Y., Meyers, T., Munger, W., Oechel, W., U, K.T.P., Pilegaard, K., Schmid, H.P., Valentini,
 R., Verma, S., Vesala, T., Wilson, K., & Wofsy, S. (2001). FLUXNET: A new tool to
 study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor,
 and energy flux densities. *Bulletin of the American Meteorological Society*, *82*, 24152434
- Ballantyne, A.P., Alden, C.B., Miller, J.B., Tans, P.P., & White, J.W. (2012). Increase in
 observed net carbon dioxide uptake by land and oceans during the past 50 years. *Nature*,

681 *488*, 70-72

- Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C.,
 Arain, M.A., Baldocchi, D., & Bonan, G.B. (2010). Terrestrial gross carbon dioxide
 uptake: global distribution and covariation with climate. *Science*, *329*, 834-838
- Booth, B.B.B., Jones, C.D., Collins, M., Totterdell, I.J., Cox, P.M., Sitch, S., Huntingford, C.,
 Betts, R.A., Harris, G.R., & Lloyd, J. (2012). High sensitivity of future global warming
 to land carbon cycle processes. *Environmental Research Letters*, 7, 024002
- Cai, W., Yuan, W., Liang, S., Zhang, X., Dong, W., Xia, J., Fu, Y., Chen, Y., Liu, D., & Zhang,
 Q. (2014). Improved estimations of gross primary production using satellite-derived
 photosynthetically active radiation. *Journal of Geophysical Research: Biogeosciences*, *119*, 110-123
- 692 Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A simple
 693 method for reconstructing a high-quality NDVI time-series data set based on the
 694 Savitzky–Golay filter. *Remote Sensing of Environment*, 91, 332-344
- 695 Chen, J., Yan, H., Wang, S., Gao, Y., Huang, M., Wang, J., & Xiao, X. (2014). Estimation of
 696 Gross Primary Productivity in Chinese Terrestrial Ecosystems by Using VPM Model.
 697 *Quaternary Sciences, 34*
- Chen, B.Z., Coops, N.C., Fu, D., Margolis, H.A., Amiro, B.D., Black, T.A., Arain, M.A., Barr,
 A.G., Bourque, C.P.A., Flanagan, L.B., Lafleur, P.M., McCaughey, J.H., & Wofsy, S.C.
 (2012). Characterizing spatial representativeness of flux tower eddy-covariance
 measurements across the Canadian Carbon Program Network using remote sensing and
 footprint analysis. *Remote Sensing of Environment*, *124*, 742-755
- Collatz, G.J., Ribas-Carbo, M., & Berry, J.A. (1992). Coupled Photosynthesis-Stomatal
 Conductance Model for Leaves of C4 Plants. *Australian Journal of Plant Physiology*, *19*,
 519-538
- Cook, B.D., Davis, K.J., Wang, W.G., Desai, A., Berger, B.W., Teclaw, R.M., Martin, J.G.,
 Bolstad, P.V., Bakwin, P.S., Yi, C.X., & Heilman, W. (2004). Carbon exchange and
 venting anomalies in an upland deciduous forest in northern Wisconsin, USA. *Agricultural and Forest Meteorology, 126*, 271-295
- Coops, N.C., Ferster, C.J., Waring, R.H., & Nightingale, J. (2009). Comparison of three models
 for predicting gross primary production across and within forested ecoregions in the
 contiguous United States. *Remote Sensing of Environment*, 113, 680-690
- Coulter, R.L., Pekour, M.S., Cook, D.R., Klazura, G.E., Martin, T.J., & Lucas, J.D. (2006).
 Surface energy and carbon dioxide fluxes above different vegetation types within ABLE.
 Agricultural and Forest Meteorology, 136, 147-158
- Damm, A., Guanter, L., Verhoef, W., Schläpfer, D., Garbari, S., & Schaepman, M.E. (2015).
 Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived
 from spectroscopy data. *Remote Sensing of Environment*, *156*, 202-215
- Desai, A.R., Bolstad, P.V., Cook, B.D., Davis, K.J., & Carey, E.V. (2005). Comparing net
 ecosystem exchange of carbon dioxide between an old-growth and mature forest in the
 upper Midwest, USA. *Agricultural and Forest Meteorology*, *128*, 33-55
- 722 Dijkstra, P., Hymus, G., Colavito, D., Vieglais, D.A., Cundari, C.M., Johnson, D.P., Hungate,

- B.A., Hinkle, C.R., & Drake, B.G. (2002). Elevated atmospheric CO2 stimulates
 aboveground biomass in a fire-regenerated scrub-oak ecosystem. *Global Change Biology*,
 8, 90-103
- Dong, J., Xiao, X., Wagle, P., Zhang, G., Zhou, Y., Jin, C., Torn, M.S., Meyers, T.P., Suyker,
 A.E., Wang, J., Yan, H., Biradar, C., & Moore Iii, B. (2015a). Comparison of four EVIbased models for estimating gross primary production of maize and soybean croplands
 and tallgrass prairie under severe drought. *Remote Sensing of Environment, 162*, 154-168
- Dong, J.W., Xiao, X.M., Kou, W.L., Qin, Y.W., Zhang, G.L., Li, L., Jin, C., Zhou, Y.T., Wang,
 J., Biradar, C., Liu, J.Y., & Moore, B. (2015b). Tracking the dynamics of paddy rice
 planting area in 1986-2010 through time series Landsat images and phenology-based
 algorithms. *Remote Sensing of Environment, 160*, 99-113
- Dore, S., Kolb, T.E., Montes-Helu, M., Sullivan, B.W., Winslow, W.D., Hart, S.C., Kaye, J.P.,
 Koch, G.W., & Hungate, B.A. (2008). Long-term impact of a stand-replacing fire on
 ecosystem CO(2) exchange of a ponderosa pine forest. *Global Change Biology*, *14*, 18011820
- Epstein, H.E., Calef, M.P., Walker, M.D., Chapin, F.S., & Starfield, A.M. (2004). Detecting
 changes in arctic tundra plant communities in response to warming over decadal time
 scales. *Global Change Biology*, *10*, 1325-1334
- Farquhar, G.D., Caemmerer, S.V., & Berry, J.A. (1980). A Biochemical-Model of
 Photosynthetic Co2 Assimilation in Leaves of C-3 Species. *Planta*, 149, 78-90
- Fischer, M.L., Billesbach, D.P., Berry, J.A., Riley, W.J., & Torn, M.S. (2007). Spatiotemporal
 variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural
 fields of the Southern Great Plains. *Earth Interactions*, *11*
- Flexas, J., Briantais, J.M., Cerovic, Z., & Medrano, H. (2000). Steady-state and maximum
 chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote
 sensing system. *Remote Sensing of Environment*, *73*, 283-297
- Forkel, M., Carvalhais, N., Rodenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle,
 S., & Reichstein, M. (2016). Enhanced seasonal CO2 exchange caused by amplified plant
 productivity in northern ecosystems. *Science*, *351*, 696-699
- Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C.,
 Butz, A., Jung, M., Kuze, A., & Yokota, T. (2011). New global observations of the
 terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary
 productivity. *Geophysical Research Letters*, *38*
- Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., & Taylor,
 T.E. (2014). Prospects for chlorophyll fluorescence remote sensing from the Orbiting
 Carbon Observatory-2. *Remote Sensing of Environment*, 147, 1-12
- Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang,
 X.M. (2010). MODIS Collection 5 global land cover: Algorithm refinements and
 characterization of new datasets. *Remote Sensing of Environment*, *114*, 168-182
- 762 Gitelson, A.A., Vina, A., Verma, S.B., Rundquist, D.C., Arkebauer, T.J., Keydan, G., Leavitt,
- B., Ciganda, V., Burba, G.G., & Suyker, A.E. (2006). Relationship between gross primary
 production and chlorophyll content in crops: Implications for the synoptic monitoring of

- 765 vegetation productivity. Journal of Geophysical Research-Atmospheres, 111
- Goldstein, A.H., Hultman, N.E., Fracheboud, J.M., Bauer, M.R., Panek, J.A., Xu, M., Qi, Y.,
 Guenther, A.B., & Baugh, W. (2000). Effects of climate variability on the carbon dioxide,
 water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada
 (CA). *Agricultural and Forest Meteorology, 101*, 113-129
- Gough, C.M., Vogel, C.S., Schmid, H.P., Su, H.B., & Curtis, P.S. (2008). Multi-year
 convergence of biometric and meteorological estimates of forest carbon storage. *Agricultural and Forest Meteorology, 148*, 158-170
- Goulden, M.L., Winston, G.C., McMillan, A.M.S., Litvak, M.E., Read, E.L., Rocha, A.V., &
 Elliot, J.R. (2006). An eddy covariance mesonet to measure the effect of forest age on
 land-atmosphere exchange. *Global Change Biology*, *12*, 2146-2162
- Graven, H.D., Keeling, R.F., Piper, S.C., Patra, P.K., Stephens, B.B., Wofsy, S.C., Welp, L.R.,
 Sweeney, C., Tans, P.P., Kelley, J.J., Daube, B.C., Kort, E.A., Santoni, G.W., & Bent, J.D.
 (2013). Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. *Science*, *341*, 1085-1089
- Gray, J.M., Frolking, S., Kort, E.A., Ray, D.K., Kucharik, C.J., Ramankutty, N., & Friedl, M.A.
 (2014). Direct human influence on atmospheric CO2 seasonality from increased cropland
 productivity. *Nature*, *515*, 398-401
- Griffis, T.J., Baker, J.M., & Zhang, J. (2005). Seasonal dynamics and partitioning of isotopic
 CO2 exchange in C-3/C-4 managed ecosystem. *Agricultural and Forest Meteorology*,
 132, 1-19
- Gu, L.H., Meyers, T., Pallardy, S.G., Hanson, P.J., Yang, B., Heuer, M., Hosman, K.P., Riggs,
 J.S., Sluss, D., & Wullschleger, S.D. (2006). Direct and indirect effects of atmospheric
 conditions and soil moisture on surface energy partitioning revealed by a prolonged
 drought at a temperate forest site. *Journal of Geophysical Research-Atmospheres, 111*
- Guan, K., Berry, J.A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., & Lobell, D.B. (2015).
 Improving the monitoring of crop productivity using spaceborne solar-induced
 fluorescence. *Glob Chang Biol*, doi: 10.1111/gcb.13136
- Guanter, L., Aben, I., Tol, P., Krijger, J.M., Hollstein, A., Kohler, P., Damm, A., Joiner, J.,
 Frankenberg, C., & Landgraf, J. (2015). Potential of the TROPOspheric Monitoring
 Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of
 terrestrial chlorophyll fluorescence. *Atmospheric Measurement Techniques*, *8*, 13371352
- Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gomez-Dans, J., Kuze, A., Suto, H., &
 Grainger, R.G. (2012). Retrieval and global assessment of terrestrial chlorophyll
 fluorescence from GOSAT space measurements. *Remote Sensing of Environment, 121*,
 236-251
- Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.E., & Joiner, J.
 (2013). Using field spectroscopy to assess the potential of statistical approaches for the
 retrieval of sun-induced chlorophyll fluorescence from ground and space. *Remote Sensing of Environment*, 133, 52-61
- 806 Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Huete,

- A.R., Zarco-Tejada, P., Lee, J.E., Moran, M.S., Ponce-Campos, G., Beer, C., Camps-Valls,
 G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M., & Griffis, T.J.
 (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll
 fluorescence. *Proc Natl Acad Sci U S A*, *111*, E1327-1333
- He, H.L., Liu, M., Xiao, X.M., Ren, X.L., Zhang, L., Sun, X.M., Yang, Y.H., Li, Y.N., Zhao,
 L., Shi, P.L., Du, M.Y., Ma, Y.M., Ma, M.G., Zhang, Y., & Yu, G.R. (2014). Large-scale
 estimation and uncertainty analysis of gross primary production in Tibetan alpine
 grasslands. *Journal of Geophysical Research-Biogeosciences*, *119*, 466-486
- Heinsch, F.A., Heilman, J.L., McInnes, K.J., Cobos, D.R., Zuberer, D.A., & Roelke, D.L.
 (2004). Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of
 freshwater availability. *Agricultural and Forest Meteorology*, *125*, 159-172
- Hollinger, D.Y., Aber, J., Dail, B., Davidson, E.A., Goltz, S.M., Hughes, H., Leclerc, M.Y.,
 Lee, J.T., Richardson, A.D., Rodrigues, C., Scott, N.A., Achuatavarier, D., & Walsh, J.
 (2004). Spatial and temporal variability in forest-atmosphere CO2 exchange. *Global Change Biology*, *10*, 1689-1706
- Hollinger, S.E., Bernacchi, C.J., & Meyers, T.P. (2005). Carbon budget of mature no-till
 ecosystem in North Central Region of the United States. *Agricultural and Forest*
- 824 *Meteorology*, *130*, 59-69
- Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002). Overview
 of the radiometric and biophysical performance of the MODIS vegetation indices. *Remote Sensing of Environment*, 83, 195-213
- Huntzinger, D.N., Post, W.M., Wei, Y., Michalak, A.M., West, T.O., Jacobson, A.R., Baker,
 I.T., Chen, J.M., Davis, K.J., Hayes, D.J., Hoffman, F.M., Jain, A.K., Liu, S., McGuire,
 A.D., Neilson, R.P., Potter, C., Poulter, B., Price, D., Raczka, B.M., Tian, H.Q., Thornton,
 P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., & Cook, R. (2012).
 North American Carbon Program (NACP) regional interim synthesis: Terrestrial
- biospheric model intercomparison. *Ecological Modelling*, 232, 144-157
- Jenkins, J.P., Richardson, A.D., Braswell, B.H., Ollinger, S.V., Hollinger, D.Y., & Smith, M.L.
 (2007). Refining light-use efficiency calculations for a deciduous forest canopy using
 simultaneous tower-based carbon flux and radiometric measurements. *Agricultural and Forest Meteorology*, 143, 64-79
- Jin, C., Xiao, X., Wagle, P., Griffis, T., Dong, J., Wu, C., & Qin, Y. (2015). Effects of in-situ
 and reanalysis climate data on estimation of cropland gross primary production using the
 Vegetation Photosynthesis Model. *Agricultural and Forest Meteorology*, *213*, 240
- Jin, C., Xiao, X.M., Merbold, L., Arneth, A., Veenendaal, E., & Kutsch, W.L. (2013).
 Phenology and gross primary production of two dominant savanna woodland ecosystems
 in Southern Africa. *Remote Sensing of Environment*, 135, 189-201
- Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A.P., Middleton, E.M., Huemmrich,
 K.F., Yoshida, Y., & Frankenberg, C. (2013). Global monitoring of terrestrial chlorophyll
 fluorescence from moderate-spectral-resolution near-infrared satellite measurements:
 methodology, simulations, and application to GOME-2. *Atmospheric Measurement Techniques*, *6*, 2803-2823

- Joiner, J., Yoshida, Y., Vasilkov, A.P., Middleton, E.M., Campbell, P.K.E., Yoshida, Y., Kuze,
 A., & Corp, L.A. (2012). Filling-in of near-infrared solar lines by terrestrial fluorescence
 and other geophysical effects: simulations and space-based observations from
 SCIAMACHY and GOSAT. *Atmospheric Measurement Techniques*, *5*, 809-829
- Joiner, J., Yoshida, Y., Vasilkov, A.P., Schaefer, K., Jung, M., Guanter, L., Zhang, Y., Garrity,
 S., Middleton, E.M., Huemmrich, K.F., Gu, L., & Belelli Marchesini, L. (2014). The
 seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to
 vegetation phenology and ecosystem atmosphere carbon exchange. *Remote Sensing of Environment*, 152, 375-391
- Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., & Middleton, E.M. (2011). First
 observations of global and seasonal terrestrial chlorophyll fluorescence from space. *Biogeosciences*, 8, 637-651
- Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of
 FLUXNET eddy covariance observations: validation of a model tree ensemble approach
 using a biosphere model. *Biogeosciences*, 6, 2001-2013
- Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., Arneth,
 A., Bernhofer, C., Bonal, D., Chen, J.Q., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W.,
 Lasslop, G., Law, B.E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E.J., Papale,
 D., Sottocornola, M., Vaccari, F., & Williams, C. (2011). Global patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy
 covariance, satellite, and meteorological observations. *Journal of Geophysical Research- Biogeosciences*, *116*
- Kalfas, J.L., Xiao, X., Vanegas, D.X., Verma, S.B., & Suyker, A.E. (2011). Modeling gross
 primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux
 tower data. *Agricultural and Forest Meteorology*, *151*, 1514-1528
- Keenan, T.F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C.M.,
 Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Raczka, B., Ryu, Y.,
 Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., & Richardson, A.D. (2012). Terrestrial
 biosphere model performance for inter-annual variability of land-atmosphere CO2
 exchange. *Global Change Biology*, *18*, 1971-1987
- Kraft, S., Bézy, J.L., Del Bello, U., Berlich, R., Drusch, M., Franco, R., Gabriele, A., Harnisch,
 B., Meynart, R., & Silvestrin, P. (2013). FLORIS: phase A status of the fluorescence
 imaging spectrometer of the Earth Explorer mission candidate FLEX. Proc. SPIE 8889,
 Sensors, Systems, and Next-Generation Satellites XVII, 8889, 88890T-88812
- Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais,
 P., Sitch, S., & Prentice, I.C. (2005). A dynamic global vegetation model for studies of
 the coupled atmosphere-biosphere system. *Global Biogeochemical Cycles, 19*
- Law, B.E., Turner, D., Campbell, J., Sun, O.J., Van Tuyl, S., Ritts, W.D., & Cohen, W.B. (2004).
 Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. *Global Change Biology*, *10*, 1429-1444
- Law, B.E., Williams, M., Anthoni, P.M., Baldocchi, D.D., & Unsworth, M.H. (2000).
 Measuring and modelling seasonal variation of carbon dioxide and water vapour

- exchange of a Pinus ponderosa forest subject to soil water deficit. *Global Change Biology*,
 6, 613-630
- Lee, J.E., Berry, J.A., van der Tol, C., Yang, X., Guanter, L., Damm, A., Baker, I., &
 Frankenberg, C. (2015). Simulations of chlorophyll fluorescence incorporated into the
 Community Land Model version 4. *Glob Chang Biol*, 21, 3469–3477, doi:
 10.1111/gcb.12948
- Luo, Y.Q., Randerson, J.T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., Ciais, P.,
 Dalmonech, D., Fisher, J.B., Fisher, R., Friedlingstein, P., Hibbard, K., Hoffman, F.,
 Huntzinger, D., Jones, C.D., Koven, C., Lawrence, D., Li, D.J., Mahecha, M., Niu, S.L.,
 Norby, R., Piao, S.L., Qi, X., Peylin, P., Prentice, I.C., Riley, W., Reichstein, M.,
 Schwalm, C., Wang, Y.P., Xia, J.Y., Zaehle, S., & Zhou, X.H. (2012). A framework for
 benchmarking land models. *Biogeosciences*, *9*, 3857-3874
- Ma, S.Y., Baldocchi, D.D., Xu, L.K., & Hehn, T. (2007). Inter-annual variability in carbon
 dioxide exchange of an oak/grass savanna and open grassland in California. *Agricultural and Forest Meteorology*, 147, 157-171
- McGuire, A.D., Melillo, J., Joyce, L., Kicklighter, D., Grace, A., Moore, B., & Vorosmarty, C.
 (1992). Interactions between carbon and nitrogen dynamics in estimating net primary
 productivity for potential vegetation in North America. *Global Biogeochemical Cycles*,
 6, 101-124
- Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jovic, D.,
 Woollen, J., Rogers, E., Berbery, E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li,
 H., Lin, Y., Manikin, G., Parrish, D., & Shi, W. (2006). North American regional
 reanalysis. *Bulletin of the American Meteorological Society*, 87, 343-+
- 914 Monteith, J.L. (1972). Solar-Radiation and Productivity in Tropical Ecosystems. *Journal of* 915 *Applied Ecology*, 9, 747-766
- Noormets, A., Gavazzi, M.J., Mcnulty, S.G., Domec, J.C., Sun, G., King, J.S., & Chen, J.Q.
 (2010). Response of carbon fluxes to drought in a coastal plain loblolly pine forest. *Global Change Biology*, *16*, 272-287
- Parazoo, N.C., Bowman, K., Fisher, J.B., Frankenberg, C., Jones, D.B., Cescatti, A., PerezPriego, O., Wohlfahrt, G., & Montagnani, L. (2014). Terrestrial gross primary production
 inferred from satellite fluorescence and vegetation models. *Glob Chang Biol*, 20, 31033121
- Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlstrom, A., Anav, A.,
 Canadell, J.G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P.E., Li, J., Lin, X.,
 Lomas, M.R., Lu, M., Luo, Y., Ma, Y., Myneni, R.B., Poulter, B., Sun, Z., Wang, T.,
 Viovy, N., Zaehle, S., & Zeng, N. (2013). Evaluation of terrestrial carbon cycle models
 for their response to climate variability and to CO2 trends. *Glob Chang Biol, 19*, 21172132
- Porcar-Castell, A., Bäck, J., Juurola, E., & Hari, P. (2006). Dynamics of the energy flow
 through photosystem II under changing light conditions: a model approach. *Functional plant biology*
- 932 Porcar-Castell, A., Tyystjarvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfundel, E.E., Moreno,

- J., Frankenberg, C., & Berry, J.A. (2014). Linking chlorophyll a fluorescence to
 photosynthesis for remote sensing applications: mechanisms and challenges. *Journal of experimental Botany*, 65, 4065-4095
- Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., &
 Klooster, S.A. (1993). Terrestrial Ecosystem Production a Process Model-Based on
 Global Satellite and Surface Data. *Global Biogeochemical Cycles*, 7, 811-841
- Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J., Broquet, G., Canadell, J.G.,
 Chevallier, F., Liu, Y.Y., Running, S.W., Sitch, S., & van der Werf, G.R. (2014).
 Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. *Nature, 509*, 600-603
- Raich, J., Rastetter, E., Melillo, J., Kicklighter, D., Steudler, P., Peterson, B., Grace, A., Moore
 Iii, B., & Vorosmarty, C. (1991). Potential net primary productivity in South America:
 application of a global model. *Ecological Applications*, 1, 399-429
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C.,
 Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H.,
 Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
 Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
- Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., & Valentini, R. (2005). On
 the separation of net ecosystem exchange into assimilation and ecosystem respiration:
 review and improved algorithm. *Global Change Biology*, *11*, 1424-1439
- Rossini, M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart, A., Cogliati, S., Colombo, R.,
 Damm, A., Drusch, M., Hanus, J., Janoutova, R., Julitta, T., Kokkalis, P., Moreno, J.,
 Novotny, J., Panigada, C., Pinto, F., Schickling, A., Schüttemeyer, D., Zemek, F., &
 Rascher, U. (2015). Red and far-red sun-induced chlorophyll fluorescence as a measure
 of plant photosynthesis. *Geophysical Research Letters*, n/a-n/a
- Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M.S., Reeves, M., & Hashimoto, H. (2004).
 A continuous satellite-derived measure of global terrestrial primary production. *Bioscience*, 54, 547-560
- Schmid, H.P., Grimmond, C.S.B., Cropley, F., Offerle, B., & Su, H.B. (2000). Measurements
 of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. *Agricultural and Forest Meteorology, 103*, 357-374
- Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis,
 S., Lucht, W., Sykes, M.T., Thonicke, K., & Venevsky, S. (2003). Evaluation of
 ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic
 global vegetation model. *Global Change Biology*, *9*, 161-185
- Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., Piao, S.L., Betts, R., Ciais, P.,
 Cox, P., Friedlingstein, P., Jones, C.D., Prentice, I.C., & Woodward, F.I. (2008).
 Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon
 cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). *Glob Chang Biol, 14*, 2015-2039
- Smith, B., Prentice, I.C., & Sykes, M.T. (2001). Representation of vegetation dynamics in the
 modelling of terrestrial ecosystems: comparing two contrasting approaches within

- European climate space. *Global Ecology and Biogeography*, *10*, 621-637
- Soukupová, J., Cséfalvay, L., Urban, O., & Košvancová, M. (2008). Annual variation of the
 steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone.
 Functional Plant ...
- Sulman, B.N., Desai, A.R., Cook, B.D., Saliendra, N., & Mackay, D.S. (2009). Contrasting
 carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and
 nearby forests. *Biogeosciences*, 6, 1115-1126
- Sun, G., Noormets, A., Chen, J., & McNulty, S.G. (2008). Evapotranspiration estimates from
 eddy covariance towers and hydrologic modeling in managed forests in Northern
 Wisconsin, USA. *Agricultural and Forest Meteorology*, *148*, 257-267
- Suyker, A.E., Verma, S.B., Burba, G.G., & Arkebauer, T.J. (2005). Gross primary production
 and ecosystem respiration of irrigated maize and irrigated soybean during a growing
 season. *Agricultural and Forest Meteorology*, 131, 180-190
- Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald,
 D., Czikowsky, M., & Munger, J.W. (2007). Factors controlling CO2 exchange on
 timescales from hourly to decadal at Harvard Forest. *Journal of Geophysical Research- Biogeosciences, 112*
- Vanderhoof, M., Williams, C., Pasay, M., & Ghimire, B. (2013). Controls on the rate of CO2
 emission from woody debris in clearcut and coniferous forest environments. *Biogeochemistry*, 114, 299-311
- Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., & Moreno, J. (2015).
 Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving
 sun-induced fluorescence? *Remote Sensing of Environment*, 166, 8-21
- Wagle, P., Xiao, X., Torn, M.S., Cook, D.R., Matamala, R., Fischer, M.L., Jin, C., Dong, J., &
 Biradar, C. (2014). Sensitivity of vegetation indices and gross primary production of
 tallgrass prairie to severe drought. *Remote Sensing of Environment*, 152, 1-14
- Wagle, P., Xiao, X.M., & Suyker, A.E. (2015). Estimation and analysis of gross primary
 production of soybean under various management practices and drought conditions.
 ISPRS Journal of Photogrammetry and Remote Sensing, 99, 70-83
- Wagle, P., Zhang, Y., Jin, C., & Xiao, X. (2016). Comparison of solar-induced chlorophyll
 fluorescence, light-use efficiency, and process-based GPP models in maize. *Ecological Applications*. doi: 10.1890/15-1434.1
- Wilson, T.B., & Meyers, T.P. (2007). Determining vegetation indices from solar and
 photosynthetically active radiation fluxes. *Agricultural and Forest Meteorology*, 144,
 160-179
- Wu, C.Y., Munger, J.W., Niu, Z., & Kuang, D. (2010a). Comparison of multiple models for
 estimating gross primary production using MODIS and eddy covariance data in Harvard
 Forest. *Remote Sensing of Environment*, *114*, 2925-2939
- Wu, C.Y., Niu, Z., & Gao, S.A. (2010b). Gross primary production estimation from MODIS
 data with vegetation index and photosynthetically active radiation in maize. *Journal of Geophysical Research-Atmospheres*, *115*
- 1016 Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., & Wan, S. (2014). Terrestrial carbon cycle affected

- 1017 by non-uniform climate warming. *Nature Geoscience*, *7*, 173-180
- Xiao, J., Zhuang, Q., Law, B.E., Chen, J., Baldocchi, D.D., Cook, D.R., Oren, R., Richardson,
 A.D., Wharton, S., & Ma, S. (2010). A continuous measure of gross primary production
 for the conterminous United States derived from MODIS and AmeriFlux data. *Remote Sensing of Environment*, 114, 576-591
- Xiao, J.F., Ollinger, S.V., Frolking, S., Hurtt, G.C., Hollinger, D.Y., Davis, K.J., Pan, Y.D.,
 Zhang, X.Y., Deng, F., Chen, J.Q., Baldocchi, D.D., Law, B.E., Arain, M.A., Desai, A.R.,
 Richardson, A.D., Sun, G., Amiro, B., Margolis, H., Gu, L.H., Scott, R.L., Blanken, P.D.,
 & Suyker, A.E. (2014). Data-driven diagnostics of terrestrial carbon dynamics over North
 America. *Agricultural and Forest Meteorology*, *197*, 142-157
- Xiao, X., Boles, S., Liu, J., Zhuang, D., & Liu, M. (2002). Characterization of forest types in
 Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. *Remote Sensing of Environment*, 82, 335-348
- Xiao, X., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q., & Moore, B. (2004a).
 Satellite-based modeling of gross primary production in an evergreen needleleaf forest.
 Remote Sensing of Environment, 89, 519-534
- Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., & Ojima, D.
 (2004b). Modeling gross primary production of temperate deciduous broadleaf forest
 using satellite images and climate data. *Remote Sensing of Environment*, *91*, 256-270
- Xiao, X.M., Zhang, Q.Y., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S.,
 Boles, S., Keller, M., & Moore, B. (2005). Satellite-based modeling of gross primary
 production in a seasonally moist tropical evergreen forest. *Remote Sensing of Environment*, 94, 105-122
- Xu, L.K., & Baldocchi, D.D. (2004). Seasonal variation in carbon dioxide exchange over a
 Mediterranean annual grassland in California. *Agricultural and Forest Meteorology*, *123*,
 79-96
- Yang, F.H., Ichii, K., White, M.A., Hashimoto, H., Michaelis, A.R., Votava, P., Zhu, A.X.,
 Huete, A., Running, S.W., & Nemani, R.R. (2007). Developing a continental-scale
 measure of gross primary production by combining MODIS and AmeriFlux data through
 Support Vector Machine approach. *Remote Sensing of Environment, 110*, 109-122
- Yang, X., Tang, J., Mustard, J.F., Lee, J.-E., Rossini, M., Joiner, J., Munger, J.W., Kornfeld, A.,
 & Richardson, A.D. (2015). Solar-induced chlorophyll fluorescence correlates with
 canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. *Geophysical Research Letters*, n/a-n/a
- Yu, G.R., Zhu, X.J., Fu, Y.L., He, H.L., Wang, Q.F., Wen, X.F., Li, X.R., Zhang, L.M., Zhang,
 L., Su, W., Li, S.G., Sun, X.M., Zhang, Y.P., Zhang, J.H., Yan, J.H., Wang, H.M., Zhou,
 G.S., Jia, B.R., Xiang, W.H., Li, Y.N., Zhao, L., Wang, Y.F., Shi, P.L., Chen, S.P., Xin,
 X.P., Zhao, F.H., Wang, Y.Y., & Tong, C.L. (2013). Spatial patterns and climate drivers
 of carbon fluxes in terrestrial ecosystems of China. *Global Change Biology*, *19*, 798-810
 Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law, B., Arain, A., Beringer,
- 1057 J., Bernhofer, C., Black, A., Blanken, P.D., Cescatti, A., Chen, Y., Francois, L., Gianelle,
- 1058 D., Janssens, I.A., Jung, M., Kato, T., Kiely, G., Liu, D., Marcolla, B., Montagnani, L.,

Raschi, A., Roupsard, O., Varlagin, A., & Wohlfahrt, G. (2014). Global comparison of
light use efficiency models for simulating terrestrial vegetation gross primary production
based on the LaThuile database. *Agricultural and Forest Meteorology*, *192-193*, 108-120

- Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L.L., Baldocchi, D., Bernhofer, C., Gholz, H.,
 Goldstein, A.H., Goulden, M.L., Hollinger, D.Y., Hu, Y., Law, B.E., Stoy, P.C., Vesala,
 T., & Wofsy, S.C. (2007). Deriving a light use efficiency model from eddy covariance
 flux data for predicting daily gross primary production across biomes. *Agricultural and Forest Meteorology*, *143*, 189-207
- Zeng, N., Mariotti, A., & Wetzel, P. (2005). Terrestrial mechanisms of interannual CO(2)
 variability. *Global Biogeochemical Cycles*, 19
- Zeng, N., Zhao, F., Collatz, G.J., Kalnay, E., Salawitch, R.J., West, T.O., & Guanter, L. (2014).
 Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal
 amplitude. *Nature*, *515*, 394-397
- Zhang, G., Xiao, X., Dong, J., Kou, W., Jin, C., Qin, Y., Zhou, Y., Wang, J., Menarguez, M.A.,
 & Biradar, C. (2015). Mapping paddy rice planting areas through time series analysis of
 MODIS land surface temperature and vegetation index data. *ISPRS Journal of Photogrammetry and Remote Sensing*, *106*, 157-171
- Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., Voigt,
 M., & Kohler, P. (2014). Estimation of vegetation photosynthetic capacity from space based measurements of chlorophyll fluorescence for terrestrial biosphere models. *Glob Chang Biol, 20*, 3727-3742
- Zhang, Y., Xiao, X., Zhou, S., Ciais, P., McCarthy, H., & Luo, Y. (2016). Canopy and
 physiological controls of GPP during drought and heat wave. *Geophysical Research Letters*, 43, 3325-3333
- Zhao, M., Heinsch, F.A., Nemani, R.R., & Running, S.W. (2005). Improvements of the MODIS
 terrestrial gross and net primary production global data set. *Remote Sensing of Environment*, 95, 164-176
- Zhao, M., Running, S.W., & Nemani, R.R. (2006). Sensitivity of Moderate Resolution Imaging
 Spectroradiometer (MODIS) terrestrial primary production to the accuracy of
 meteorological reanalyses. *Journal of Geophysical Research-Biogeosciences*, *111*
- 1089