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Abstract 21 

Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is 22 

vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In 23 

this study, we estimate GPP in North America (NA) using the satellite-based Vegetation 24 

Photosynthesis Model (VPM), MODIS images at 8-day temporal and 500 m spatial resolutions, 25 

and NCEP-NARR (National Center for Environmental Prediction-North America Regional 26 

Reanalysis) climate data. The simulated GPP (GPPVPM) agrees well with the flux tower derived 27 

GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPPVPM in 2010 is spatially 28 

aggregated to 0.5 by 0.5 °  grid cells and then compared with sun-induced chlorophyll 29 

fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is 30 

directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of 31 

GPPVPM and GOME-2 SIF show good consistency. At the biome scale, the relationship between 32 

GPPVPM and SIF shows strong linear relationships (R2 > 0.95) and small variations in slopes 33 

(4.60 – 5.55 g C m-2 day-1 / mW m-2 nm-1 sr-1). The total annual GPPVPM in NA in 2010 is 34 

approximately 13.53 Pg C year-1, which accounts for ~11.0% of the global terrestrial GPP and 35 

is within the range of annual GPP estimates from six other process-based and data-driven 36 

models (11.35 – 22.23 Pg C year-1). Among the seven models, some models did not capture the 37 

spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. 38 

The results from this study demonstrate the reliable performance of VPM at the continental 39 

scale, and the potential of SIF data being used as a benchmark to compare with GPP models. 40 

 41 



3 
 

Key words: Vegetation Photosynthesis Model (VPM); Light use efficiency; Remote sensing; 42 

SIF; MODIS; Carbon cycle; GPP product 43 

1. Introduction 44 

Carbon dioxide fixed through photosynthesis by terrestrial vegetation is known as gross 45 

primary production (GPP) at the ecosystem level. Increased carbon uptake during the past 46 

decades helped offset growing CO2 emissions from fossil fuel burning and land cover change 47 

and mitigate the increase of atmospheric CO2 concentration and global climate warming 48 

(Ballantyne et al. 2012). A variety of approaches have been used to estimate GPP of terrestrial 49 

ecosystems, and they can be grouped into four categories: 1) process-based GPP models; 2) 50 

satellite-based production efficiency models (PEM); 3) data-driven GPP models upscaled from 51 

eddy covariance data; and 4) models based on sun-induced chlorophyll fluorescence (SIF) (Fig. 52 

1). However, large uncertainty still remains regarding the spatial distribution and seasonal 53 

dynamics of GPP, which limits our capability to address scientific questions related to the 54 

increasing seasonal amplitude and interannual variation of atmospheric CO2 (Graven et al. 55 

2013; Poulter et al. 2014; Forkel et al. 2016). An accurate estimation of GPP at regional and 56 

global scales is essential for a better understanding of the underlying mechanisms of 57 

ecosystem-climate interactions and ecosystem response to extreme climate events, such as 58 

drought, heat wave, and flood, etc. (Beer et al. 2010; Yu et al. 2013; Zhang et al. 2016). 59 

Many process-based biogeochemical models employ the enzyme kinetics theory, most 60 

well-known as encapsulated by Farquhar et al. (1980) and its modification for C4 plants 61 
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(Collatz et al. 1992). Some process-based models employ the light-use-efficiency (LUE) 62 

concept to estimate GPP (Zeng et al. 2005). These models also take multiple ecological 63 

processes into consideration so that they can be coupled with general circulation models 64 

(GCMs) to predict feedbacks related to the global warming and CO2 fertilization (Booth et al. 65 

2012; Keenan et al. 2012; Piao et al. 2013; Xia et al. 2014). However, these models are often 66 

run at coarse spatial resolution and the simulation results vary enormously even with the same 67 

set of meteorological input datasets (Coops et al. 2009). 68 

The remote sensing based PEMs estimate GPP as the product of the energy absorbed by 69 

plants (absorbed photosynthetically active radiation, APAR) and LUE that converts energy to 70 

carbon fixed during the photosynthesis process (Monteith 1972). These models can be further 71 

divided into two subcategories (Dong et al. 2015a; Xiao et al. 2004a). The  based 72 

models, including the Carnegie Ames Stanford Approach (CASA) (Potter et al. 1993), the 73 

MODIS GPP algorithm (Photosynthesis, PSN) (Running et al. 2004; Zhao et al. 2005), and the 74 

EC-LUE model (Yuan et al. 2007), use the radiation absorbed by vegetation canopy. The 75 

/  based models use radiation absorbed by chlorophyll or green leaves and 76 

include the Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004a; Xiao et al. 2004b), 77 

Greenness and Radiation (GR) model (Gitelson et al. 2006), and the Vegetation Index (VI) 78 

model (Wu et al. 2010b).  79 

The eddy covariance (EC) technique provides estimates of GPP by partitioning measured 80 

net ecosystem CO2 exchange (NEE) between land and the atmosphere into GPP and ecosystem 81 

respiration (Re) (Baldocchi et al. 2001). Over the past decades, the EC technique has been 82 
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widely applied to measure NEE of various biome types throughout the world, and a large 83 

amount of GPP data (GPPEC) has been accumulated (Baldocchi 2014; Baldocchi et al. 2001). 84 

A number of statistical models have been developed to upscale GPPEC from individual sites to 85 

the regional scales (Jung et al. 2009; Jung et al. 2011; Xiao et al. 2010; Xiao et al. 2014; Yang 86 

et al. 2007). These algorithms, such as model tree ensembles (MTE) or regression tree 87 

approaches, build a series of rules through data mining that relate in situ flux observations to 88 

satellite-based indices and climate data. 89 

Solar-induced chlorophyll fluorescence (SIF), a byproduct of the vegetation photosynthesis 90 

process, has been recently retrieved using multiple satellite platforms/instruments such as the 91 

Greenhouse gases Observing SATellite (GOSAT) (Frankenberg et al. 2011; Guanter et al. 2012; 92 

Joiner et al. 2012; Joiner et al. 2011), the Global Ozone Monitoring Instrument 2 (GOME-2) 93 

(Joiner et al. 2013), and the Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al. 2014). 94 

Recent field studies and theory suggest that SIF contains information from both APAR and 95 

LUE that is complementary to vegetation indices such as the normalized difference vegetation 96 

index (NDVI) (Guanter et al. 2013; Rossini et al. 2015; Yang et al. 2015). A simple regression 97 

model based on space-borne SIF has been developed to estimate cropland GPP (Guanter et al. 98 

2014). Zhang et al. (2014) have also shown the potential of SIF data to improve carbon cycle 99 

models and provide accurate projections of agricultural productivity (Guan et al. 2015). 100 

 101 
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 102 

Fig. 1. A list of different approaches and models (as examples) to estimate gross primary 103 

production (GPP) of vegetation. 104 

 105 

Over the past several years, a number of studies have run the VPM with in situ climate data 106 

at various eddy flux tower sites. The resulting GPPVPM was evaluated with GPPEC at different 107 

ecosystem types, including forests (Xiao et al. 2004a; 2004b; 2005), croplands (Kalfas et al. 108 

2011; Wagle et al. 2015), savannas (Jin et al. 2013), and grasslands (He et al. 2014; Wagle et 109 

al. 2014). Wu et al. (2010a) compared GPP from four models driven by remotely sensed data 110 

at the Harvard forest site and found that VPM performed best in terms of capturing the seasonal 111 

dynamics of GPP. Yuan et al. (2014) compared seven LUE based models at 157 eddy flux sites 112 

and showed that VPM had a moderate rank of performance. Dong et al. (2015a) used four EVI-113 

based models to estimate GPP of grasslands and croplands under normal and severe drought 114 

conditions, and reported that VPM performed better than other models in capturing the impacts 115 

of drought on GPP. This was mostly because VPM uses Land Surface Water Index (LSWI) that 116 

is sensitive to water stress (Wagle et al. 2014; 2015), while the other three models lack a water 117 
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stress scalar. Recently, simulations of VPM on the regional scale, driven by regional climate 118 

data, have been carried out in the Tibetan Plateau (He et al. 2014) and China (Chen et al. 2014), 119 

where only limited GPPEC data are available for model calibration and validation. 120 

In this study, we aim to assess the feasibility and performance of the VPM model in 121 

estimating GPP across North America (NA) and explore the relationship between SIF and 122 

GPPVPM at continental scale. The selection of the NA as study area is based on two facts: (1) 123 

large uncertainties exist in the GPP estimates from various models (ranging from 12.2 to 32.9 124 

Pg C year-1) (Huntzinger et al. 2012); and (2) a large number of eddy flux sites are available in 125 

NA, which provides an opportunity for a thorough validation. The specific objectives of this 126 

study are to: (1) implement the VPM simulation at the continental scale over NA; (2) evaluate 127 

the performance of VPM at individual sites using GPPEC data from 39 flux tower sites (155 128 

site-years); (3) compare GPPVPM with GOME-2 SIF data at 0.5° (latitude/longitude) resolution 129 

across NA; and (4) use of GOME-2 SIF as a reference to compare with GPP estimates from 130 

other six models. In this paper, we report (1) multi-year GPPVPM and GPPEC at individual flux 131 

tower sites, dependent upon availability of GPPEC data, and (2) GPPVPM in 2010 across NA. 132 

2. Materials and Method 133 

2.1. Regional datasets for VPM simulations across North America 134 

2.1.1. Climate data 135 

The VPM model uses photosynthetically active radiation (PAR) and temperature data as 136 

climate input data. We use the National Center for Environmental Prediction-North America 137 
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Regional Reanalysis (NCEP-NARR) datasets (Mesinger et al. 2006) for 2000-2014. The 138 

original three hourly data are first aggregated into 8-day averages to match the temporal 139 

resolution of MODIS vegetation indices. The day-time mean air temperature is obtained by 140 

averaging the temperature between 6 am to 6 pm local time. Zhao et al. (2006) reported that 141 

the NCEP-NARR product overestimates the surface shortwave radiation when comparing with 142 

the in situ observation at the flux tower sites. Jin et al. (2015) also compared the NCEP-NARR 143 

radiation data with in situ radiation measurements at 37 AmeriFlux sites and reported a bias 144 

correction factor of 0.8. In this study, we applied this factor to adjust the radiation data. 145 

In order to run VPM at a 500 m spatial resolution, we use a non-linear spatial interpolation 146 

method (Zhao et al. 2005) to downscale the NCEP-NARR radiation and temperature dataset 147 

from the spatial resolution of 0.25°×0.25° to 500-m. It uses a fourth power of a cosine function 148 

and adopts the weighted distance from the nearest four grid cells to calculate a value for each 149 

output pixel at MODIS resolution. The distance factor ( ) for the four nearby grid cells can 150 

be calculated as follows: 151 

2
																	 1,2,3,4									 1  152 

where	  and  indicate the distance between the center of the 500 m MODIS pixel and 153 

each of the four vertex grid cells from NCEP-NARR data, and the maximum distance between 154 

the four vertex NCEP-NARR grid cells, respectively. For each MODIS pixel, the weight from 155 

the four surrounding NCEP-NARR grid cells can be calculated as: 156 

∑
																																																			 2  157 

The final value for each interpolated MODIS pixel ( ) can be expressed as a weighted 158 
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average: 159 

∗ 																																													 3  160 

where  is the value for the four surrounding grid cell values of NCEP-NARR data. 161 

2.1.2. MODIS data 162 

2.1.2.1. MODIS surface reflectance and vegetation indices 163 

The MODIS MOD09A1 surface reflectance product (500 m spatial resolution and 8-day 164 

temporal resolution) is used to calculate the enhanced vegetation index (EVI) (Huete et al. 2002) 165 

and LSWI as inputs to the VPM. LSWI is calculated as the normalized difference between NIR 166 

(0.78-0.89μm) and SWIR (1.58-1.75μm) and is sensitive to water content. Therefore, LSWI is 167 

a good indicator of water stress from the vegetation canopy and soil background (Xiao et al. 168 

2002). These two indices are calculated as follows: 169 

2.5
6 7.5 1

																												 4  170 

																																																						 5  171 

A temporal gap-fill algorithm is applied to the EVI time series data. The data quality is 172 

checked using the quality flag layer, and those observations not affected by cloud and 173 

climatological aerosols are considered ‘GOOD’ quality (MOD35 cloud = ‘clear’; aerosol 174 

quantity = ‘low’ or ‘average’). Each pixel is temporally linearly interpolated using only good-175 

quality EVI observations within each year. A Savitzky–Golay filter is then applied to each pixel 176 

to eliminate high frequency noise (Chen et al. 2004). If a pixel has fewer than three out of 46 177 

good observations for one year, the original data (no gap-filled) are used. Fortunately, this 178 
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happens only for < 0.5% of the total pixels and the majority of those are in less productive, 179 

boreal areas. 180 

2.1.2.2. MODIS land cover data 181 

The MODIS MCD12Q1 land cover product at 500-m spatial resolution (Friedl et al. 2010) 182 

includes annual land cover types from 2001 to 2013. We use MCD12Q1 data in 2001 to 183 

represent year 2000, and MDD12Q1 data in 2013 to represent year 2014, which allows us to 184 

have a full time series of land cover types for 2000-2014. The IGBP land cover classification 185 

scheme in the dataset is used to provide biome specific information for the VPM. A lookup-186 

table (LUT) is used to get the essential parameters including maximum LUE as well as the 187 

maximum, minimum, and optimum temperatures for vegetation photosynthesis (see Appendix 188 

Table A1). 189 

In order to investigate the relationship between GPPVPM and SIF (0.5°  latitude and 190 

longitude resolution) in different vegetation/biome types, we also aggregate the original 500 m 191 

land cover data to 0.5° grid cells using the following procedure. The original IGBP land cover 192 

data are first merged and reprojected onto the longitude-latitude projection with the original 193 

spatial resolution. We calculate the frequency (number of 500 m pixels) of individual 194 

vegetation types within a 0.5° × 0.5° grid cell. Then, for each 0.5° × 0.5° grid cell, if one 195 

vegetation type is dominant (> 75% of the grid cell), this grid cell is assigned that vegetation 196 

type; if no land cover type is dominant, the grid cell is not assigned a type.  197 
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2.1.2.3. MODIS land surface temperature data  198 

The MODIS MYD11A2 land surface temperature dataset is used to derive the thermal 199 

growing season and eliminate the snow cover period, which avoids the effect of snow cover in 200 

retrieving the yearly maximum LSWI. The MYD11A2 data set is chosen because it provides 201 

observations at 1:30 am, which is close to the daily minimum temperature. For each pixel each 202 

year, the thermal growing season is defined using the nighttime land surface temperature (Dong 203 

et al. 2015b). Once three consecutive 8-day’s in the spring have nighttime temperatures above 204 

5 , the thermal growing season begins; when three consecutive 8-day’s in the fall have 205 

nighttime temperatures below 10 , the thermal growing season ends. A detailed application 206 

of this temperature-based phenology was recently reported (Zhang et al. 2015). 207 

2.2. Datasets used to evaluate and compare VPM simulations across North America 208 

2.2.1. CO2 eddy flux data from AmeriFlux tower sites 209 

CO2 flux data from 39 AmeriFlux sites are downloaded from the AmeriFlux data portal 210 

(http://ameriflux.ornl.gov/). These flux sites cover most of the major biomes in NA (DBF, ENF, 211 

MF, GRA, CRO, CSH, OSH, WET and WSA) (Table 1). The 8-day level-4 gap-filled flux data 212 

with the Marginal Distribution Sampling (MDS) method is used (Reichstein et al. 2005). GPPEC 213 

estimates from individual sites are used to evaluate GPPVPM. 214 

2.2.2. Solar-induced chlorophyll fluorescence (SIF) data from GOME-2 215 

The latest version (v26) of monthly SIF data from the GOME-2 instrument onboard 216 

Eumetsat’s MetOp-A satellite is used in this study and available to the public at http://acdb-217 
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ext.gsfc.nasa.gov/People/Joiner/my_gifs/GOME_F/GOME-F.htm (Joiner et al. 2014). GOME-218 

2 captures earth radiation in the range from ~600 to 800 nm with a spectral resolution of ~0.5 219 

nm at a nominal nadir footprint of 40 × 80 km2 in the nominal observing configuration. 220 

Wavelengths around 740 nm at the far-red peak of the SIF emission are used for SIF retrievals 221 

with a principal component analysis approach to account for atmospheric absorption. The 222 

results are then quality-controlled (e.g., heavily cloud contaminated data removed) and 223 

aggregated to monthly means at 0.5° × 0.5° spatial resolution (Joiner et al. 2013). In this study, 224 

we use GOME-2 SIF data for the period from January 2010 to February 2011.  225 

2.2.3. GPP data from other six models 226 

The GPP data from the four process-based models (LPJ, LPJ-GUESS, ORCHIDEE, and 227 

VEGAS) are part of the TRENDY projects (Sitch et al., 2008), which intended to compare 228 

trends in net land-atmosphere carbon exchange over the period 1980 – 2010 (Table 3). These 229 

four models, driven by the CRU+NCEP climate data and global annual atmospheric CO2, are 230 

chosen because they have different algorithms to simulate GPP at 0.5°×0.5° spatial resolution.  231 

Another two models involved in the comparison are the MPI-BGC and MODIS PSN. The 232 

MPI-BGC estimates GPP by upscaling global CO2 flux observations using a Model Tree 233 

Ensemble approach (Jung et al. 2009). MODIS PSN employs a production-efficiency approach 234 

and uses the MODIS fraction of photosynthetically active radiation product (MOD15A2) and 235 

meteorological data (Running et al. 2004). The C55 version of MODIS PSN product 236 

(MOD17A2 C55) is used. 237 
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2.3. A brief description of the Vegetation Photosynthesis Model (VPM) 238 

The satellite-based VPM (Xiao et al., 2004a, b) uses the product of light use efficiency 239 

(LUE, ), and absorbed photosynthetically active radiation by chlorophyll ( ) to 240 

estimate GPP as follows (Fig. 2):  241 

GPP 																														 6  242 

VPM uses the fraction of absorbed photosynthetic active radiation by chlorophyll 243 

(fAPAR ) to estimate . The fAPAR  is estimated from a linear function of EVI 244 

where the coefficient α is set to be 1.0 (Xiao et al. 2004a).  245 

APAR fAPAR 																																				 7  246 

fAPAR 																																						 8  247 

The light-use-efficiency ( ) in the VPM is a down-regulation of maximum LUE ( ) by 248 

temperature ( ) and water stress limitation ( ) on photosynthesis as follows: 249 

																																		 9  250 

 is a biome-specific parameter and differs for C3 and C4 plants. The  values are 251 

obtained from a lookup-table (LUT) using the MODIS land cover data.  is estimated 252 

from the equation used in the Terrestrial Ecosystem Model (TEM) (Raich et al. 1991). 253 

																									 10  254 

where ,  and  are the minimum, maximum, and optimum temperatures for 255 

vegetation photosynthesis, respectively. These parameters are biome specific and are also 256 

obtained from the LUT. The limitation from water stress is estimated from LSWI: 257 

1
1

																																											 11  258 
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 is the maximum LSWI during the growing season over several years. We 259 

delineate the  for plant growing season from the following steps: (1) during the 260 

growing season period pre-defined by the LST,  is retrieved as the yearly maximum 261 

LSWI. If temperature-based identification of the growing season fails in the boreal region 262 

where nighttime temperature is always below 10 , the growing season is set to be June to 263 

August. (2) LSWI will have an abnormally high value if snow exists and a lower value during 264 

drought periods. To eliminate these abnormal values and take the land cover change into 265 

consideration, we further calculate the  using a moving-window statistical algorithm: 266 

we select a window of five years and pick the second largest maximum LSWI in this period.  267 

 268 

 269 

Fig. 2. Flowchart of the data processing procedures for vegetation photosynthesis model 270 

(VPM). 271 

 272 
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3. Results 273 

3.1. Seasonal dynamics of GPP at individual flux tower sites 274 

Fig. 3 shows the seasonal dynamics and interannual variations of GPPEC and GPPVPM 275 

across the 39 flux tower sites. The VPM accurately predicts the seasonality and magnitude of 276 

GPP for most natural vegetation (vegetation types other than cropland and cropland/natural 277 

vegetation mosaic in IGBP classification) (Fig. 3). Table 1 summarizes the correlation between 278 

GPPEC and GPPVPM at individual sites over years. Nearly two thirds of the natural biomes sites 279 

have a RMSE < 1.5 g C m-2 day-1. Cropland sites have slightly larger RMSE values of 2.20 – 280 

3.06 g C m-2 day-1 281 

 282 

Table 1. Descriptions of the 39 flux tower sites used in this study. IGBP class, R2, and RMSE 283 

are the International Geosphere-Biosphere Programme land cover classification, coefficient of 284 

determination, and root mean square error of the regression analysis between tower-based gross 285 

primary production (GPPEC) and simulated GPP (GPPVPM) using vegetation photosynthesis 286 

model.  287 

ID NAME LAT LON 
IGBP 

class 

Years 

used 
R2 RMSE Reference 

US-Bo1 Bondville 40.0062 -88.2904 CRO 
2001-

2006 
0.83  2.20  

Hollinger et 

al. (2005) 

US-Ne1 
Mead irrigated 

continuous 
41.1651 -96.4766 CRO 

2001-

2005 
0.91  3.06  

Suyker et al. 

(2005) 

US-Ne2 
Mead irrigated 

rotation 
41.1649 -96.4701 CRO 

2001-

2005 
0.91  2.71  

Suyker et al. 

(2005) 

US-Ne3 
Mead rainfed 

rotation 
41.1797 -96.4397 CRO 

2001-

2005 
0.85  2.76  

Suyker et al. 

(2005) 

US-Ro1 
Rosemount- 

G21 
44.7143 -93.0898 CRO 

2004-

2006 
0.80  2.45  

Griffis et al. 

(2005) 

US-Ro3 
Rosemount- 

G19 
44.7217 -93.0893 CRO 

2004-

2006 
0.81  2.22  

Griffis et al. 

(2005) 
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US-KS2 
Kennedy Space 

Center 
28.6086 -80.6715 CSH 

2004-

2005 
0.72  0.96  

Dijkstra et 

al. (2002) 

US-Los Lost Creek 46.0827 -89.9792 CSH 
2001-

2002 
0.90  1.59  

Sulman et 

al. (2009) 

US-Bar 

Bartlett 

Experimental 

Forest 

44.0646 -71.2881 DBF 
2004-

2006 
0.93  1.33  

Jenkins et 

al. (2007) 

US-Ha1 Harvard Forest 42.5378 -72.1715 DBF 
2000-

2006 
0.83  2.05  

Urbanski et 

al. (2007) 

US-LPH 
Little Prospect 

Hill 
42.5419 -72.1850 DBF 

2001-

2005 
0.91  1.30  

Vanderhoof 

et al. (2013) 

US-MMS 

Morgan 

Monroe State 

Forest 

39.3232 -86.4131 DBF 
2005-

2007 
0.91  1.59  

Schmid et 

al. (2000) 

US-MOz 
Missouri Ozark 

Site 
38.7441 -92.2000 DBF 

2000-

2006 
0.89  1.37  

Gu et al. 

(2006) 

US-UMB 

Univ. of Mich. 

Biological 

Station 

45.5598 -84.7138 DBF 
2000-

2006 
0.97  0.78  

Gough et al. 

(2008) 

US-WCr Willow Creek 45.8059 -90.0799 DBF 
2002-

2005 
0.96  1.05  

Cook et al. 

(2004) 

CA-NS1 
UCI-1850 burn 

site 
55.8792 -98.4839 ENF 

2003-

2005 
0.65  1.00  

Goulden et 

al. (2006) 

CA-NS2 
UCI-1930 burn 

site 
55.9058 -98.5247 ENF 

2002-

2005 
0.70  0.88  

Goulden et 

al. (2006) 

CA-NS3 
UCI-1964 burn 

site 
55.9117 -98.3822 ENF 

2002-

2005 
0.92  1.49  

Goulden et 

al. (2006) 

CA-NS4 
UCI-1964 burn 

site wet 
55.9117 -98.3822 ENF 

2003-

2004 
0.84  1.08  

Goulden et 

al. (2006) 

CA-NS5 
UCI-1981 burn 

site 
55.8631 -98.4850 ENF 

2002-

2005 
0.89  1.13  

Goulden et 

al. (2006) 

US-Blo Blodgett Forest 38.8953 -120.6328 ENF 
2000-

2006 
0.74  1.58  

Goldstein et 

al. (2000) 

US-Fmf 

Flagstaff 

Managed 

Forest 

35.1426 -111.7273 ENF 2007 0.63  0.95  
Dore et al. 

(2008) 

US-Ho1 
Howland Forest 

(main tower) 
45.2041 -68.7402 ENF 

2000-

2004 
0.88  0.84  

Hollinger et 

al. (2004) 

US-Ho2 
Howland Forest 

(west tower) 
45.2091 -68.7470 ENF 

2000-

2004 
0.69  0.98  

Hollinger et 

al. (2004) 
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US-Me2 

Metolius-

intermediate 

aged pine 

44.4523 -121.5574 ENF 

2002, 

2004-

2007 

0.91  1.03  
Law et al. 

(2004) 

US-Me3 

Metolius-

second young 

aged pine 

44.3154 -121.6078 ENF 
2004-

2005 
0.69  1.26  

Law et al. 

(2000) 

US-Me5 

Metolius-first 

young aged 

pine 

44.4372 -121.5668 ENF 
2000-

2002 
0.94  0.60  

Law et al. 

(2000) 

US-NC1 
North Carolina 

Clearcut 
35.8115 -76.7115 ENF 

2005-

2006 
0.95  0.93  

Noormets et 

al. (2010) 

US-Wi0 
Wisconsin 

young red pine 
46.6188 -91.0814 ENF 2002 0.81  1.79  

Sun et al. 

(2008) 

US-Wi4 
Wisconsin 

mature red pine 
46.7393 -91.1663 ENF 

2002-

2005 
0.92  0.81  

Sun et al. 

(2008) 

US-ARb ARM SGP burn 35.5497 -98.0402 GRA 
2005-

2006 
0.91  1.99  

Fischer et al. 

(2007) 

US-ARc 
ARM SGP 

control 
35.5465 -98.0400 GRA 

2005-

2006 
0.91  2.07  

Fischer et al. 

(2007) 

US-Goo Goodwin Creek 34.2547 -89.8735 GRA 
2004-

2006 
0.68  1.93  

Wilson and 

Meyers 

(2007) 

US-Wlr 
Walnut River 

Watershed  
37.5208 -96.8550 GRA 

2002-

2004 
0.94  0.81  

Coulter et 

al. (2006) 

US-Syv 

Sylvania 

Wilderness 

Area 

46.2420 -89.3477 MF 
2001-

2006 
0.92  1.12  

Desai et al. 

(2005) 

CA-NS6 
UCI-1989 burn 

site 
55.9167 -98.9644 OSH 

2002-

2005 
0.87  0.69  

Goulden et 

al. (2006) 

CA-NS7 
UCI-1998 burn 

site 
56.6358 -99.9483 OSH 

2002-

2005 
0.86  0.63  

Goulden et 

al. (2006) 

US-Ivo Ivotuk 68.4865 -155.7503 WET 
2004, 

2006 
0.67  0.80  

Epstein et 

al. (2004) 

US-FR2 

Freeman 

Ranch-

Mesquite 

Juniper 

29.9495 -97.9962 WSA 
2004-

2006 
0.73  1.13  

Heinsch et 

al. (2004) 

CRO: cropland; CSH: closed shrublands; DBF: deciduous broadleaf forests; ENF: 288 

evergreen needleleaf forest; GRA: grassland; MF: mixed forest; OSH: open shrublands; WET: 289 

wetland; WSA: woody savannas. 290 

 291 
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Fig. 4 shows the comparison between GPPEC and GPPVPM at biome levels. When 292 

compared to GPPEC, GPPVPM underestimate by 4% (according to regression slope and hereafter) 293 

for deciduous broadleaf forests (DBF), 8% for mixed forests (MF), and 16% for evergreen 294 

needleleaf forests (ENF). GPPVPM and GPPEC agree well for closed shrubland (2%) and open 295 

shrubland (4%). For grassland and woody savannas (WSA), the biases are < 8%. When all 296 

natural biome sites are combined, GPPVPM is slightly lower than GPPEC, approximately 8% (y 297 

= 0.92x, R2 = 0.85) (Fig. 4). For cropland sites (cropland and cropland/natural vegetation 298 

mosaic in IGBP classification), GPPVPM is lower than GPPEC by 23% (y = 0.77x, R2 = 0.82). 299 

When all 39 sites are lumped together, the difference between GPPVPM and GPPEC is 300 

approximately 13% (y = 0.87x, R2 = 0.82). The LUE parameter in VPM improves the 301 

predictability of GPP, as represented by the decreased coefficient of determination (R2) in the 302 

VPM model sensitivity analysis for both natural biomes and all biomes sites when LUE 303 

parameter is removed (Fig. A1). 304 

 305 
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 306 
Fig. 3. Seasonal dynamics and interannual variations of the tower-based (GPPEC) and the 307 

modeled (GPPVPM) gross primary production at 39 flux sites at 8-day intervals. The blue lines 308 
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represent the GPPEC and the black circles represent the GPPVPM. The ticks on the x-axis 309 

represent the first date of the corresponding year. 310 

 311 

 312 

Fig. 4. A comparison of the tower-based (GPPEC) and the modeled (GPPVPM) gross primary 313 

production by biome types. Data are pooled across the study period for each biome. The dash 314 

line is 1:1 line and solid lines are linear regression lines forced to pass the origin.   315 

 316 

3.2. Spatial patterns of GPPVPM across North America in 2010 at 500-m spatial resolution 317 

Fig. 5A shows the spatial distribution of annual GPPVPM for 2010 across NA. The highest 318 

GPPVPM (> 2,000 g C m-2 year-1) occurs in the southernmost tropical regions. GPPVPM decreases 319 

along a latitudinal gradient in the eastern region, owing to the decreasing temperature and 320 

growing season length. GPPVPM also decreases along a longitudinal gradient from east 321 

(dominated by forest) to west (dominated by grasslands and desert). Fig. 5B shows the spatial 322 

distribution of the maximum daily GPPVPM in 2010. The highest value is ~20 g C m-2 day-1 for 323 

the Midwest Corn Belt. The southeastern U.S. has a relatively low value as compared with the 324 
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mid-latitude region (35°N - 45°N). The biggest contrast between annual GPPVPM and maximum 325 

daily GPPVPM is found in the tropical and western coastal regions, where annual GPPVPM is 326 

highest while the maximum daily GPPVPM is moderate. 327 

 328 

 329 

Fig. 5. Spatial distribution of modeled (A) annual GPPVPM and (B) maximum daily GPPVPM 330 

for year 2010. 331 

 332 

GPPVPM varies significantly across biomes (Table 2). The most productive ecosystem is the 333 

evergreen broadleaf forest with an annual GPPVPM of > 2,000 g C m-2 year-1. Open shrubland 334 

and savannas are the least productive with an annual GPPVPM < 375 g C m-2 year-1. Grassland, 335 

savannas, and shrublands have relatively high spatial variance because of the extensive 336 

distribution and high sensitivity to soil water. All natural vegetation contribute about 70% of 337 

the total GPPVPM, with an average of 600.88 g C m-2 year-1. Croplands accounts for about 27% 338 

of the total GPP but with a nearly doubled photosynthetic capacity (1,194.27 g C m-2 year-1) 339 

compared with the mean of natural vegetation. The maximum daily GPPVPM for different 340 
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biomes varies from 3.59 to 12.00 g C m-2 day-1. Croplands have the largest GPPVPM magnitudes 341 

(9.94 to 12.00 g C m-2 day-1). Forest ecosystems have a relatively higher maximum 342 

photosynthetic rate (8.79 g C m-2 day-1) compared with other natural vegetation types (4.65 g 343 

C m-2 day-1). The inconsistency between annual GPPVPM sums and maximum daily GPPVPM 344 

may be mainly attributed to different growing season lengths that are affected by temperatures 345 

and rainfall. 346 

 347 

Table 2. The magnitudes and annual sums of simulated gross primary production (GPPVPM) 348 

of different biomes in North America (170°~50°W, 20°~80°N) for year 2010. 349 

IGBP 

class 

Average annual 

GPP 

(g C m-2 year-1) 

Standard deviation 

of annual GPP  

(g C m-2 year-1) 

Average maximum 

daily GPP  

(g C m-2 day-1) 

Standard deviation 

of maximum daily 

GPP (g C m-2 day-

1) 

Total  

(Pg C year-1) 

ENF 638.45 255.53 5.90 1.55  1.32 

EBF 2038.76 448.32 9.63 1.71  0.16 

DBF 1443.95 188.49 11.09 1.47  0.75 

MF 1030.24 330.46 8.53 1.78  1.94 

OSH 349.30 224.44 3.59 1.31  1.48 

WSA 815.81 543.79 6.27 2.29  1.50 

SAV 377.65 267.02 4.17 1.27  0.20 

GRA 457.50 380.74 4.24 2.59  2.00 

WET 539.26 253.98 5.00 1.41  0.21 

CRO 1157.99 390.54 12.00 3.09  2.15 

CNV 1248.95 317.55 9.94 1.67  1.54 

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous 350 

broadleaf forest; MF: mixed forest; OSH: open shrubland; WSA: woody savannas; SAV: 351 

savannas; GRA: grassland; WET: wetland; CRO: cropland; CNV: cropland/natural vegetation 352 

mosaic. 353 

 354 

Fig. 6 shows the frequency distribution of annual GPPVPM and maximum daily GPPVPM for 355 

all pixels in NA and their distribution in the climate space. More than 70% of pixels have 356 

relatively low productivity, i.e., annual GPPVPM less than 1,000 g C m-2 year-1 or maximum 357 
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daily GPPVPM less than 10 g C m-2 day-1. We also plot the distribution of the 39 flux tower sites 358 

in NA based on the annual and maximum daily GPPEC (Fig. 6). The distribution of the flux 359 

tower sites cover the broad range of maximum daily GPPVPM, and most of them are located in 360 

regions with moderate annual GPP (1,000 – 1,800 g C m-2 year-1). In the two-dimensional 361 

climate space described by mean annual temperature (MAT) and mean annual precipitation 362 

(MAP) (Fig. 6C, D), the flux tower sites distribution covers most of the climate space. The 363 

annual GPPVPM generally increases with MAT mad MAP, while the daily maximum GPPVPM is 364 

highest in moderate MAT and MAP regions. 365 

 366 

 367 

 368 

Fig. 6. The frequency distribution of GPPVPM of the (A) annual GPP and (B) maximum daily 369 

GPP compared to the flux site distribution and their distribution in the climate space defined 370 

by mean annual temperature (MAT) mean annual precipitation (MAP) (C, D). The blue curves 371 

in (A and B) indicate the frequency distribution calculated from Fig. 5. The annual and 372 

maximum daily GPP for the flux tower sites are from the 39 sites used in our study. Black 373 

crosses in (C and D) represent the location of 39 flux tower sites in the climate space. 374 
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Precipitation data from GPCC (Global Precipitation Climatology Centre) and temperature data 375 

from NCEP-NARR are used to generate the climate space. 376 

 377 

3.3. Spatial-temporal comparison between GPPVPM and SIF across NA in 2010 at 0.5 378 

degree spatial resolution 379 

We aggregate the 8-day 500-m GPPVPM estimates to the seasonal (3-month interval) and 380 

0.5° latitude/longitude grid to compare with the seasonal SIF data. Both GPPVPM and GOME-381 

2 SIF data have strong seasonal dynamics and spatial variation across NA (Fig. 7, 8).  382 

During spring (March to May), both GPPVPM and GOME-2 SIF are relatively high in the 383 

southeastern part of the United States (Fig. 7), where forests dominate and plants grow through 384 

the spring. Both GPPVPM and GOME-2 SIF are also high in California, where the 385 

Mediterranean climate (warm and wet spring and dry summer) is located (Ma et al. 2007; Xu 386 

and Baldocchi 2004). In comparison, the rest of lands with low temperature and/or rainfall in 387 

NA have low GPPVPM and GOME-2 SIF values. 388 

 389 



25 
 

 390 

Fig. 7. A comparison of seasonal average solar-induced fluorescence (SIF) from the GOME-2 391 

satellite instrument and simulated gross primary production (GPPVPM) during the period of 392 

March 2010 through February 2011. MAM, JJA, SON, and DJF correspond to spring, summer, 393 

fall, and winter, respectively. 394 

 395 

In summer months (June to August), the Corn Belt in mid-west U.S. and southwestern 396 

Canada has the highest GPPVPM and SIF. This is supported by the eddy flux data: GPPEC for 397 

maize is > 25 g C m-2 day-1 during summer, much higher than that of the forest ecosystems. 398 

Overall, summer months contribute > 62% of the annual GPP in NA, 42% of which come from 399 

Canada and 45% from the conterminous U.S. SIF data also show the highest values in the Corn 400 

Belt and lowest in the western and northern regions, consistent with the GPPVPM . 401 

In the fall (September to November), both GPPVPM and SIF drop substantially in the mid-402 
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west region due to crop harvesting. Similar to spring, the high photosynthesis rate also 403 

corresponds to a long growing season in the southeastern U.S., but the value is smaller than 404 

spring. The eastern and western coasts of Mexico as well as Cuba still fix carbon at a rate of 405 

more than 5 g C m-2 day-1. In Alaska and northern Canada, all vegetation goes to dormancy, 406 

and both GPPVPM and SIF values are close to 0. These spatial patterns are also evident in the 407 

SIF data. 408 

During the winter (December through February), only the very southern part of the U.S., 409 

California, and coastal regions of Mexico and Cuba have moderate GPPVPM and SIF values. 410 

All the other regions do not show any sign of photosynthesis activities, and both GPPVPM and 411 

SIF values are close to zero. 412 

4. Discussion 413 

4.1.The relationship between SIF and GPP 414 

SIF is emitted during the vegetation photosynthetic process. Absorbed energy by 415 

chlorophyll is partitioned into SIF, photochemical quenching (PQ, energy used for 416 

photosynthesis), non-photochemical quenching (NPQ, energy partitioned to heating), and 417 

efficiency loss (Baker 2008). Previous studies have shown that SIF is positively correlated with 418 

PQ when light is moderate or high or environmental stress exists (Flexas et al. 2000; Lee et al. 419 

2015; Porcar-Castell et al. 2006; Soukupová et al. 2008). However, the relationship between 420 

GPP and SIF emission at far-red peak (SIF740 used in our study) is also affected by the SIF 421 

contribution from photosystem II and photosystem I, alternative sinks of energy, 422 
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photorespiration, internal CO2 concentration of leaves and enzyme activities, etc. (Porcar-423 

Castell et al. 2014). Although SIF measurements from satellite provide a direct and independent 424 

estimations of photosynthetic activity which is different from reflectance based vegetation 425 

indices, the GPP-SIF relationship still needs intensive investigation. 426 

Several studies (Joiner et al. 2014; Zhang et al. 2014; Wagle et al. 2016) have reported on 427 

the direct comparison between satellite-derived SIF data (0.5° grid cell) and in situ GPPEC from 428 

flux sites that often have footprint sizes of a few hundreds of meters, but such comparisons is 429 

problematic owing to spatial mismatches and heterogeneity due to mixed land cover types 430 

within a given 0.5° grid cell (Zhang et al. 2014). In this study, the VPM simulations are 431 

aggregated to the same spatial resolution as the GOME-2 SIF data. Fig. 8 shows the correlation 432 

between GPPVPM and the SIF data for the four seasons. In spring, summer, and fall, GPPVPM 433 

shows a very high correlation with SIF. The coefficient of determination ranges from 0.74 to 434 

0.86, and the GPPVPM-SIF correlation increases with the increase in daily GPP or SIF value 435 

(from early to peak growing season). This high spatial correlation confirms our comparison in 436 

section 3.3 and can be further explained by the APARchl used in the VPM. Both APARNDVI 437 

(NDVI*PAR) and APARfPAR (fPAR*PAR) have lower correlation with SIF compared with 438 

APARchl; an obvious saturation can be found in summer where SIF continues to increase while 439 

APARNDVI and APARfPAR tend to saturate. The regression slope between APARchl and SIF are 440 

also more stable during the growing season (2.82 0.13). As SIF is reemitted from the 441 

photosystem II, the higher correlation between SIF and APARchl also suggests that EVI can be 442 

a good proxy of light absorbed by chlorophyll. In the winter, however, the correlations between 443 
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SIF and GPPVPM and APAR are much weaker mostly due to the very low SIF signal and 444 

relatively lower signal-to-noise ratio. We also calculate the regression between GPPVPM and 445 

SIF for points with GPPVPM > 1 g C m-2 day-1 (to eliminate some low values with relatively 446 

higher bias during the non-growing season). The range of the regression slopes are narrower 447 

when only data for the period of GPPVPM > 1g C m-2 day-1 are used as compared to all data 448 

points (SDslope=0.42 vs. 0.74). 449 

 450 

 451 

Fig. 8. Relationship between SIF and GPPVPM (A, E, I, M), APARchl (EVI*PAR) (B, F, J, N), 452 

APARNDVI (NDVI*PAR) (C, G, K, O) and APARfPAR (fPAR*PAR) (D, H, L, P) for four seasons 453 

(by row from first to fourth: spring, summer, autumn, winter) in North America in 2010. EVI 454 

and NDVI are from monthly 0.05° MOD13C1 C5, fPAR is from 8-day 1km MOD15A2 C5, 455 

all of which are aggregated to seasonal and 0.5-degree spatial resolution. Black lines are 456 

regression for all the points, and the red lines are the regressions between GPPVPM and SIF with 457 
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GPPVPM > 1 g C m-2 day-1. 458 

 459 

4.2.Comparison of SIF and GPP estimates in North America from several models 460 

A number of models have reported annual total GPP in NA (Huntzinger et al. 2012; Xiao 461 

et al. 2014). The annual GPPVPM is 13.53 Pg C in 2010. We further compared GPPVPM with 462 

GPP from six other models (MODIS PSN, MPI-BGC, LPJ, LPJ-GUESS, ORCHIDEE, and 463 

VEGAS) (Fig. 9). The VPM-based GPP estimates are close to the average of these six models 464 

(15.75 Pg C year-1) (Table 3). Three process-based models (LPJ, LPJ-GUESS, and ORCHIDEE) 465 

predict very high GPP for the southeastern U.S., which may be caused by different approaches 466 

they employed (enzyme kinetic vs. LUE).  467 

Because SIF is directly retrieved from satellite and has a very good correlation with data 468 

driven model-based GPP (Frankenberg et al. 2011; Wagle et al. 2016), we use SIF as a reference 469 

to compare the spatial variations in GPP of all models. ORCHIDEE, PSN, MPI-BGC, and 470 

VPM show high consistency with SIF data. The major difference is the relative underestimation 471 

at the Corn-Belt and overestimation in the western coast along the U.S./Canada border in 472 

ORCHIDEE, PSN, and MPI-BGC. Recent studies reveal that cropland, especially maize in the 473 

U.S., makes a large contribution to the seasonal swing of atmospheric CO2 concentration (Gray 474 

et al. 2014; Zeng et al. 2014). The high GPP values in this region are often underestimated by 475 

models (Guanter et al. 2014). Beer et al. (2010) also suggest that given the limited C4 476 

vegetation flux data availability, great uncertainty remains in estimating the contribution of C4 477 

plants while upscaling eddy flux observations. A similar issue is also found in a study focused 478 
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on the conterminous U.S. (Xiao et al. 2010), which may explain the underestimation of the 479 

regional GPP sums. GPPVPM and SIF data show similar spatial patterns for the mid-western 480 

Corn Belt (r = 0.87, p < 0.001) where a previous study showed SIF at a monthly scale has a 481 

high correlation with GPP (Guanter et al. 2014); this also supports that the spatial variation of 482 

GPPVPM for croplands is to some degree an improvement over the other six models. 483 

 484 

 485 
Fig. 9. Comparison of annual gross primary production (GPP) from different LUE-based 486 

models (A, C), data-driven model (D), process-based models (E, F, G, H), and with solar-487 

induced fluorescence (SIF) (B). Data are shown for the year 2010. 488 

 489 

Table 3. Annual gross primary production (GPP) of North America (170°~50°W, 20°~80°N) 490 

estimated from different models for year 2010.  491 

Models Annual GPP (Pg C year-1) Reference 

LPJ 22.23 Sitch et al. (2003) 
LPJ-GUESS 19.84 Smith et al. (2001) 
ORCHIDEE 17.52 Krinner et al. (2005) 
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VEGAS 11.35 Zeng et al. (2005) 
MODIS GPP 13.13 Zhao et al. (2005) 

MPI-BGC 12.70 Jung et al. (2011) 
VPM 13.53 This study 

 492 

Several previous studies indicate that the relationships between GPP and SIF should be 493 

different across biomes (Damm et al. 2015; Guanter et al. 2012; Guanter et al. 2014; Parazoo 494 

et al. 2014; Verrelst et al. 2015). This ecosystem-dependent GPP-SIF relationship is determined 495 

by different SIF contribution from both photosystem I and photosystem II, uncertainty in NPQ, 496 

and structural interference of SIF leaving the canopy (Damm et al. 2015; Verrelst et al. 2015). 497 

Here we compare SIF with GPP estimates from three diagnostic models (VPM, MPI-BGC, and 498 

MODIS PSN) and APARchl, as well as the relationship between SIFyield (SIF/APARchl) and LUE 499 

(Fig. 10). Being consistent with a previous study at site level (Yang et al. 2015), we also find 500 

that SIF contains the information of LUE, represented by a high correlation between SIFyield 501 

(SIF/APARchl) and LUEVPM (Fig. 10E). This also partially supports the GPP-SIF relationship. 502 

However, due to the spatial inconsistency, we did not directly compare GOME-2 SIFyield with 503 

LUEEC, more canopy or ecosystem level SIF measurement from in situ or airborne 504 

spectrometers will enable this kind of comparison in the near future. In terms of inter-model 505 

comparison, VPM and MPI-BGC show higher average R2 (0.86 and 0.89, respectively) for 506 

individual biomes than does MODIS PSN (0.83). The data points are also more scattered in the 507 

MODIS PSN than in other two models. Different biome types also show distinct differences in 508 

slopes (4.03 – 8.9 for VPM, 3.73 – 7.83 for MPI-BGC, and 2.76 – 11.12 for MODIS PSN). For 509 

the most highly productive biomes (average SIF > 1 mW m-2 nm-1 sr-1), the correlations 510 
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between predicted GPP and SIF are very high (R2 > 0.95) except for EBF; this may be caused 511 

by cloud and/or aerosol contamination of the satellite data. The range of slopes for these biomes 512 

also shows less variation (4.60 – 5.55 for VPM, 4.02 – 5.72 for MPI-BGC, and 3.60 – 6.02 for 513 

MODIS PSN). In contrast, the less productive regions usually have lower regression 514 

coefficients and more variable slopes. This may be partially due to the higher relative error for 515 

the GOME-2 SIF data (Joiner et al. 2013) and GPP models. SIF retrievals from later satellites 516 

(OCO-2, FLEX - Fluorescence Explorer, Sentinel-5 Precursor) will have better accuracy 517 

(Frankenberg et al. 2014; Guanter et al. 2015; Kraft et al. 2013) and can be used to improve 518 

and benchmark GPP for land models (Lee et al. 2015; Luo et al. 2011; Zhang et al. 2014).  519 

 520 
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 521 
Fig. 10. A comparison for relationship between GPPVPM and SIF (A), GPPMPI and SIF (B), 522 

GPPPSN and SIF (C), APARchl (EVI*PAR) and SIF (D), SIFyield (SIF/APAR) and LUEVPM (E) 523 

for different biome types in North America in 2010. For each month each biome type, a value 524 

is given by spatially averaging all the grid cells with in this biome type. 525 

 526 
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4.3.Sources of uncertainty for VPM simulations in North America 527 

Maps of land cover types affect GPP estimates as the LUE parameter used in the model 528 

varies with biomes. In this study, the MOD12 land cover dataset lists croplands as one category 529 

and does not distinguish between C3 and C4 crops. Both C3 and C4 crops have different 530 

photosynthetic pathways and light use efficiency (Kalfas et al. 2011; Yuan et al. 2015): C4 531 

crops (e.g., maize) have a higher GPPEC than do C3 crops (Fig. 3). Thus, the LUE 532 

parameterization of croplands for each year depends upon our knowledge of crop types and 533 

rotation. For VPM simulations at the continental scale, there are four options to address this 534 

problem in a MODIS cropland pixel: (1) assume 100% C3 plants, (2) assume 100% C4 plants, 535 

(3) assume C3+C4 mixing ratio as 50% each, and (4) use known C3+C4 mixing ratio from 536 

other data sources (in situ data, or other maps). Because there is no yearly map of C3/C4 mixing 537 

ratio across NA, we simply chose the third option in this study. Therefore, GPPVPM would either 538 

overestimate GPP for C3 plants (soybean, wheat, etc.) or underestimate for C4 plants (corn, 539 

sugar cane, etc.) in those pure pixels. In those C3/C4 mixed pixels, however, these artifacts 540 

(under- or over-estimation) can be partially alleviated. For example, both maize and soybean 541 

are grown in rotation at the US-Bo1 site within a 50 m radius, but within a 500 m radius of the 542 

flux tower site, corn and soybean areas have a mixing ratio of 50% each over the years. The 543 

GPPVPM, driven by averaged LUE for C3 and C4 crops, captures both the seasonality and the 544 

magnitude at this site (Fig. 11A). For pure pixels, VPM would provide better results if a specific 545 

crop type is given and an appropriate LUE value is used. We use the LUE value for C4 plants 546 

at the US-Ne1 site where maize is grown throughout the period (Fig. 11B). This modification 547 
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greatly improves the estimation of GPP, with an RMSE reduces from 3.06 to 2.32 g C m-2 day-548 

1 and the slope increases from 0.65 to 0.86.  549 

 550 

 551 

Fig. 11. Seasonal dynamics and interannual variations of the tower-based (GPPEC) and the 552 

modeled (GPPVPM) gross primary production at two flux tower sites at 8-day intervals at a 553 

maize/soybean rotation site (US-Bo1) (A) and a continuous maize site (US-Ne1) (B). Blue 554 

lines represent estimated GPP from flux tower, yellow circles represent the present simulation 555 

result using the original LUE (LUE_O) and brown circles represent improved simulation result 556 

using an alternative LUE (LUE_A) for C4 plant. 557 

 558 

In our study, all cropland flux tower sites are located in the mid-west Corn Belt and 559 

altogether we have 16 corn years and 11 soybean years. As we use an average LUE of C3 and 560 

C4 for croplands, the model may underestimate GPP at the site scale owing to more corn years 561 

(Fig. 4.). At a regional scale, the bias mainly depends on the C3 and C4 crop mixing ratios 562 

within individual pixels. In the U.S. Midwest where C4 crops (e.g., maize) are dominant, the 563 

VPM simulation may underestimate cropland production while in California or the Mississippi 564 

River Basin, where C3 crops are dominant, the VPM simulation may overestimate. Therefore, 565 

the lack of crop plant functional type (C3 and C4) is likely the largest source of uncertainty in 566 

the GPPVPM. This clearly highlights the need to generate annual maps of plant functional types 567 

(C3 and C4) in NA in the near future. In addition, the mismatch between the flux tower footprint 568 
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and the MODIS pixel, and the land cover fragmentation within each MODIS pixel are also 569 

critical issues when using EC data for model validation. All flux towers should be evaluated 570 

using footprint models and high resolution satellite images to provide the representativeness 571 

for the MODIS pixel (Chen et al. 2012). 572 

Image data quality is always an important issue for the application of remote sensing. In 573 

this study, we use the vegetation indices calculated directly from the MODIS surface 574 

reflectance product. These indices are subject to atmospheric contamination (i.e., clouds, 575 

aerosols) and often result in a lower-than-normal value for EVI, especially in those regions 576 

where cloud and aerosol are persistent (boreal and tropical regions in our study). The effect of 577 

the atmospheric contamination can be partially eliminated through a gap-fill method. Fig. 12 578 

shows the comparison between the gap-filled and no gap-filled results. Obvious cloud 579 

contamination is marked in the black ellipse in Fig. 12A, C. The gap-fill method used in our 580 

study not only temporally interpolates the low values that are marked as cloud or aerosol 581 

contaminated by the quality control layer, but also removes the noises caused by other factors. 582 

Some extremely high value data (dark green dots) in Fig. 12A are also temporally smoothed, 583 

as shown in Fig. 12B. The use of this gap-fill method also results in different regional GPP 584 

estimates. The GPP estimate without the gap-fill method shows a total GPP of NA in 2010 as 585 

13.23 Pg C, while the gap-filled method leads to an annual GPP estimation of 13.53 Pg C. In 586 

addition, the GPP simulations with the gap-filled processing are more stable when conducting 587 

interannual comparisons or trend analyses. 588 

 589 
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 590 

Fig. 12. Comparison between no gap-filled and gap-filled enhanced vegetation index (EVI) 591 

and the corresponding modeled gross primary production (GPPVPM). The low value in (A) and 592 

(C) are marked out using ellipses. The scene is from the tile h11v03 during the mid-growing 593 

season on August 13th, 2010. 594 

 595 

Climate data input is another potential uncertainty source for VPM simulation. Previous 596 

studies show that VPM accurately simulates GPP at flux tower sites, when driven by in situ 597 

(site-specific) meteorological data and parameters (Jin et al. 2013; Kalfas et al. 2011; Wagle et 598 

al. 2014; Xiao et al. 2004a; Xiao et al. 2004b). As radiation is one of the direct inputs to model 599 

GPP, the accuracy of radiation directly influences GPP simulation. Recent studies which 600 

employ different models (MODIS PSN, EC-LUE) to investigate the performance of multiple 601 

meteorological datasets in estimating regional GPP report that the NCEP product overestimates 602 

radiation as compared with meteorological stations in U.S. and China (Cai et al. 2014; Zhao et 603 

al. 2006). Jin et al. (2015) assesses the feasibility of using large scale reanalysis meteorological 604 

data (NCEP-NARR) to drive VPM at cropland flux tower sites, and the resultant GPPVPM 605 

agrees well with GPPEC at those sites. Our validation at the site level shows that VPM 606 
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accurately simulates GPP across different natural biome types in NA using the regional 607 

reanalysis meteorological data and biome specific parameters, suggesting that the recalibrated 608 

NCEP-NARR radiation product can be used to estimate regional GPP effectively in NA. 609 

 610 

5. Conclusions 611 

In this study, we use VPM, climate reanalysis data, and MODIS products (vegetation 612 

indices, land cover, and LST) to simulate GPP of North America. GPPVPM agrees well with 613 

GPPEC at individual flux tower sites and the GOME-2 SIF data across North America. The 614 

comparison between SIF and GPPVPM showed very high spatial-temporal consistency during 615 

the growing season, mostly due to the close relationship between SIF and APARchl. The quality 616 

of GOME-2 SIF data may limit its application for evaluating the seasonal variation of GPP for 617 

very low productive biome types. The results from this study clearly demonstrate the potential 618 

of VPM for estimating GPP at the continental scale, and highlights the value of GOME-2 SIF 619 

data for evaluation of various LUE-based and process-based GPP models. The resultant high 620 

spatial and temporal resolution GPPVPM dataset in North America will be provided to the public, 621 

which can be further used in a wide variety of applications, especially in those studies related 622 

to trend analysis, regional disturbance evaluation, model comparison, and the carbon cycle 623 

under global climate change. 624 

 625 



39 
 

Acknowledgement 626 

We acknowledge M. Reichstein for providing the MPI-BGC dataset, and the Numerical 627 

Terradynamic Simulation Group at the University of Montana for providing the improved 628 

MOD17 GPP dataset. We thank the TRENDY modelers for contributing model output: B. 629 

Poulter (LPJ), A. Ahlström (LPJ-GUESS), N. Viovy (ORCHIDEE), and N. Zeng (VEGAS). 630 

This study is supported in part by a research grant (Project No. 2013-69002) through the USDA 631 

National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative 632 

(AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and 633 

Change, and a research grant (IIA-1301789) from the National Science Foundation EPSCoR. 634 

Flux data were obtained from the AmeriFlux database (http://ameriflux.ornl.gov/). Funding for 635 

AmeriFlux data resources is provided by the U.S. Department of Energy’s Office of Science. 636 

US-UMB site is supported by the Department of Energy [Award No. DE-SC0006708] and by 637 

an Ameriflux Core Site award; US-NC1 site is supported by USDA FS EFETAC cooperative 638 

agreements [03-CA-11330147-073] and [04-CA-11330147-238]; US-Ro1 and US-Ro3 data 639 

courtesy of TJ Griffis and JM Baker, funding provided by US DOE Ameriflux program and 640 

USDA-ARS; US-IVO site is supported by National Science Foundation [Award No. OPP 641 

0421588/ARC-1204263] and DOE grant [DE-FC02-06ER64159]. We thank Ms. Sarah Xiao 642 

at Yale University for the English editing of the manuscript. 643 

 644 

 645 



40 
 

Appendix 646 

Table A1 647 

Biome specific lookup-table (LUT) used in the VPM model. 648 

IGBP class ENF1 EBF2 DNF DBF1 MF2 CSH2 OSH2 WSA2 SAV2 GRA2 WET CRO3 NVM

 ( ) -1 2 -1 -1 -1 -1 1 -1 1 0 -1 -1 0 

 ( ) 20 28 20 20 19 25 31 24 30 27 20 30 27 

 ( ) 40 48 40 40 48 48 48 48 48 48 40 48 48 

 (g C m-2 day -1 /W m-2) 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.108 0.078 

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous broadleaf forests; MF: 649 

mixed forest; CSH: closed shrublands; OSH: open shrublands; WSA: woody savannas; SAV: savannas; GRA: grassland; WET: wetland; CRO: 650 

cropland; NVM: cropland/natural vegetation mosaic. 651 

We use a similar temperature limitation from the Terrestrial Ecosystem Model and the , ,  used in this table are given by 1Aber et 652 

al. (1996) 2McGuire et al. (1992) and 3Wagle et al. (2015) and Kalfas et al. (2011). For some biome types (DNF, WET, NVM) which we did not 653 

find reference for temperature parameters, we use parameters from similar ecosystems (e.g. ENF for DNF and WET, GRA for NVM).  for C3 654 

plants are estimated from the Wagle et al. (2014),  for C4 crops is from Kalfas et al. (2011). Cropland is regarded as the half-half C3/C4 655 

therefore uses an average value. 656 

 657 
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 658 

Fig. A1. (A) A comparison between GPPEC and APARchl for all 39 sites using 8-day data. (B) 659 

comparison between the coefficient of determination (R2) between GPPEC vs. GPPVPM, and 660 

GPPEC vs. APARchl for individual sites. 661 
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