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Summary 
 
During the processing of magnetotelluric (MT) data, frequency-dependent, complex 
transfer functions between magnetic (B) and electric (E) fields are calculated. The 
transfer functions provide information about the conductivity of the subsurface and thus 
are of crucial importance. In some cases the data processing proves to be difficult, 
since the recorded time series can be heavily contaminated by anthropogenic noise 
signals, e. g. galvanic currents or near field sources. Several methods, like robust or 
remote reference processing, address these problems, however in case of coherent 
noise sources they might fail (Junge, 1996). Therefore a new multivariate processing 
scheme based on an eigenvalue decomposition method (Egbert, 1997) was developed 
within an AMT study in the Westerwald, Germany (Hering, 2015). The results are 
presented for frequencies between 10 Hz and 5 kHz. The choice of the noise model is 
crucial for noise being coherent between different channels at a local site but 
incoherent to that at remote sites. For an unfavorable signal-to-noise ratio, however, 
the results of the eigenvalue analysis might be misleading, e. g. if the two dominant 
eigenvalues are taken as an indication for homogeneous source fields. Furthermore 
the magnetic and electric field polarizations from the Westerwald data set were 
analyzed. The results show distinct preferential directions and may be related to 
artificial source fields. As a consequence the far field assumption has to be checked for 
subsequent data interpretation. 

 

Introduction 

Principally the evaluation of magnetotelluric data is based on the calculation of transfer 
functions (TF) between electric and magnetic fields. For example the measured 
horizontal electric and magnetic field components (Ex and Ey, resp. Bx and By) are 
related by the frequency dependent impedance tensor (𝑍) (e. g. Tikhonov and 
Berdichevsy, 1966): 

(
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All the variables are defined in frequency domain and the components Zi,j (i = x,y and 
j = x,y) of the impedance tensor represent the magnetotelluric transfer functions. The 
complex impedance values are visualized by the period (T) dependent phase- (φ) and 
apparent resistivity- (ρa) curves: 

φij  = 𝑡𝑎𝑛−1 ℭ(𝑍̃𝑖𝑗)

ℜ(𝑍̃𝑖𝑗)
                                (2) 

ρa,ij = 0.2 𝑇 |𝑍𝑖𝑗|
2                                      (3) 

Generally Zi,j are estimated by a bivariate linear approach resulting from eq. (1), where 
the electric fields are assumed to contain noise while the magnetic fields are regarded 
as noise-free. Noise in the magnetic channels violates this assumption and causes the 
underestimation of the transfer functions (bias effects). One way to handle this problem 
is the remote reference method (e. g. Gamble et al., 1979). Subsequently robust 
methods can be applied to the processing scheme by predefined selection criterions 
choosing short time windows of the entire time series (e. g. Junge, 1992, Ritter et al., 
1998, Löwer, 2014). A commonly used criterion is based on coherency between the 
electric and magnetic fields. Generally this method yields good results, but in case of 
coherent noise between the electric and magnetic field channels, it might fail. This also 
applies to the remote reference method mentioned before: if the noise is coherent 
between the local and the remote site (e.g. if the distance between the local and the 
remote site is too small), the method yields unsatisfying results. 
 
In June/July 2014 magnetotelluric measurements were performed in the Westerwald, 
which is part of the Rhenish Massif in central Germany. The survey area was located at 
a geological fault zone with steeply dipping shales near the surface. The measurement 
campaign aimed at the detection of three-dimensional, anisotropic conductivity 
structures and the comparison with geoelectric measurements in the same area. As the 
experiment focused on the near-surface, mainly frequencies between 10 Hz and 5 kHz 
were investigated. 
In Fig. 1 transfer functions resulting from a standard robust processing scheme (Löwer, 
2014) are shown for the off-diagonal tensor elements. Beside large scatter, the phases 
take very low values which is most commonly a clear indication for anthropogenic noise 
sources and nearfield effects. For further investigation of the nature of the noise 
sources, a multivariate processing scheme is presented in the next section (following  
Egbert, 1997). 
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Fig. 1: Transfer functions for site “ADU sued” (Westerwald campaign 2014) as phase- and ρa- 
curves with 95%- confidence intervals ( shaded areas) . The time series had been bandpass 
filtered (LP: 5 kHz, HP: 6 Hz) and the processing consisted of a  robust bivariate calculation of 
the transfer functions based on a coherency selection criterion.  

 

Multivariate processing 

Following Egbert (1997) the multivariate processing scheme  is based on the idea of 
using as many stations and channels (generally 3 magnetic and 2 electric channels for 
each station) as possible in view of detecting and removing incoherent noise from the 
data. The processing algorithm detects the number of independent polarizations within 
the source field by solving a generalized eigenvalue problem. With absent coherent 
noise and for a homogeneous source, not more than two dominant Eigenvalues 
significantly larger than 1 should occur (Egbert, 1997).  
Equation (4) describes the idea behind the processing for a given data vector Xi of MT 
observations ej,i and bj,i. 
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∗ 𝛽2,𝑖  + 𝜀𝑖   = U𝛽𝑖 + 𝜀𝑖                     (4) 
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With J as the number of stations j, i: index of the time segment, e and b the Fourier coefficients 
of the electric and magnetic fields, 𝛽 describing the two polarizations of the natural MT-source 
fields, 𝜀 as the residual, containing all noise parts. 

Equation (5) allows for coherent noise being attributed to the signal, as in practice both 
cannot be distinguished easily. The residual 𝜀 is reduced to the incoherent noise part. 

Xi = U𝛽𝑖 + V𝛾𝑖 + 𝜀𝑖 = [𝑈 𝑉] [
𝛽𝑖

𝛾𝑖
] + 𝜀𝑖 = Wαi + 𝜀𝑖                      (5) 

Now U contains the natural signal and V contains the coherent noise, 𝛾𝑖 represents the 
polarizations of the noise source fields whereas αi is the vector combining natural and noise 
source field polarizations 

Before starting the eigenvalue analysis, all time series are bandpass filtered. Then the 
whole processing is performed in the frequency domain evaluating each target 
frequency separately. Initially the spectral density matrix (S) is calulated containing all 
the cross- and auto spectra from all the channels: 

S =   

[
 
 
 
 
 
𝑏𝑥1,𝑖 ∗ 𝑏𝑥1,𝑖

∗ 𝑏𝑦1,𝑖 ∗ 𝑏𝑥1,𝑖
∗

𝑏𝑥1,𝑖 ∗ 𝑏𝑦1,𝑖
∗ 𝑏𝑦1,𝑖 ∗ 𝑏𝑦1,𝑖

∗ ⋯
𝑒𝑥𝐾,𝑖 ∗ 𝑏𝑥1,𝑖

∗ 𝑒𝑦𝐾,𝑖 ∗ 𝑏𝑥1,𝑖
∗

𝑒𝑥𝐾,𝑖 ∗ 𝑏𝑦1,𝑖
∗ 𝑒𝑦𝐾,𝑖 ∗ 𝑏𝑦1,𝑖

∗

⋮ ⋱ ⋮
𝑏𝑥1,𝑖 ∗ 𝑒𝑥𝐾,𝑖

∗ 𝑏𝑦1,𝑖 ∗ 𝑒𝑥𝐾,𝑖
∗

𝑏𝑥1,𝑖 ∗ 𝑒𝑦𝐾,𝑖
∗ 𝑏𝑦1,𝑖 ∗ 𝑒𝑦𝐾,𝑖

∗ ⋯
𝑒𝑥𝐾,𝑖 ∗ 𝑒𝑥𝐾,𝑖

∗ 𝑒𝑦𝐾,𝑖 ∗ 𝑒𝑥𝐾,𝑖
∗

𝑒𝑥𝐾,𝑖 ∗ 𝑒𝑦𝐾,𝑖
∗ 𝑒𝑦𝐾,𝑖 ∗ 𝑒𝑦𝐾,𝑖

∗
]
 
 
 
 
 

                         (6) 

With e, b the electric and magnetic field Fourier coefficients, K the number of channels 
(generally 5*J) 

 
The spectral density matrix is normalized by the noise covariance matrix 𝛴𝑁 (see next 
chapter) and the eigenvalue problem (7) can be formulated: 

𝑆 ∗ 𝑢 =  λ ∗ 𝛴𝑁 ∗ 𝑢                     (7) 

Here 𝜆 contains all the eigenvalues which can be interpreted as a signal to incoherent 
noise ratio and u stands for the corresponding eigenvectors. In case that only two 
dominant eigenvalues exist, the rescaled data vector U (see (4)) is derived from the 
two corresponding eigenvectors represented by U‘. 

𝑈 = 𝛴𝑛
1/2

∗ 𝑈′ ∗ (𝑈′ ∗ 𝛴𝑛
−1 ∗ 𝑈′)−1                  (8) 

In the last step, transfer functions Z for each site J are calculated from U accounting for 
the particular electric and magnetic fields: 

𝑍𝐽 = [
𝜉𝑥𝐽1 𝜉𝑥𝐽2

𝜉𝑦𝐽1 𝜉𝑦𝐽2
] ∗ [

𝜂𝑥𝐽1 𝜂𝑥𝐽2

𝜂𝑦𝐽1 𝜂𝑦𝐽2
]
−1

             (9) 
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Two different models for incoherent noise estimation 

The estimation of the noise covariance matrix is of essential importance for the 
calculation of reliable transfer functions. In the following we present two models for to 
assess the incoherent noise level for each of the observed field components.  

In a first approach we assume incoherent noise between all the existing field 
components. The noise covariance matrix (𝛴𝑁) is calculated by a multiple linear 
regression for each component (k) against the remaining (K-1) components. The 
variances of the residuals are summarized by: 

ΣN =  

[
 
 
 
 
𝜎1

2 0

0 𝜎2
2 ⋯

0   0
0   0

⋮ ⋱ ⋮

0   0
0   0

⋯
𝜎𝐾−1

2 0

0 𝜎𝐾
2]
 
 
 
 

                 (10) 

With: 𝜎1
2…𝜎𝑘

2 as the noise variances for each component. 

Allowing for coherent noise between the field components at each station, the multiple 
linear regression is modified such that each of the 5 components of the station is 
predicted by the (K-5) components of the remaining sites. The modified analysis yields 
the covariance matrix for each site which can be summarized by the block diagonal 
matrix: 

ΣN =    

[
 
 
 
 
 
 
 
𝜎1

2 𝜎1,2
2 𝜎1,3

2

𝜎2,1
2

𝜎3,1
2

𝜎2
2

𝜎3,2
2

𝜎2,3
2

𝜎3
2

⋯
0
0

  
0
0

   
0
0

0   0    0

⋮ ⋱ ⋮

0
0

  
0
0

   
0
0

0   0    0
⋯

𝜎𝐾−2
2 𝜎𝐾−2,𝐾−1

2

𝜎𝐾−1,𝐾−2
2 𝜎𝐾−1

2

𝜎𝐾−2,𝐾
2

𝜎𝐾−1,𝐾
2

𝜎𝐾,𝐾−2
2 𝜎𝐾,𝐾−1

2 𝜎𝐾
2 ]

 
 
 
 
 
 
 

                   (11) 

With each components’ variances of the residuals on the main diagonal and the covariances on 
the off diagonals. 

The application of covariance model (11) proved to be crucial for the transfer function 
estimation of some of our data sets. 
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Results 

The multivariate processing scheme was applied to data sets from the MT survey in the 
Westerwald in 2014. They were obtained at two stations (“ADU sued” and “ADU west”) 
which were approximately 350 m apart. At both sites 3 magnetic (Hx, Hy, Hz) and two 
electric field (Ex, Ey) components were recorded with a sampling rate of 16 kHz. The 
length of the time series was 15 minutes with noise occurring permanently during the 
observation period. Therefore the division into individual subintervals was omitted. 
Before the multivariate processing the data was bandpass filtered (LP: 6 kHz, HP: 10 
Hz). 

The Eigenvalues resulting from two different noise models are compared and 
presented in Fig. 2. Noise model 1 refers to the simple case (cf. equation (10)) and 
yields more than 2 dominant eigenvalues for the whole frequency range (Fig. 2(a)). We 
assume that the data is strongly influenced by coherent noise signals. The calculation 
of the data vector U (eq. (8)), using the two largest eigenvectors results in impedances 
which are highly contaminated, especially the phase curves (Fig. 3). Using the noise 
covariance matrix of model 2 (cf. equation (11)) produces two dominant eigenvalues 
clearly separated from the remaining eigenvalues (Fig. 2(b)). Therefore we assume 
that they represent the polarizations of the source field. Noise model 2 improves the 
impedances significantly (Fig. 4), also with respect to the standard robust processing 
procedure (Fig. 1). Nevertheless, the phase curves still decay steeply towards zero 
with decreasing frequency, which can be an indication for nearfield effects. 
Furthermore the polarization directions of the electric (E) and magnetic (B) fields were 
analyzed. They were calculated for each Fourier coefficient according to Fowler (1967) 
(eq. (12), shown for the electric field): 

Ψ = tan−1(
2∗ℜ(𝐸𝑥∗𝐸𝑦

∗)

|𝐸𝑥|2−|𝐸𝑦|
2 )                       (12) 

They have distinct preferential directions as well for the electric as for the magnetic 
field (Fig.5). As for natural source fields the polarization directions of the magnetic field 
are assumed to be randomly distributed, we suspect that the transfer functions related 
to the two dominant eigenvalues result from artificial source fields. This would implicate 
that the two dominant eigenvalues do not necessarily indicate homogeneity of the 
source field. The origin of the artificial signals is uncertain. They could be led back to 
the disadvantageous signal-to-noise ratio due to the AMT-dead-band between 1 kHz 
and 5 kHz. Another explanation could be an electric current channeling effect due to 
the steeply inclined shales at the near surface. This assumption could be an interesting 
target for a theoretical study.  
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Fig. 2: Eigenvalue analysis using two different Noise-Models. Dominant eigenvalues 1 and 2 
are marked in red and black. The calculation is based on data observed at stations “ADU sued” 
and “ADU west” from the measurement campaign in the Westerwald (2014). Top (a): Only 
incoherent parts of the noise. Bottom (b): Coherent noise allowed within one station. 
 

 

Fig. 3: Transfer functions for site “ADU sued”, shown in form of phase- and ρa- curves from 
Noise-Model 1. The shaded areas represent the 95%- confidence intervals. The multivariate 
processing was performed using the stations “ADU sued” and “ADU west” from the 2014- 
measurement campaign in the Westerwald. 
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Fig. 4: Transfer functions for site “ADU sued” as in Fig.3 using Noise-Model 2.  

 
 

 
Fig 5: Polarizations of the electric (top) and magnetic fields (bottom) from station “ADU sued” 
are showing strongly preferred directions. The polarization direction of the fields was calculated 
for each Fourier coefficient. The results are summarized in three rose plots with frequency 
ranges above 680 Hz and a cluster width of 4°.  
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Conclusions 

The presented multivariate processing scheme removes incoherent noise from the data 
and indicates the presence of coherent noise sources. The example from the 
Westerwald shows a significant improvement for the transfer function estimation 
compared to the standard robust single site processing. Here the choice of the noise 
model is of crucial importance. Using a noise covariance matrix which considers 
coherent noise signals between the field-components observed at one station is 
strongly recommended. However, two distinct dominant eigenvalues might also 
represent a high anthropogenic noise level in case of very weak natural signals. It is 
recommended to check the polarization directions of the magnetic fields for distinct 
preferred directions which might indicate strong influence from anthropogenic noise. In 
case of the data set from the Westerwald, the recorded signals were mostly referred to 
artificial source fields. As a consequence the interpretation of the data was restricted to 
frequencies above 1 kHz to fulfill the far field assumption. 
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