Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input

Urheber*innen
/persons/resource/bear

Xiong,  C.
2.3 Earth's Magnetic Field, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/hluehr

Lühr,  H.
2.3 Earth's Magnetic Field, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Fejer,  Bela G.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

1659888.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xiong, C., Lühr, H., Fejer, B. G. (2016): The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input. - Journal of Geophysical Research, 121, 6, 5653-5663.
https://doi.org/10.1002/2015JA022133


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1659888
Zusammenfassung
In this study we used observations from the CHAMP and ROCSAT-1 satellites to investigate the solar wind effects on the equatorial electrojet (EEJ), vertical plasma drift, and thermospheric zonal wind. We show that an abrupt increase in solar wind input has a significant effect on the low-latitude ionosphere-thermosphere system, which can last for more than 24 h. The disturbance EEJ and zonal wind are mainly westward for all local times and show most prominent responses during 07–12 and 00–06 magnetic local time (MLT), respectively. The equatorial disturbance electric field is mainly eastward at night (most prominent for 00–05 MLT) and westward at daytime with small amplitudes. In this study we show for the first time that the penetration electric field is little dependent on longitude at both the day and night sides, while the disturbance zonal wind is quite different at different longitude sectors, implying a significant longitudinal dependence of the ionospheric disturbance dynamo. Our result also indicates that the F region equatorial zonal electric field reacts faster than E region dynamo, to the enhanced solar wind input.