English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Compound dislocation models (CDMs) for volcano deformation analyses

Authors
/persons/resource/mehdi

Nikkhoo,  M.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/twalter

Walter,  T. R.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Lundgren,  Paul R.
External Organizations;

Prats-Iraola,  Pau
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

1985899.pdf
(Publisher version), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Nikkhoo, M., Walter, T. R., Lundgren, P. R., Prats-Iraola, P. (2017): Compound dislocation models (CDMs) for volcano deformation analyses. - Geophysical Journal International, 208, 2, 877-894.
https://doi.org/10.1093/gji/ggw427


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1985899
Abstract
Volcanic crises are often preceded and accompanied by volcano deformation caused by magmatic and hydrothermal processes. Fast and efficient model identification and parameter estimation techniques for various sources of deformation are crucial for process understanding, volcano hazard assessment and early warning purposes. As a simple model that can be a basis for rapid inversion techniques, we present a compound dislocation model (CDM) that is composed of three mutually orthogonal rectangular dislocations (RDs). We present new RD solutions, which are free of artefact singularities and that also possess full rotational degrees of freedom. The CDM can represent both planar intrusions in the near field and volumetric sources of inflation and deflation in the far field. Therefore, this source model can be applied to shallow dikes and sills, as well as to deep planar and equidimensional sources of any geometry, including oblate, prolate and other triaxial ellipsoidal shapes. In either case the sources may possess any arbitrary orientation in space. After systematically evaluating the CDM, we apply it to the co-eruptive displacements of the 2015 Calbuco eruption observed by the Sentinel-1A satellite in both ascending and descending orbits. The results show that the deformation source is a deflating vertical lens-shaped source at an approximate depth of 8 km centred beneath Calbuco volcano. The parameters of the optimal source model clearly show that it is significantly different from an isotropic point source or a single dislocation model. The Calbuco example reflects the convenience of using the CDM for a rapid interpretation of deformation data.