English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

GRACE AOD1B Product Release 06: Long-Term Consistency and the Treatment of Atmospheric Tides

Authors
/persons/resource/dobslaw

Dobslaw,  H.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/ingab

Bergmann-Wolf,  I.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dill

Dill,  R.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/poropat

Poropat,  L.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/flechtne

Flechtner,  Frank
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Flechtner, F. (2017): GRACE AOD1B Product Release 06: Long-Term Consistency and the Treatment of Atmospheric Tides, (Geophysical Research Abstracts ; Vol. 19, EGU2017-10136, 2017), General Assembly European Geosciences Union (Vienna 2017).


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_2215926
Abstract
The GRACE satellites orbiting the Earth at very low altitudes are affected by rapid changes in the Earth’s gravity field caused by mass redistribution in atmosphere and oceans. To avoid temporal aliasing of such high-frequency variability into the final monthly-mean gravity fields, those effects are typically modelled during the numerical orbit integration by appling the 6-hourly GRACE Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) a priori model. In preparation of the next GRACE gravity field re-processing currently performed by the GRACE Science Data System, a new version of AOD1B has been calculated. The data-set is based on 3-hourly surface pressure anomalies from ECMWF that have been mapped to a common reference orography by means of ECMWF’s mean sea-level pressure diagnostic. Atmospheric tides as well as the corresponding oceanic response at the S1, S2, S3, and L2 frequencies and its annual modulations have been fitted and removed in order to retain the non-tidal variability only. The data-set is expanded into spherical harmonics complete up to degree and order 180. In this contribution, we will demonstrate that AOD1B RL06 is now free from spurious jumps in the timeseries related to occasional changes in ECMWF’s operational numerical weather prediction system. We will also highlight the rationale for separating tidal signals from the AOD1B coefficients, and will finally discuss the current quality of the AOD1B forecasts that have been introduced very recently for GRACE quicklook or near-realtime applications.