Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Extreme hydrothermal conditions at an active plate-bounding fault

Urheber*innen

Sutherland,  Rupert
External Organizations;

Townend,  John
External Organizations;

Toy,  Virginia
External Organizations;

Upton,  Phaedra
External Organizations;

Coussens,  Jamie
External Organizations;

Allen,  Michael
External Organizations;

Baratin,  Laura-May
External Organizations;

Barth,  Nicolas
External Organizations;

Becroft,  Leeza
External Organizations;

/persons/resource/cboese

Boese,  C. M.
0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Boles,  Austin
External Organizations;

Boulton,  Carolyn
External Organizations;

Broderick,  Neil G. R.
External Organizations;

Janku-Capova,  Lucie
External Organizations;

Carpenter,  Brett M.
External Organizations;

Célérier,  Bernard
External Organizations;

Chamberlain,  Calum
External Organizations;

Cooper,  Alan
External Organizations;

Coutts,  Ashley
External Organizations;

Cox,  Simon
External Organizations;

Craw,  Lisa
External Organizations;

Doan,  Mai-Linh
External Organizations;

Eccles,  Jennifer
External Organizations;

Faulkner,  Dan
External Organizations;

Grieve,  Jason
External Organizations;

Grochowski,  Julia
External Organizations;

Gulley,  Anton
External Organizations;

Hartog,  Arthur
External Organizations;

Howarth,  Jamie
External Organizations;

Jacobs,  Katrina
External Organizations;

Jeppson,  Tamara
External Organizations;

Kato,  Naoki
External Organizations;

Keys,  Steven
External Organizations;

Kirilova,  Martina
External Organizations;

Kometani,  Yusuke
External Organizations;

Langridge,  Rob
External Organizations;

Lin,  Weiren
External Organizations;

Little,  Timothy
External Organizations;

Lukacs,  Adrienn
External Organizations;

Mallyon,  Deirdre
External Organizations;

Mariani,  Elisabetta
External Organizations;

Massiot,  Cécile
External Organizations;

Mathewson,  Loren
External Organizations;

Melosh,  Ben
External Organizations;

Menzies,  Catriona
External Organizations;

Moore,  Jo
External Organizations;

Morales,  Luiz
External Organizations;

Morgan,  Chance
External Organizations;

Mori,  Hiroshi
External Organizations;

Niemeijer,  Andre
External Organizations;

Nishikawa,  Osamu
External Organizations;

Prior,  David
External Organizations;

Sauer,  Katrina
External Organizations;

Savage,  Martha
External Organizations;

/persons/resource/aschleic

Schleicher,  Anja Maria
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Schmitt,  Douglas R.
External Organizations;

Shigematsu,  Norio
External Organizations;

Taylor-Offord,  Sam
External Organizations;

Teagle,  Damon
External Organizations;

Tobin,  Harold
External Organizations;

Valdez,  Robert
External Organizations;

Weaver,  Konrad
External Organizations;

/persons/resource/wiers

Wiersberg,  T.
6.4 Centre for Scientific Drilling, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Williams,  Jack
External Organizations;

Woodman,  Nick
External Organizations;

/persons/resource/weihei

Zimmer,  Martin
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sutherland, R., Townend, J., Toy, V., Upton, P., Coussens, J., Allen, M., Baratin, L.-M., Barth, N., Becroft, L., Boese, C. M., Boles, A., Boulton, C., Broderick, N. G. R., Janku-Capova, L., Carpenter, B. M., Célérier, B., Chamberlain, C., Cooper, A., Coutts, A., Cox, S., Craw, L., Doan, M.-L., Eccles, J., Faulkner, D., Grieve, J., Grochowski, J., Gulley, A., Hartog, A., Howarth, J., Jacobs, K., Jeppson, T., Kato, N., Keys, S., Kirilova, M., Kometani, Y., Langridge, R., Lin, W., Little, T., Lukacs, A., Mallyon, D., Mariani, E., Massiot, C., Mathewson, L., Melosh, B., Menzies, C., Moore, J., Morales, L., Morgan, C., Mori, H., Niemeijer, A., Nishikawa, O., Prior, D., Sauer, K., Savage, M., Schleicher, A. M., Schmitt, D. R., Shigematsu, N., Taylor-Offord, S., Teagle, D., Tobin, H., Valdez, R., Weaver, K., Wiersberg, T., Williams, J., Woodman, N., Zimmer, M. (2017): Extreme hydrothermal conditions at an active plate-bounding fault. - Nature, 546, 137-140.
https://doi.org/10.1038/nature22355


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_2245888
Zusammenfassung
Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes1. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre2, 3. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades4, 5. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.