Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Noise reduction in magnetotelluric time-series with a new signal–noise separation method and its application to a field experiment in the Saxonian Granulite Massif

Urheber*innen

Oettinger,  G.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Haak,  V.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Larsen,  J. C.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

229251.pdf
(Verlagsversion), 346KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Oettinger, G., Haak, V., Larsen, J. C. (2001): Noise reduction in magnetotelluric time-series with a new signal–noise separation method and its application to a field experiment in the Saxonian Granulite Massif. - Geophysical Journal International, 146, 3, 659-669.
https://doi.org/10.1046/j.1365-246X.2001.00473.x


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_229251
Zusammenfassung
In the presence of large and continuous correlated noise signals in measured electric and magnetic time-series, even robust remote-reference methods give erroneous estimates of MT transfer functions. If clean remote time-series are available, it is possible to separate MT and correlated noise signals and to derive unbiased MT transfer functions with the signal–noise separation method (SNS) (Larsen et al. 1996). In practice, the remote time series also contain some noise and the results can be improved by using a second remote data set and the SNS-remote-reference technique. We tested this method with data from the Saxonian Granulite Massif (SGM), Germany, where strong correlated noise signals were detected. We used remote data which were recorded 350 km away and, for short periods, data from sites of the profile across the SGM itself (distance 5 km). To show the efficiency of the signal–noise separation we first determined a ‘true’ MT transfer function from time-series with low noise level. In a second step we reproduced the results from processing very noisy data sections. We were able to determine useful MT transfer functions even when the MT variations have less than 10 per cent share of the measured variations. We identified dominant noise in the measured time-series from pipelines and trains.