English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations

Authors
/persons/resource/gbeyerle

Beyerle,  Georg
1.1 GPS/GALILEO Earth Observation, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/wickert

Wickert,  Jens
1.1 GPS/GALILEO Earth Observation, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/tschmidt

Schmidt,  Torsten
1.1 GPS/GALILEO Earth Observation, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Reigber,  C.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Beyerle, G., Wickert, J., Schmidt, T., Reigber, C. (2004): Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations. - Journal of Geophysical Research, 109, D01106.
https://doi.org/10.1029/2003JD003922


https://gfzpublic.gfz-potsdam.de/pubman/item/item_231096
Abstract
Validation studies of current GPS radio occultation experiments using meteorological analyses consistently report on a negative refractivity bias in the lower troposphere. End-to-end simulations including the GPS receiver's signal tracking process suggest that receiver-induced phase deviations contribute to this observed bias. We propose a heuristic retrieval algorithm based on the canonical transform and the sliding spectral technique, which seems less susceptible to tracking phase errors than the canonical transform method. The approach is described using simulated profiles and validated on the basis of 4221 CHAMP occultations recorded between 14 May and 10 June 2001. Compared to the canonical transform results, the heuristic method results in a significantly smaller tropospheric refractivity bias at low latitudes at the expense of a reduced vertical resolution.