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ABSTRACT

Arvidsson, R., Gregersen,S., Kuthánek,0. and Wahlstrom,R., 1991. Recent Kattegat earthquakes— evidenceof active
intraplate tectonicsin southernScandinavia.Phys.Earth Planet. Inter., 67: 275—287.

On June15, 1985, anearthquakewith a local magnitudeML(UPP) valueof 4.6 occurredin theKattegatareaclose to the
Swedish—Danishborder.It wasoneof thelargestearthquakesin Swedenand Denmarkduringthis century.Two moreevents
occurredin the same area: on April 1, 1986 (ML(UPP) = 4.2), and May 24, 1990 (ML(UPP) = 3.3). The derivedfocal
mechanismshave north—south trending P-axes which deviate by 45° from the NW-trending compressivestressfield
postulatedby the ridge-pushtheory. The mechanismscan, however, beexplainedby local neotectonism.Both thelocations
and focalmechanisms,strike-slip faultingon NW striking planes,correlatewell with thedominantneotectomcfeatureof the
region, theSkaldervikendepression.Seismicmomentsof the 1985, 1986 and 1990 eventswere3.6 x 1014 Nm, 1.4 x 1014 Nm
and 6.0 X 1012 Nm, respectively.The1985 earthquakehadan estimatedmaximum intensityof VII (modified Mercalli scale)
and wasfelt over anareawith a meanradiusof 180 km. The 1986 earthquakehad a maximumestimatedintensityof VI and a
radiusof perceptibility of 100 km. Despitethe recentlow seismicityof thearea,the earthquakesstudiedhereindicate the
potential for theoccurrenceof majorevents.This is supportedby thehistorical seismicity.

1. Infroduction Wood, 1988).An eventon October31, 1930(Bath,
1956) was locatedabout 150 km to the southof

The Tornquist zone which extends through the earthquakesstudiedhere(Fig. 1). Even though
southernSweden and the Kattegat marine area information basedon data from historical earth-
constitutesthe southernboundaryof the Baltic quakesis less reliablethan that from the periodof
Shield. This zone and the nearby and similarly modern seismographs,the 1759 and 1930 events
orientedAnholt fault andSkäldervikendepression indicatethe potentialof the areato generatelarger
(Fig. 1) are known as areasof low seismicactivity, earthquakes.

In spite of the generally low seismicity of On June 15, 1985, the largest earthquakein
southernSwedenand neighbouringpartsof Den- Swedenand Denmark in many decadesoccurred
mark (Fig. 2), a few larger earthquakeshaveoc- in Kattegat. The epicentrewas located slightly
curred within this region. An earthquakeon De- north of the Tornquist zone, close to the
cember21, 1759, magnitudearound5.5, is oneof Swedish—Danishborder.Largerearthquakestook
the largestearthquakesof the pasthalf millenium placenearbyon April 1, 1986, and May 24, 1990
(Wahlström,1990) to occur in the region, but its (Fig. 1). The threeeventswerewell recordedby a
location was likely north of the areawhere the number of seismographstations and provide a
earthquakeswe study here occurred (see e.g. large amount of new information on the seismo-
Husebye et al., 1978, Ambraseys, 1985, Muir tectonicsof the region,whichwaspreviouslybased
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Fig. 1. Major tectonic featuresin Kattegat.The starsdenoteepicentresof the 1930 (1), 1985 (2). 1986 (3) and1990 (4) earthquakes.
Thecities of Copenhagen(Denmark) andGoteborg(Sweden)aremarkedin black. Modified mapafter EUGENO-Sworking group
(1988).

largely on less reliabledata from historical events. ing in the NW direction (Fig. 1). The Tornquist
The main objectiveof this work is to analysethe zone,which constitutesthe southernborder zone
threequakesby making useof macroseismicand of the Baltic Shield, is a linear belt of complex
instrumentaldata for location, focal mechanism, structurewith a width varying from 20 km to 150
dynamic source parametersand correlationwith km (Pegrum,1984). The zonehasbeensubjected
regionalgeology, to tectonicdeformationsthrough both compres-

sional and extensionalregimesat various periods
beginning in the late Precambrian(Bergstrom,2. Tectonicsand seismicity . .1984) and continuing into the Tertiary (Pegrum,

Thethreeearthquakesinvestigatedin this study 1984). The Anholt fault runs parallel to the
occurredin Kattegat,close to the Tornquistzone Tornquist zone in southern Kattegat (Pegrum,
and the Anholt fault, two major regionaltectonic 1984) but diverges from this zone towards the
featuresin southernSwedenand Denmark,strik- north.
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Fig. 2. Epicentresof earthquakesin Fennoscandiafor theperiod1950—1989.DK = Denmark,N = Norway,S Sweden,SF= Finland.
Data plottedare thosegiven in the FENCAT catalogueof the SeismologicalInstitute, Universityof Helsinki. Thepresentauthors
madeno efforts to removepossibleexplosions,rockbursts,aftershocksetc. from the database.

Close to the Swedish coast and in the im- relatedto reactivationof moredeep-seatedfaults
mediatevicinity of the studiedearthquakes,i.e. to (Lind and Lykke-Andersen,1990). Following the
the northeast of the actual Tornquist zone, is southeasternstrike direction of this part of the
located one of Kattegat’s most pronounced depressiontowardsthe Swedishcoast, we reach
neotectonicfeatures,the Skäldervikendepression. the Hallandsâsenhorst where neotectonicmove-
Interpretations from seismic refraction profiles ments have been observed and described by
acrossthe depressionshow a gradualincreaseof Mörner (1969). In summary,a persistanceof de-
Quaternarydepositsfrom SW to NE, probably formation in the Kattegat area emphasizesthe
relatedto the subsidenceinitiated in theHolstein, potential for seismicenergyrelease.
during the later part of the Pleistocene,due to Generally speaking,the seismicity in Sweden
tensional stressesacting in the SW direction andDenmark showsa diffusegeographicdistribu-
(Lykke-Andersen,1987). Interpretationof recent tion of epicentresandsporadicoccurrenceof larger
refractionandreflection seismicinvestigationsin- shocks, which are typical features of intraplate
dicatenormal faulting in Quaternarydepositsin seismicity.The recentseismicactivity, as reported
thenorthwesternflank of the depression,probably by FENCAT (1990), is shown in Fig. 2. For
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Denmark and Swedenthe seismicitysuggeststhe TABLE 1
existenceof zonesof higheractivity in the seaoff Velocity model (Bath, 1979)usedin thelocationprocedure

the shoulderof northwesternDenmark,in south- Depth Wavevelocities
central Sweden,and along the northerncoastand (km)

in the northernmostpartsof Sweden.The seismic- p - S -

(kms ) (kms )ity near the area of the events studied is by
0—19 6.22 3.58

Scandinavian standards, rather moderate. The 19-38 6 64 3 69
Tornquistzone itself has not as yet beenconsid- 38— 7.84 4155
eredasan areaof larger seismicenergy release.It
seemsthat the zonedelineatesthe southernedge
of seismicity in Sweden. In Kattegat, the area locations, fault-plane solutions and spectra are
aroundthe Skäldervikendepressionis seismically shownin Fig. 4. All threeearthquakeshavebeen
the mostactive, located by using the HYPOINVERSE program

(Klein, 1978) whichmakesuseof the first P and/or
first Sonsets.Arrival-time readingswereweighted

3. Dataand hypocenfrelocation accordingto the recordquality. The programalso
makesuseof an automaticweighting with respect

The 1985, 1986and1990 earthquakeswerewell to the epicentraldistanceand the travel-time re-
recordedat epicentraldistancesof up to 15°.Data sidual. Altogether, 26 stationswereusedto locate
from analoganddigital stationsin Denmark,Fin- the 1985 event,21 stationsfor the 1986 eventand
land, Germany, Holland, Norway and Sweden 11 stations for the 1990 event. The respective
were used in the analysis.As an example,Fig. 3 distancerangesfor the stations usedin the loca-
shows analog plots of digital three-component, tions were 70—960 km, 90—950 km and 90—470
broad-bandseismogramsof the 1985 eventmade km. A two-layeredcrustal model (Table 1) was
at Uppsala.The locations of stations used in the applied for arrivals measured at Finnish,
determinationof P-polarity readings,earthquake Norwegianand Swedishstations. For stations in

N

1 minute I

Fig. 3. Analog displaysof digital three-componentbroad-bandseismogramsatUppsalafrom the 1985 earthquake.Theepicentral
distanceis 485 km. Arrivals of majorcrustal phasesareindicated.
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Fig. 4. Locationsof stationsusedin the analysis.The large circle shows the location of NORSAR stations.The NRS station is
operatedas an independentpart of NORSAR. The numbersdenote(1) the Uppsalastation (UPP) and (2) theVimmerby station
(VIM). The starindicatesthesite of the1985, 1986 and 1990 earthquakes.

Denmark,the crustalthicknesswasassumedto be (MM). In easternDenmark,the eventwas felt at
only 30 km (Bungumet al., 1980, EUGENO-S intensitiesup to V. Reportsindicate that in Tore-
working group, 1988). Deduced hypocentral kov (Sweden) and neighbouring areas external
parametersare given in Table2. walls crackedandwindows broke.The outer limit

A minor aftershockfield survey, including the (intensityIl—Ill) of the areaoverwhich the earth-
deploymentof three portableanalog stations on quakewasgenerallyperceptibleis well definedby
the Swedishcoastcloseto the epicentralarea,was the macroseismicsurveys conductedby the Seis-
startedtwo days after the 1985 earthquake.Dur- mological Department, Uppsala University and
ing several weeks of operation no certain the National Survey and Cadastre,Copenhagen.
aftershockswere recorded. Approximately 500 written reports of intensity

effectswere receivedin responseto questionnaires
sent to postmastersin the areaand to requestsin

4. Macroseismicinvestigation local newspapers.In addition, a thorough survey
of newspaperreports was carried out and local

4.1. The 1985 earthquake residentswere interviewed. MM intensitieswere
assignedto manysitesandthe resultingisoseismal

The 1985 earthquakewas felt overa largepart map is shownin Fig. 5.
of southernand southwesternSwedenat intensi- Figure 5 showsthat the areaof perceptibilityis
ties up to VI on the Modified Mercalli Scale somewhatelongatedin the north—southdirection.
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TABLE 2 the focal depth.Korhonen and Ahjos (1979) rec-

Sourceparameters ommendthe useof the valuesk = 4 and I~,= 2.5
for the Baltic Shield. We apply thesevaluesevenDate 15—06—1985 01—04—1986 24—05—1990

Origin time 004021.3 095655.0 095156.8 thoughthe earthquakestook place at the brim of
Latitude(°N) 56.56 56.58 56.56 the shield. The epicentrebeing offshore, we fur-
Longitude(°E) 12.25 12.30 12.06 ther assumeI~to be one degreehigher than the
Focaldepth(km) 11 10 17 maximumobservedintensity,i.e. we put I~= VII.
Magnitude With a meanradius of perceptibility of 180 km

(ML (UPP)) 4.6 4.2 3.3
Maximuminten- (seeabove),introducingtheseentriesinto eqn.(1)

sity(MM) VII VI — gives a focal depthof 13 km, in good agreement
Nodalplane 1: with the value (11 km) obtainedfrom the arrival-

strike (°) 312 337 328 time location(Table 2).
dip (°) 70 40 50 The maximumintensity and radiusof percept-
rake(°) 165 —154 176

Nodalplane2: ibility can also be usedto determinethe macro-
strike(°) 48 227 61 seismicmagnitude, MM(UPP), from the formula
dip (°) 76 74 87 of WahlströmandAhjos (1984)
rake(°) 21 —53 40

P-axis trend(°) 179 176 188 MM (UPP) = 0.38 + 1.14 log~0r~+ 0.23I~ (2)
plunge(°) 4 48 24

T-axis trend(°) 271 290 293 Introducingthevalues = 180km andI~= VII
plunge(°) 25 20 30

Seismic moment into eqn. (2) we obtain a value for MM(UPP) of
(Nm) 3.6x10’

4 1.4x10’4 6.0x1012 4.6, i.e. the sameas that for ML(UPP).
Cornerfrequency

(Hz) 2.0 1.7 2.9
Sourceradius(m) 670 79° 460 4.2. The 1986 earthquake
Averagedisloca-

tion (mm) 7.7 2.2 0.3
Stressdrop(MPa) 0.52 0.12 0.03 Theeventin 1986wasfelt in a limited regionof

12 12 1_________________________________________ southwesternSweden with maximum intensity
a N is number of stations used in the calculationsof the IV +. In eastern Denmark, the quake was felt

dynamic source parameters.For the 1985, 1986 and 1990 with maximum intensity V at several rather
earthquakesthe maximum horizontal errors in the locations scatteredlocations. The isoseismalmap (Fig. 6)
were 1.5, 2.7 and 3.2 km, respectively and corresponding
figures for theverticallocationerrorswere1.8, 8.5 and 3.8 km. was compiled from approximately300 question-

nairereplies, direct interviews and newspaperre-
ports. Many reports note swinging lamps and
tremblingbuildings. Figure 6 shows that the mac-
roseismicfield is well constrainedexceptin west

The area of perceptibility was approximately and northwestdirections.The areaof perceptibil-
100000 km2, correspondingto a meanradius of ity has ameanradiusof about100 km. As in the
about 180 km. By using the Blake—Shebalinfor- previouscase, the observedmacroseismicfield is
mula (seee.g.Karnik, 1969),we canestimatethe somewhatelongatedin the north—southdirection.
focal depthfrom the macroseismicdata. The for- By analogywith the asymmetryof the maximum
mula reads

intensityof the 1985 earthquakewe assumeI~=

1~— = k log
10[(r~+ h2)i~~2/h1 (1) for the 1986event.Equation(1) thenagaingives a

focal depthof 13 km, indicating the closeproxim-
where I~ is the maximum intensity, I~, is the ity of the two hypocentres.The valueof the mac-
intensity at the level of perceptibility, k is the roseismicmagnitudeMM (UPP) determinedusing
coefficient of attenuation, r~ is the radius of eqn. (2) is 4.0, which compareswith a value for
equivalentcircular areaof perceptibility and h is the instrumentalmagnitudeML(UPP) of 4.2.
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Fig. 5. Isoseismal map of the June 15, 1985 earthquake.T denotesTorekov,whereminor damagewasobserved,and B denotesBay of
Lahoim.Somecoastalpopulationcentresareindicatedby hatching.

4.3. The 1990earthquake earthquakes(Fig. 1; Table 2). Unfortunately, the
scarcityof macroseismicdatamakesit impossible

The 1990eventwasfelt in only a limited coastal to elaboratefurther on this discrepancy or to
areaof Sweden,north of the Bay of Laholm (for estimatethe focal depth and the macroseismic
location, seeFig. 5). The usual postal surveyre- magnitude.
sultedin about90 reportsof macroseismiceffects.
The maximum intensity IV was felt at several
rather scattered localities. The limited macro- 4.4. The 1759 earthquake

seismicinformation indicatesa shift of the macro-
seismicfield northwardswhencomparedwith the As a comparison, the 1759 earthquakethat
fields of the 1985 and 1986 earthquakes.This occurredin northernKattegat(seeabove)hadan
differenceis not consistentwith the proximity of estimatedmaximumintensityof VIII anda radius
instrumental epicentral locations of all three of perceptibility of approximately500 km (Muir
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Fig. 6. lsoseismalmap of theApril 1, 1986 earthquake.

Wood,1988).Again, the felt areawaselongatedin shock,22 for the 1986 shockand 11 for the 1990
the north—southdirection although for this large shockwere finally used.Althoughdatafor the two
macroseismicarea there is no clear limitation largest events, in 1985 and 1986, were scarceto
westward,in the North Sea. the southof the epicentres,thereis a reasonably

good azimuthalcoverageby high-qualityrecords.
For the 1990 event, polarity readingswere availa-

5. Focal mechanisms ble only for azimuthsrangingfrom NW clockwise
to SE. For all events,measurementsfrom stations

Focal mechanismsfor the three earthquakes at epicentraldistancesof 130—170km wereomitted
werederivedfrom the polaritiesof first P-onsets, becauseof difficulties with discriminationbetween
When searchingfor polarities,we madeuse only Pg andP,~phases.Focalmechanismswereacquired
of data that we readourselves.Seismogramsfrom by employinga modified version of the program
almostall availablestationsin Denmark,Finland, FOCMEC (Snokeet al., 1984) which is basedon
Norway and Sweden,togetherwith a number of an algorithmwhich searchesthe focal spherefor
recordsfrom stations in Germany and Holland, acceptablesolutions. The presentmodification
wereexamined.In total, 33 polaritiesfor the 1985 makesuse of weighteddata, with full weight for
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impulsive and half weight for emergentpolarity programand the algorithm used,see Wahlström
readings.The programyields a family of focal- (1987).
planesolutionswith minimizedweight of polarity The fault-plane solution for the 1985 earth-
errors. For details on the modified FOCMEC quakeshowspredominantlystrike-slip movement

JUNE 15, 1985

APRIL 1, 1986.

MAY 24, 1990.

~3c
Fig. 7. Lower-hemisphereprojections of fault-plane solutionsfrom FOCMECfor the three investigatedearthquakesshowing
distributionsof nodalplanes(left), compressional(P) andtensional(T) axes,andnull vectors(B) (middle),and polaritydata(right).
+ full-weighted compressiveP-polarity; + half-weighted compressive P-polarity; c~full-weighted dilatational P-polarity; -:half-
weighted dilatational P-polarity.
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on steeplydipping nodal planesstriking NW or records was 83 Hz for the Uppsalabroad-band
SW (Fig. 7; Table2). Forthe 1986 earthquake,the station, 60 Hz for the SKI-stations (operatedby
focal-mechanismsolution is similar to that for the the NationalDefenseResearchInstitute, Sweden)
1985 event. The NW-oriented nodal plane mdi- and40 Hz for the NORESSarray(NRS; operated
cates strike-slip faulting with a minor normal- by NORSARNorway). Seismogramsfrom analog
faulting component(Fig. 7; Table 2). The focal stationswerephotographicallyenlargedfive times
mechanismfor the 1990 eventresemblesthosefor and electronicallydigitized on a Tektronix 4958
the other two earthquakes.Of 12 solutions(Fig. 7; digitizing table.The digitized dataweredetrended
Table 2), 11 give a similar mechanismto that in and interpolatedto obtain equal sampling inter-
the two previouscases,with the NW planeshow- vals of 0.025 s by making use of the piecewise
ing strike-slipwith a minor thrustcomponent.The continuous cubic polynomial (Wiggins, 1976).
remainingsolution gives a normal-faultingstyle. Fourier transformationof the digital datayields

As can be seenin Fig. 7 and Table 2, the trace amplitude spectra and correction for the
approximatelynorth—southorientationof the de- instrumentresponseyieldsground-motionspectra.
duced P-axes is consistent for all three events Examplesof ground amplitude spectraare shown
studied. However, only the 1985 shock has an in Fig. 8.
almosthorizontal P-axis.Also the east—westorien- The seismicmoment, M0, is computedfrom the
tation of the T-axes is similar for all threeshocks. low-frequency spectral level, ~, according to
Even thoughall mechanismsshow predominantly (Streetet al., 1975, Herrmannand Kijko, 1983)
strike-slip faulting, thereare differencesbetween
individual events. For example, the polarity at 4irp/3

3R
0( R/R~)~ for R <R0

VIM (Fig. 4) for the 1985 and 1986 events is (3a)
oppositeto that for the 1990 event. M0 = 1/2

The main tectonicfeaturesin Kattegat,like the 4irp/3 R0( R/R0) ~ for R ~ R0
Tornquist zone, the Anholt fault and the (3b)
Skäldervikendepression,strike NW (Fig. 1). This
is observeddirectly from lineamentsand faults in wherep is the density(2.7 g cm 3), /3 is the shear
the area. The NW direction is further supported wave velocity (3.6 km s~),R0 is the reference
by interpretationsof seismicand geological find- distance(100 km) and R is the epicentral dis-
ings made by Lykke-Andersen (1987). Thus, it tance.The assignedvalue of R0 reflects the dis-
seemsreasonableto assumethat the earthquakes tanceoverwhichLg-wavesare believedto change
studied occurred along the NW-striking nodal from body-wave type (spherical spreading) at
planesobtainedin the focal-mechanismsolutions shorterdistancesto mainly surface-wavetype (cy-
(Fig. 7). lindrical spreading)at longer distances(Streetet

al., 1975). To determine ~ and the corner
frequencyfR the calculated spectra,plotted as

6. Dynamicsourceparameters log—log diagrams, were approximated by two
straight lines. A horizontalline wasdrawnby eye

Dynamic source parameters,such as seismic throughthe long-periodportionof eachspectrum.
moment, source radius, average dislocationand Another line was drawn through the high
stressdrop, were estimated from Lg-wave dis- frequency portion. fR was taken to be the
placementspectradeducedfrom vertical-compo- frequencyat which the two lines intersect.When
nentanalogand digital seismograms.The number ~ is determinedfrom vertical-componentLg re-
of stationsusedin the analysisof eachof the three cordsHerrmannandKijko (1983) recommendthe
eventscan be found in Table 2. The window useof the logarithmic mean, in the low frequency
length of the Lg-wave usedfor spectralestimates range,multiplied by a factor of two, This proce-
variedfrom 7 s to 35 s dependingon thelength of dure has been followed in the presentanalysis.
the Lg-coda. The sampling rate of the digital Theanelasticattenuationof thepropagationpaths
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CR2 i~ The source-spectrumcorner frequency, f0, is

_______________ _______________ extrapolatedfrom the observedcornerfrequency,

~ I + - - ~ I fR’ via an empirical relationship derived for the
~~ Baltic Shield (Kim et al., 1989). It takes into

(~I = accountthe attenuationof the higher frequencies
I 1I~~J andreads

.0 -2 - .0 -2 1 log(f0)=log(fR)—Rk (4)

3 3 - where k (km’) is the attenuationfactor, which

decreaseswith increasingevent size (see Kim et
.3 .4 ~ - .S -~ al,, 1989).

-I - -i The sourceradius, r, averagedislocation, D0,
..og Fre .~cy (HzI Log Freauency (Hz) and stress drop, ~o, were computed from the

formulae(Aki, 1966,Brune,1970,1971)

CR2 1986 NRS 1990 r = 2.34f3/(2irf0) (5)

_____________ o ____________ D0=M0/(1.tirr
2) (6)

~1 4, &r=M
0(7/16)(1/r

3) (7)
19 ——--~~~ whereji is the shearmodulus(3.3 X 1010 N m’).

.0 -2 1L~ ~ -2 1 The sourceparametersobtained are listed in
Table2. Note the low stressdrop deducedfor all

~i!l ~ 1 threeeventsstudied.For the 1985 and1986 events
-, 1 ~ the valuesparallel thoseof Kulhâneket al. (1981,

1983) andKim et a!. (1989)for otherearthquakes
.0 —4 I II lOll I I 111111 .0 —4 I I 111111 I I 1111

-0 -~ 0 1 in Fennoscandia.The 1990 event provided only
oneuseful spectrumand the deviationof thevalue

Log Frequency (Hz) Log Freq~iency(Hz)
- - - of the stressdrop from the spectralscalingrela-Fig. 8. Ground amplitude displacementspectraof the 1985

earthquake recorded by vertical-component broad-band sta- tions for Fennoscandia(Kim et a!., 1989) is thus
tion at Uppsala(upperleft; cf. Fig. 3). Spectradeducedfrom uncertain.
records made at NORESS (NRS) are displayed for the
1985,1986and 1990 eventsat the upper right, lower left and
lower right, respectively. Dashedlines show the linear ap-
proximations of the short- and long-period portions of the 7. Discussion
spectra. The intersection of the two lines determines the
corner-frequency(arrow). No effortshave been madeto keep

- A glanceat Fig. 7 suggeststhat the focal mech-
thehigh-frequencyslopeequal to —2. anismsof the three earthquakesstudiedhere are

all predominantly of a strike-slip style on the
preferredNW-orientedplane, although the 1985
and 1990 shocks havea small thrustcomponent,

is not very well known and is consequentlynot whereasthe 1986 shockhasa small normal com-
takeninto accountin the estimationof ~o. How- ponent.Thesimilarity betweenthefirst two events
ever, this simplification has only an insignificant is emphasizedwhen comparing the isoseismal
influence at moderatedistances(about 500 km), maps(Figs. 5 and 6). Taking into consideration
frequenciesless than 1 Hz and a quality factor of also the proximity of the threeearthquakes,it is
about 1000(seee.g. Kim et a!., 1989).Thereis no reasonableto assumethat theyweregeneratedby
significantdifferencebetweenthe spectralparam- a similar stress field and took place on the same
etersobtainedfrom analogor digital stations. fault system.
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