English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Lithospheric structure of the Aegean obtained from P and S receiver functions

Authors
/persons/resource/foroug

Sodoudi,  Forough
2.4 Seismology, 2.0 Physics of the Earth, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
GEOFON, Deutsches GeoForschungsZentrum;

/persons/resource/kind

Kind,  Rainer
2.4 Seismology, 2.0 Physics of the Earth, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
GEOFON, Deutsches GeoForschungsZentrum;

Hatzfeld,  D.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Priestley,  K.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

/persons/resource/hanka

Hanka,  Winfried
2.4 Seismology, 2.0 Physics of the Earth, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
GEOFON, Deutsches GeoForschungsZentrum;

Wylegalla,  K.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Stavrakakis,  G.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Vafidis,  A.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Harjes,  H.-P.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

/persons/resource/bohnhoff

Bohnhoff,  Marco
3.2 Geomechanics and Rheology, 3.0 Geodynamics and Geomaterials, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
GEOFON, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., Stavrakakis, G., Vafidis, A., Harjes, H.-P., Bohnhoff, M. (2006): Lithospheric structure of the Aegean obtained from P and S receiver functions. - Journal of Geophysical Research, 111, B12307, 1-23.
https://doi.org/10.1029/2005JB003932


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_234985
Abstract
Combined P and S receiver functions from seismograms of teleseismic events recorded at 65 temporary and permanent stations in the Aegean region are used to map the geometry of the subducted African and the overriding Aegean plates. We image the Moho of the subducting African plate at depths ranging from 40 km beneath southern Crete and the western Peloponnesus to 160 km beneath the volcanic arc and 220 km beneath northern Greece. However, the dip of the Moho of the subducting African plate is shallower beneath the Peloponnesus than beneath Crete and Rhodes and flattens out beneath the northern Aegean. Observed P-to-S conversions at stations located in the forearc indicate a reversed velocity contrast at the Moho boundary of the Aegean plate, whereas this boundary is observed as a normal velocity contrast by the S-to-P conversions. Our modeling suggests that the presence of a large amount of serpentinite (more than 30%) in the forearc mantle wedge, which generally occurs in the subduction zones, may be the reason for the reverse sign of the P-to-S conversion coefficient. Moho depths for the Aegean plate show that the southern part of the Aegean (crustal thickness of 20–22 km) has been strongly influenced by extension, while the northern Aegean Sea, which at present undergoes the highest crustal deformation, shows a relatively thicker crust (25–28 km). This may imply a recent initiation of the present kinematics in the Aegean. Western Greece (crustal thickness of 32–40 km) is unaffected by the recent extension but underwent crustal thickening during the Hellenides Mountains building event. The depths of the Aegean Moho beneath the margin of the Peloponnesus and Crete (25–28 and 25–33 km, respectively) show that these areas are also likely to be affected by the Aegean extension, even though the Cyclades (crustal thickness of 26–30 km) were not significantly involved in this episode. The Aegean lithosphere-asthenosphere boundary (LAB) mapped with S receiver functions is about 150 km deep beneath mainland Greece, whereas the LAB of the subducted African plate dips from 100 km beneath Crete and the southern Aegean Sea to about 225 km under the volcanic arc. This implies a thickness of 60–65 km for the subducted African lithosphere, suggesting that the Aegean lithosphere was not significantly affected by the extensional process associated with the exhumation of metamorphic core complexes in the Cyclades.