English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period

Authors
/persons/resource/brau

Brauer,  Achim
5.2 Climate Dynamics and Landscape Evolution, 5.0 Earth Surface Processes, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Haug,  G. H.
External Organizations;

/persons/resource/dulski

Dulski,  Peter
5.2 Climate Dynamics and Landscape Evolution, 5.0 Earth Surface Processes, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Sigman,  D. M.
External Organizations;

/persons/resource/neg

Negendank,  Jörg F.W.
5.2 Climate Dynamics and Landscape Evolution, 5.0 Earth Surface Processes, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., Negendank, J. F. (2008): An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. - Nature Geoscience, 1, 8, 520-523.
https://doi.org/10.1038/ngeo263


https://gfzpublic.gfz-potsdam.de/pubman/item/item_237262
Abstract
The Younger Dryas cooling 12,700 years ago is one of the most abrupt climate changes observed in Northern Hemisphere palaeoclimate records. Annually laminated lake sediments are ideally suited to record the dynamics of such abrupt changes, as the seasonal deposition responds immediately to climate, and the varve counts provide an accurate estimate of the timing of the change. Here, we present sub-annual records of varve microfacies and geochemistry from Lake Meerfelder Maar in western Germany, providing one of the best dated records of this climate transition5. Our data indicate an abrupt increase in storminess during the autumn to spring seasons, occurring from one year to the next at 12,679 yr BP, broadly coincident with other changes in this region. We suggest that this shift in wind strength represents an abrupt change in the North Atlantic westerlies towards a stronger and more zonal jet. Changes in meridional overturning circulation alone cannot fully explain the changes in European climate; we suggest the observed wind shift provides the mechanism for the strong temporal link between North Atlantic Ocean overturning circulation and European climate during deglaciation.