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Abstract. We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gra-

diometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decom-

position (LSQR). We modify the original algorithm for space-geodetic applications: Firstly, we investigate how

convergence can be accelerated by means of both subspace andblock-diagonal preconditioning. The efficiency

of the latter dominates if the design matrix exhibits block-dominant structure. Secondly, we address Tikhonov-

Phillips regularization in general. Thirdly, we demonstrate an effective implementation of the algorithm in a

high-performance computing environment. In this context,an important issue is to avoid the twofold compu-

tation of the design matrix in each iteration. The computational platform is a 64-processor shared-memory

supercomputer. The runtime results prove the successful parallelization of the LSQR solver. The numerical

examples are chosen in view of the forthcoming satellite mission GOCE (Gravity field and steady-state Ocean

Circulation Explorer). The closed-loop scenario covers one month of simulated data with5 s sampling. We focus

exclusively on the analysis of radial components of satellite accelerations and gravity gradients. Our extensions

to the basic algorithm enable the method to be competitive with well-established inversion strategies in satellite

geodesy, such as conjugate gradient methods or the brute-force approach. In its current development stage, the

LSQR method appears ready to deal with real-data applications.
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1 Introduction

Nowadays, geodetic scientists are in the favorable situation to perform gravity field recovery by near-globally

distributed satellite-based observations. The CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity

Recovery and Climate Experiment) missions have been operational for a few years and still continuously pro-

vide gravity data. These missions will be complemented withthe GOCE (Gravity field and steady-state Ocean

Circulation Explorer) satellite to be launched towards theend of 2007.

Modelling of both the static terrestrial gravity field and its temporal variations facilitate advanced research

in a multitude of geoscientific applications, such as the study of the dynamics of the Earth’s lithosphere and

upper mantle, global sea level variations, ocean circulation and ocean mass and heat transport and ice mass

balance (ESA 1999). However, solving for the unknown parameters of the gravitational potential model, i.e.,

the coefficients of the corresponding harmonic series expansion, in a least-squares (LS) adjustment procedure

is a challenging task. Millions of observations have to be processed to resolve up to 100,000 unknown gravity

field parameters.

Paige and Saunders (1982a;b) published the LSQR algorithm.LSQR is an acronym for a special method to

solve linear (ill-conditioned) LS problems using QR decomposition. Whereas the LSQR method is frequently

applied in geophysics, in seismic tomography in particular(Van der Sluis and Van der Vorst 1987, Nolet 1993,

Yao et al. 1999), it has found only little use in geodetic applications. Actually, large LS problems in geodesy are

mostly treated by conjugate gradient (CG) methods (Hestenes and Stiefel 1952), leading to the CGLS procedure.

Application of CGLS in terms of satellite gravity field recovery can be found in, e.g., Schuh (1996), Pail and

Plank (2002) and Ditmar et al. (2003a). Geodetic problems are treated with LSQR in, e.g., Kusche and Mayer-

Gürr (2001) and Baur and Austen (2005).

Both LSQR and CGLS are Krylov subspace-based iterative methods designed to solve linear systems of

equations by means of successive approximations. They share approximately the same storage and work re-

quirement demands and, mathematically, they generate the same sequence of approximations to the solution

in exact arithmetic. Within the scope of this contribution,we focus exclusively on the LSQR algorithm, which
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has been claimed to outperform CG methods with regard to stability of the iterative process on the grounds of

theoretical arguments (Paige and Saunders 1982a, Björck 1996, Jacobsen et al. 2003).

Since memory requirements are small for these solvers, theycan be implemented on an ordinary personal

computer (PC) if runtime criteria are disregarded. However, to solve large-scale problems within a reasonable

time-frame, parallel implementation is indispensable. This allows one to devote more computation time to tuning

and optimization efforts, which generally involve multiple solutions of the individual LS problem. Here, we

present the LSQR algorithm in its parallelized version using OpenMP (Chandra et al. 2001). The computational

platform for numerical calculations is a 64-processor cc-NUMA (cache-coherent non-uniform memory access)

system supported by the Center for Computing and NetworkingServices (SARA) in Amsterdam.

In terms of LSQR tuning, we perform preconditioning and regularization by tailored adoption to satellite-

based gravity field recovery. Preconditioning can be realized in different ways to accelerate the convergence

rate. In satellite geodesy, it is well known that an ideal satellite configuration, characterized by a circular and

repeating orbit with fixed inclination, leads to a strictly block-diagonal normal matrix (Colombo 1984). In

reality, deviations from the ideal conditions have to be taken into account. Nevertheless, the real normal matrix

typically shows block-dominant structure. Thus, its block-diagonal approximation constitutes an appropriate

preconditioner.

Normal matrix preconditioning with LSQR is investigated inBaur and Austen (2005). It turns out that the

twofold computation of the design matrix in each iteration is unavoidable. This fact is of minor relevance for

solving small linear systems of equations. However, in satellite gravity recovery, the number of observations,

i.e., the dimension of the design matrix row-space, amountsto several millions, causing the assembly of the

design matrix to become the most time consuming part of the algorithm. Here, we reformulate block-diagonal

normal matrix preconditioning to the level of the design matrix. The new formulation circumvents the need to

calculate the design matrix twice per iteration and thus considerably reduces the computational effort.

An alternative for LSQR preconditioning has been proposed by Jacobsen et al. (2003), denoted as subspace

preconditioning. The basic idea is to split the solution space into two subspaces of different size. The splitting

decomposes the original problem into two subproblems. The small subspace problem is solved by direct inver-

sion, whereas the larger one is treated by LSQR with the smallsubspace solution projected to the larger space

as a preconditioner. Finally, the partial estimates compose the overall solution vector.

Subspace preconditioning does not rely on a special block-dominant structure of the LS problem. Thus,

it is generally applicable to any linear minimization problem. Because of the analogy to multi-level methods,
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subspace preconditioning using two subspaces is denoted astwo-level method. Xu (1997) showed that multi-

grid methods fit into the framework of multi-level techniques. Application of these methods in satellite gravity

recovery have been investigated in, e.g., Kusche (2001) andKeller (2002).

Boxhammer (2006) and Boxhammer and Schuh (2006) present a very efficient method for the combination

of high-resolution and low-resolution data sets in a commonLS procedure. The numbering scheme developed,

allows tailored preconditioning of systems of equations resulting from observation configurations providing

different types of data.

Regularization is of fundamental importance when treatingill-posed LS problems. To stabilize the inversion

procedure, Tikhonov-Phillips regularization (Phillips 1962, Tikhonov 1963) has been proven to perform very

well for space-geodetic applications (Kusche and Klees 2002, Ditmar et al. 2003b, Schmidt et al. 2007). Paige

and Saunders (1982a;b) formulated a regularized LSQR procedure. However, they only refer to regularization

with the identity matrix, known as ordinary ridge regression. We adopt the method for general Tikhonov-Phillips

regularization by transformation of the general regularization problem to its standard form (Björck 1996). More-

over, we investigate the combination of preconditioning and regularization.

The paper is organized as follows. The next section briefly reviews the original LSQR algorithm, including an

outline concerning decorrelation and variance-covariance propagation issues. Section 3 treats the reformulation

of the block-diagonal normal matrix preconditioner to the level of the design matrix. Subspace precondition-

ing is addressed in Sect. 4. Section 5 introduces Tikhonov-Phillips regularization to the algorithms presented

earlier. The methodology for GOCE gravity field recovery is presented in Sect. 6. In Sect. 7, we demonstrate

numerical examples in the context of a GOCE-like closed-loop simulation study. Moreover, we focus on aspects

concerning implementation and parallelization. Finally,Sect. 8 summarizes the conclusions of this contribution.

2 The basic LSQR method

A linear (or linearized) inverse problem can be defined as that of solving the system

Ax = y + r. (1)

The design matrixA relates the vector of the unknown parametersx to the vector of observationsy andr is

a vector of data errors. Solving Eq. (1) forx by minimizing theL2-norm of the residual vector results in the

linear LS problem

min
x

‖Ax − y‖2. (2)
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Fig. 1. Flowchart of the LSQR method

Equation (2) is the starting point for LSQR representation.According to Fig. 1, the algorithm works as

follows:

(i) Lanczos lower bidiagonalization procedure (Golub et al. 1965, Paige and Saunders 1982a) transforms the

original minimization problem to the simpler bidiagonal one

min
ak

‖Bkak − β1e1‖2. (3)

This transformation is achieved by decomposing the design matrix A (n × m) in an iterative manner into two

orthogonal matricesUk+1 = [u1, . . . ,uk+1] andVk = [v1, . . . ,vk], of dimension (n×(k+1)) and (m×k), as

well as a lower bidiagonal matrixBk of dimension ((k+1)×k). Thus, the relationshipA ≈ Ak = Uk+1BkV
T
k

holds.

The bidiagonalization process reads

βk+1uk+1 = Avk − αkuk, (4)

αk+1vk+1 = ATuk+1 − βk+1vk (5)
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with the initial conditionsβ1u1 = y and α1v1 = AT u1. The scalarsαk, βk ≥ 0 are chosen subject to

‖uk‖ = ‖vk‖ = 1. The valuesαk constitute the main diagonal ofBk andβk the first lower sub-diagonal.k

denotes the number of iterations and fork = m the matrixA is completely decomposed (Ak=m = A), but

usuallyk ≪ m will be sufficient.β1 = ‖y‖ corresponds to the norm of the observation vectory ande1 is the

first column of a unit matrix of appropriate dimension.

(ii) The solution of the bidiagonal subproblem in Eq. (3),

ak = R−1
k Qk(β1e1), (6)

is generated by a series of Givens rotations (Björck 1996) through which the bidiagonal matrixBk is decom-

posed in an orthogonal matrixQk and an upper bidiagonal matrixRk.

(iii) The kth iterate of the original parameter vector is determined fromEq. (6), the solution of the subproblem,

and the matrixVk subject to

xk = Vkak. (7)

Note that the column vectors ofVk span ak-dimensional Krylov space.

To evaluate Eq. (7), it would be necessary to store all vectors (v1, . . . ,vk). Paige and Saunders (1982a)

present a simple recursion relation to computexk only from the last iteratexk−1 and the present column vector

vk. The iterative process is terminated if thekth iterate meets a suitably chosen truncation criterion as will be

discussed in Sect. 7.2.

For LSQR, the twofold computation of the design matrixA according to Eqs. (4) and (5) can be avoided

by introducing the temporary variablehk with hk =
∑

j A(j, :)uj
k+1. After calling thejth row of A, denoted

asA(j, :), thejth loading to the productAT uk+1 consists of thejth row itself as well as thejth element of the

(unnormalized) vectoruk+1, i.e.,uj
k+1, which is already available from Eq. (4).

Pseudocode 1 presents a guideline for LSQR implementation.In addition, Pseudocode 2 shows an imple-

mentation of the Givens rotation.

2.1 Decorrelation

The LS problem formulation in Eq. (2) implies simplified stochastic properties of the observation vectory, i.e.,

uncorrelated and equally accurate observations. In its general representation, the minimization problem reads

min
x

‖Ax − y‖2
Σ−1 (8)
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Pseudocode 1:The LSQR method to solve

min ‖r‖2 = minx ‖Ax − y‖2

Initialization

1. β1 = ‖y‖, u1 = y

β1

2. v1 = AT u1, α1 = ‖v1‖, v1 = v1

α1

3. α1 = α1

β1

4. φ̄1 = β1

5. ρ̄1 = α1

First Iteration: k = 1

6. u2 = Av1 − α1u1, β2 = ‖u2‖, u2 = u2

β2

7. h1 = AT β2u2

8. [c1, s1, ρ1] = givrot(ρ̄1, β2)

9. φ1 = c1φ̄1

10. φ̄2 = −s1φ̄1

11.q1 = 1

ρ1
v1

12.x1 = φ1q1

13.v2 = h1 − β2
2v1, α2 = ‖v2‖, v2 = v2

α2

14.α2 = α2

β2

Further iterations: for k = 2 : m

15.uk+1 = Avk − αkuk, βk+1 = ‖uk+1‖, uk+1 =
uk+1

βk+1

16.hk = AT βk+1uk+1

17.θk−1 = sk−1αk

18. ρ̄k = ck−1αk

19. [ck, sk, ρk] = givrot(ρ̄k, βk+1)

20.φk = ckφ̄k

21. φ̄k+1 = −skφ̄k

22.qk = 1

ρk

(vk − θk−1qk−1)

23.xk = xk−1 + φkqk

24.vk+1 = hk − β2
k+1vk, αk+1 = ‖vk+1‖, vk+1 =

vk+1

αk+1

25.αk+1 =
αk+1

βk+1

Pseudocode 2:Givens rotation[c, s, ρ] = givrot(ρ̄, β)

if β = 0.0

a.c = 1.0, s = 0.0, ρ = ρ̄

else if|β| > |ρ̄|
a. t = ρ̄/β, q =

√
1.0 + t2

b. s = 1.0/q, c = ts, ρ = qβ

else

a. t = β/ρ̄, q =
√

1.0 + t2

b. c = 1.0/q, s = tc, ρ = qρ̄
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with the observation variance-covariance informationΣ = σ2P−1. It is the product of the variance of unit

weightσ2 and the inverse positive definite weight matrixP. In the presence of colored noise,P−1 is a full matrix

or at least typically shows band structure of Toeplitz type.The width of the band depends on the correlation

length.

In terms of a noise whitening process, Schuh (1996) presented a method to transfer the correlated LS problem

in Eq. (8) to the uncorrelated formulation in Eq. (2). It is based on the decomposition ofΣ−1 subject to

Σ−1 ≈ FTF. (9)

The matrixF applied toy yields the decorrelated vector of (pseudo-)observationsyD = Fy. Thus, in signal

processing terminology,F is a linear filter. Under the assumption of stationary noise and regularly distributed

data, the filterF gets Toeplitz structure and it is implemented by means of an ARMA (auto-regressive moving

average) process.

For consistency reasons, according to Eq. (1), the filter hasto be applied to both the columns of the design

matrix A and the residual vectorr as well, yieldingAD = FA andrD = Fr. This results in the decorrelated

system of equations

ADx = yD + rD (10)

and thus, the decorrelated minimization problem

min
x

‖ADx − yD‖2. (11)

The decorrelation process transforms the correlated LS problem (Eq. 11) to the uncorrelated formulation in

Eq. (2). For this reason, throughout this contribution, we restrict ourselves to uncorrelated LS problem formu-

lations.

In our numerical applications (Sect. 7), we implemented decorrelation as described in Schuh (1996). After

the computation of a new row ofA, the filter is applied to each column of it as well as to the observations. An

alternative approach has been proposed by Klees et al. (2003), based on a fast method to solve a Toeplitz system

of linear equations.

2.2 Variance-covariance propagation

The variance-covariance matrixΣ(x̂) of the parameter estimate is of utmost importance for the further use of

the LS result in terms of error propagation. Unfortunately,in contrast to direct LS solvers, iterative methods do

not provide this information. Here we give an outline of two possibilities for evaluatingΣ(x̂) with LSQR.
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The first one has been derived by Yao et al. (1999) and is specifically related to the algorithm itself. It is

based on the explicit representation of the general inverseof the design matrix yielding

Σk(x̂) = σ̂2Vk(BT
k Bk)−1VT

k . (12)

whereΣk(x̂) is thekth approximation to the “true” variance-covariance matrix subject toΣk=m(x̂) = Σ(x̂).

As the derivation of Eq. (12) is straightforward, we skip thedetails here. The interested reader is advised to

consult the cited literature.

From the implementation point of view, the computation ofΣk(x̂) only requires marginal additional effort.

The matricesVk andBk have to be stored and the productVk(BT
k Bk)−1VT

k has to be evaluated. However,

the extended memory requirement for matrix storage contradicts the philosophy of LSQR. Thus, dependent on

the computation platform,Σk(x̂) evaluation is restricted to some maximum value fork.

On the other hand, the goodness of the approximation predominantly depends on the number of iterations.

Moreover, as shown in Yao et al. (1999),x̂ andΣk(x̂) do not necessarily exhibit the same convergence behavior,

but in general̂x converges faster than the variance-covariance matrix. Allin all, this demonstrates the necessity

to investigate the method in detail for practical applications.

An alternative and very effective approach to estimate the variance-covariance matrix has been published

recently by Alkhatib and Schuh (2007). As well as the Gibbs sampler method (Gundlich et al. 2003), it is based

on Monte Carlo integration techniques. However, in contrast to the Gibbs sampler, it is particularly suited for

iterative solvers.

3 Block-diagonal preconditioning

The convergence behavior of an iterative solver is predominantly determined by the spreading of the singular

values of Eq. (1) or, equivalently, the condition number of the normal matrix. Preconditioning is applied to

improve the condition of the normal equation system, and thus to increase the speed of convergence of the

iterative solver.

In order to outline the methodology of preconditioning on the level of the design matrix, we briefly review

preconditioning on the level of the normal matrix as presented in Baur and Austen (2005).

3.1 Normal matrix preconditioning: PCN-LSQR

The solution of Eq. (2) in the sense of theL2-norm is explicitly given as

(AT A)x̂ = ATy. (13)
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Introducing the normal matrixN = (AT A) and the right-hand side vectorb = AT y leads to

Nx̂ = b, (14)

the normal equation system of a linear Gauss-Markov model. Inversion of Eq. (14) yields the best linear unbiased

estimate (BLUE) of the unknown parameter vector

x̂ = N−1b. (15)

Let Nbd denote the block-diagonal approximation of the true normalmatrix. If N itself shows block-

dominant structure, thenNbd represents an appropriate preconditioner forN in terms of

NN−1
bd

∼= I. (16)

Multiplying the unit matrixI = N−1
bdNbd in between the normal matrix and the unknown parameter vector on

the left-hand side of Eq. (14) results in

NN−1
bdNbdx̂ = b. (17)

Let N∗ = NN−1
bd denote the modified normal matrix and̂x∗ = Nbdx̂ the new parameter vector, then

Eq. (17) reads

N∗x̂∗ = b. (18)

Thus, insertingN∗ andb for A andy into the LSQR procedure means solving the uniquely determined problem

in Eq. (18) instead of the overdetermined one in Eq. (1). The original parameter vector is subsequently obtained

by

x̂ = N−1
bd x̂∗. (19)

The benefit of solving Eq. (18) instead of Eq. (14) is a better condition number ofN∗ opposed toN, resulting

in a higher convergence rate and a reduced number of necessary iterationsk.

However, the procedure of preconditioning on the level of the normal matrix entails two significant draw-

backs: (i) The design matrix needs to be accumulated twice per iteration and (ii) normal matrix preconditioning

involves solving a uniquely determined problem, whereas LSQR is essentially designed to tackle overdeter-

mined ones. Therefore, preconditioning on the level of the design matrix is presented next in order to overcome

(i) and (ii).
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3.2 Design matrix preconditioning: PCA-LSQR

The principle for design matrix preconditioning is similarto the procedure above. The preconditioner itself is

derived from the Cholesky factorization of the block-diagonal approximationNbd of the true normal matrixN

subject to

Nbd = LT
NLN. (20)

Expanding the left-hand side of Eq. (1) with the unit matrixI = L−1
N LN yields

AL−1
N LNx = y + r. (21)

Further, with the substitutionsAN = AL−1
N andz = LNx, Eq. (21) becomes

ANz = y + r. (22)

Thus,AN andy enter the LSQR procedure to solve the overdetermined LS problem resulting from Eq. (22).

The initial vector of unknowns is computed from

x̂ = L−1
N ẑ. (23)

Again, the twofold evaluation of the design matrix per iteration can be avoided. WithAN = AL−1
N , the

bidiagonalization process (refer to Eqs. (4) and (5)) becomes

βk+1uk+1 = AL−1
N vk − αkuk, (24)

αk+1vk+1 = (L−1
N )TAT uk+1 − βk+1vk. (25)

For practical use, we applyL−1
N tovk before callingA. Then the temporary vector update is similar as described

in Sect. 2. Finally, apply(L−1
N )T to hk. Note that the numerical costs for assemblingNbd andLN have to be

taken into account.

4 Subspace preconditioning: SP-LSQR

Preconditioning in terms of subspace splitting is treated in Hanke and Vogel (1999). Its special application to

LSQR as outlined in this section is based as illustrated in Jacobsen et al. (2003).

The basic idea is to split the solution spaceR
m into two subspacesWs

1 ∈ R
m andW

m−s
2 ∈ R

m with s ≪ m

andW
s
1 ∪ W

m−s
2 = R

m. This kind of subspace preconditioning is also known as the two-level method (Hanke

and Vogel 1999), i.e., a special case of multi-level methods.
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When assuming the columns of the matrixW1 ∈ R
m×s spanning the subspaceWs

1 and analogously the

columns of the matrixW2 ∈ R
m×(m−s) spanning the subspaceW

m−s
2 , then the overall solutionx ∈ R

m of

the minimization problem in Eq. (2) can be formulated as the linear combination

x = W1w1 + W2w2. (26)

where the unknown parameter vectorsw1 andw2 denote the partial solutions according to the solution space

decomposition. Inserting Eq. (26) into Eq. (2) yields

min
w1,w2

∥

∥

∥

∥

A [W1 W2]







w1

w2






− y

∥

∥

∥

∥

2

. (27)

Next, we perform QR factorization of the productAW1. The factorization can be written as

AW1 = QR̂ = [Y Z]







R

0






= YR. (28)

For an overdetermined system(n > m), R̂ (n × s) can be split in the upper triangular matrixR(s × s) and

the zero matrix0((n − s) × s) subject toR̂ =
[

RT 0T
]T

. Splitting the square orthogonal matrixQ(n × n)

accordingly, i.e.,Q = [Y Z] with Y(n × s) andZ(n × (n − s)), results in Eq. (28).

Pre-multiplying Eq. (27) byQT = [Y Z]
T yields

min
w1,w2

∥

∥

∥

∥







YTAW1 YT AW2

ZTAW1 ZT AW2













w1

w2






−







YT y

ZTy







∥

∥

∥

∥

2

. (29)

The lower minimization problem in Eq. (29),

min
w2

‖ZT AW2w2 − ZT y‖2 = min
p

‖ZTAp − ZT y‖2, (30)

is dependent onw2 only (orp with p = W2w2), asZTAW1 = 0 holds. The latter is a direct outcome of the

QR decomposition in Eq. (28).

The upper minimization problem in Eq. (29),

min
w1,w2

‖Rw1 + YT AW2w2 − YT y‖2, (31)

is dependent on bothw1 andw2. In Eq. (31),AW1 = YR and thusYT AW1 = R is considered which again

results from Eq. (28). Ifs ≪ m holds, Eq. (31) denotes the small subspace problem, which can be solved easily

by direct inversion applied to

Rw1 = YT (y − AW2w2) = YT (y − Ap) . (32)
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Thus, the main computational effort occurs for solving the minimization problem in Eq. (30), which is

performed here by LSQR. The critical part of the algorithm isthe QR decomposition in Eq. (28). Even when

storing and applying the orthogonal matrixQ, or Z, by means of successive Householder transformations, the

effort for the decomposition itself as well as the application of Q in each iteration increases very fast when

expanding the subspace dimension ofW1. Thus, only ifs ≪ m holds, the effort remains considerably small.

Subspace preconditioning modifies the original LSQR algorithm concerning the Lanzcos bidiagonalization

process. Actually, the minimization problem in Eq. (2) is manipulated by replacingA by ZT A andy by ZT y.

The latter substitution is not problematic. The transformation of the observation vector can be performed in the

initialization step of the algorithm. However, the manipulation of the design matrix induces the bidiagonalization

process to be modified according to

βk+1uk+1 = ZT Avk − αkuk, (33)

αk+1vk+1 = ATZuk+1 − βk+1vk. (34)

Unfortunately, the principle to avoid the assembly of the design matrix twice per iteration can not be trans-

ferred to SP-LSQR (subspace preconditioned LSQR). For calculating the elementuj
k+1, the whole matrixA

has to be processed due to the multiplication ofZT from the left-hand side in Eq. (33). Thus, the temporary

vectorhk can not be updated as outlined in Sect. 2 by calling thejth row A(j, :) only once each iteration. This

is the major drawback of the method assuming the setup ofA is a costly process.

To demonstrate the application of subspace preconditioning in gravity field recovery, we consider the sim-

plest case of subspace splitting, i.e.,W1 =
[

I(s×s) 0(s×(m−s))

]T
andW2 =

[

0(s×s) I(s×(m−s))

]T
. Depending

on the sequence of the unknowns assembled in the parameter vector x (by degree or by order), a low-degree,

respectively low-order, solution is obtained by direct inversion of the small system.

The subspace solver is used to accelerate the iterative process of the large system. Note that the subspace

method can be additionally accelerated by transformation of the unknown parameter vector in terms of block-

diagonal preconditioning as illustrated in Sect. 3. This requires the algorithm to be adapted accordingly and is

not addressed in this contribution.

For our application of subspace preconditioning in satellite geodesy, we have chosen the subspaceW1 to

constitute the solution space of the long-wavelength part of the gravitational spectrum. This is only one of

other different possibilities, but in general it seems to bereasonable to shift a certain frequency domain of the

gravitational spectrum to the subspaceW1.
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5 Regularization of LSQR, PCA-LSQR and SP-LSQR

Regularization is a commonly used tool to overcome the instability of ill-posed inversion problems. Ill-posedness

means that the solution vectorx̂ does not continuously depend on the given datay (Phillips 1962, Tikhonov

1963). Different types of regularization have been appliedfor various applications such as the method of

Tikhonov-Phillips, truncated singular value decomposition (Hansen 1987) or iterative regularization methods.

As already mentioned, here we exclusively focus on Tikhonov-Phillips regularization.

5.1 Regularization of LSQR: R-LSQR

Extending Eq. (2) in terms of the auxiliary condition of minimizing the functionalminx ‖x‖2, the regularized

LSQR minimization problem according to Paige and Saunders (1982b) reads

min
x

{

‖Ax− y‖2 + κ‖x‖2
}

= min
x

∥

∥

∥

∥







A

√
κI






x −







y

0







∥

∥

∥

∥

2

(35)

with the regularization parameterκ and the regularization matrixK = I.

Equation (35) is known as regularization in standard form. The relative balance of the terms‖Ax − y‖

and‖x‖ depends on the size ofκ. If the regularization parameter is chosen too small, Eq. (35) is close to the

ill-conditioned minimization problem. On the other hand, if κ is too large, the solution of Eq. (35) might be far

away from the problem to be solved originally. Thus, an appropriate balancing is of fundamental importance.

As the optimal regularization parameterκopt is usually not known a priori, it is advantageous to solve

the linear LS problem for various regularization parameters κi; i = 1, 2, ..., imax. The optimal one is chosen

according to some quality criterion of the estimatex̂κi
, cf., e.g., Hanke and Hansen (1993), Kusche and Klees

(2002) or Ditmar et al. (2003b). In fact, the determination of κopt is a delicate topic.

Due to the extended minimization problem in Eq. (35),Bk,κi
changes from a bidiagonal to a tridiagonal

matrix. The secondary lower sub-diagonal throughout contains the value
√

κi. Only the QR decomposition

is affected by regularization but not the Lanczos step, where ak,κi
andxk,κi

is derived. Thus, the additional

computational effort constitutesimax Givens rotations in each iteration, which is marginal even for a large

number of regularization parameters.

For regularization with matrixK 6= I, referred to as regularization in general form, it is convenient to

transform the extended minimization problem

min
x

{

‖Ax− y‖2 + κ‖x‖2
K

}

(36)
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to standard form. With Eq. (36), the extended normal equation system (cf. Eq. (13)) reads

(AT A + κK)x̂κ = ATy. (37)

Introducing the Cholesky factorization of the quadratic matrix K with K = LT
KLK, applying(L−1

K )T from

the left-hand side to Eq. (37) and substituting the unknown parameter vector̂xκ according tôcκ = LKx̂κ yields

((L−1
K )T ATAL−1

K + κI)ĉκ = (L−1
K )T ATy. (38)

Finally, the substitutionAK = AL−1
K results in

min
c

∥

∥

∥

∥







AK

√
κI






c −







y

0







∥

∥

∥

∥

2

. (39)

Equation (38) transforms the general regularization problem (Eq. 36) to its standard form in Eq. (39). Thus,

the properties of Eq. (35) solving forx hold for Eq. (39) when solving forc. An estimate of the original

parameter vector is obtained by back substitution subject to x̂κ = L−1
K ĉκ. Note that for Tikhonov-Phillips

regularization,K typically is a diagonal matrix. Thus,LK = LT
K holds withLii =

√
Kii.

5.2 Regularization of PCA-LSQR: PCAR-LSQR

Two possibilities for the combination of block-diagonal preconditioning as outlined in Sect. 3.2 and regulariza-

tion seem to be straightforward, i.e., (i) applying preconditioning to the regularized problem, or (ii) applying

regularization to the preconditioned problem. In fact, thetwo approaches are equivalent as will be shown next.

Extending Eq. (38) by preconditioning subject toI = L−1
N̄

LN̄ yields

((L−1
K )T ATAL−1

K + κI)L−1
N̄

LN̄ĉκ = (L−1
K )T ATy (40)

with LN̄ = LNL−1
K . Usingĉκ = LKx̂κ, Eq. (40) can be rewritten as

((L−1
K )T ATAL−1

K + κI)LKL−1
N LNx̂κ = (L−1

K )T ATy. (41)

Equation (41) represents the preconditioned and regularized normal equation system. In order to transform it to

standard form, the substitution̂dκ = LKL−1
N LNx̂κ = LKx̂κ = ĉκ seems to be straightforward. But then we

return to Eq. (38), i.e., preconditioning vanishes.

The alternative option is to introduce the auxiliary parameter vector according tôd∗
κ = LNx̂κ. To ensure

the symmetry of the normal matrix, in this case Eq. (41) has tobe pre-multiplied with(LKL−1
N )T . With AN =

AL−1
N , this option leads to

(AT
NAN + κ(L−1

N )TKL−1
N )d̂∗

κ = AT
Ny (42)
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or equivalently to

min
d∗

∥

∥

∥

∥


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∥

2

. (43)

Equation (43) coincides with the one that is directly obtained by applying regularization to the precondi-

tioned problem. The drawback of this approach is that it results in a minimization problem with regularization

in general form. Thus, in the current implementation, the combination of general-form regularization and block-

diagonal preconditioning can not be realized. Further investigations are necessary to overcome the combination

difficulties.

5.3 Regularization of SP-LSQR: SPR-LSQR

Regularization can be added without any problems to the SP-LSQR procedure. Expanding Eq. (35) in terms of

regularization in general form yields

min
x

∥

∥

∥

∥
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κK
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
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
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∥
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2

. (44)

With the substitutions̃A =
[

AT
√

κKT
]T

andỹ =
[

yT 0T
]T

, Eq. (44) results in the stacked minimization

problem (Jacobsen et al. 2003)

min
x

‖Ãx − ỹ‖2 (45)

which can be solved according to the achievements in Sect. 4,in particular Eqs. (26) to (32). All that has to be

considered is replacingA by Ã andy by ỹ.

In Eq. (45), the leading dimension of the stacked arrays is(n + c) with n the row-space dimension ofA and

c the number of additional conditions due to regularization.Thus, the leading dimension of the design matrix

is enlarged compared to the original formulation. Ifc = m holds, i.e.,c equal to the leading dimension ofx,

regularization is performed for the whole unknown parameter vector.

6 Methodology for gravity field recovery

In the context of gravity field recovery, we focus on the GOCE mission principle (ESA 1999). The positions

of the spacecraft are deduced from GPS (Global Positioning System) measurements between the low-orbiting

GOCE spacecraft (≈ 250 km) and the high-flying GPS satellites (≈ 20, 000km). This observation configura-

tion is referred to as high-low satellite-to-satellite tracking (hl-SST). It is restricted to recover long-wavelength
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features only. For high-resolution geopotential determination, in the framework of the GOCE mission, satellite

gravity gradiometry (SGG) will be realized for the first time.

The combination of both techniques leads to the best possible GOCE-only gravity field solution (ESA 1999).

It can be be performed by superposition of the observation systems of equations in a common LS adjustment. For

proper weighting of different observation groups, variance component estimation using Monte-Carlo techniques

has been proven to perform very well in a simulation environment (Kusche 2003). We investigate the hl-SST

and SGG observation scenario separately from each other, toprovide several examples for the use of the LSQR

method in satellite geodesy. The achievements made within the scope of these case studies can be transferred to

comparable space-geodetic experiments.

Gravitational field modeling in terms of a spherical harmonic series expansion of the potential function

V (λ, ϕ, r) is given with Eq. (46). Both the attenuation factor(R/r)l+1 and the4π-normalized surface spheri-

cal harmonics̄Yl,m(λ, ϕ), cf. Eq. (47), depend on the spherical coordinates(λ, ϕ, r). Therein,λ denotes East

longitude,ϕ latitude andr the radial distance from the origin. Further,P̄l,m(sin ϕ) are the fully normalized

associated Legendre functions of the first kind.

V (λ, ϕ, r) =
GM

R

∞
∑

l=0

l
∑

m=−l

(

R

r

)l+1

Ȳl,m(λ, ϕ) v̄l,m (46)

Ȳl,m(λ, ϕ) =











P̄l,m(sin ϕ) cosmλ 0 ≤ m ≤ l

P̄l,|m|(sin ϕ) sin |m|λ −l ≤ m < 0

(47)

In theory, an infinite series is necessary to fully characterize the geopotential, but practically the double sum

in Eq. (46) is truncated at a maximum degreeL determined by parameters of the satellite mission and the desired

resolution of the field. Both the geocentric constantGM and the major semi-axisR of a reference ellipsoid are

fixed. The series coefficients̄vl,m are unknown parameters. Their estimation can be performed best by globally

distributed observation data such as provided by GOCE.

The orbit of the spacecraft is tracked continuously by GPS. Considering the satellite free-falling around

the Earth, the hl-SST observation equation can be formulated in a simple way. According to Eq. (48), the

acceleration of the satellite (reduced by all disturbing effects such as tidal forces) is equal to the terrestrial

attraction, i.e., the gradient of the Earth’s gravitational potential:

d2

dt2
x (λ(t), ϕ(t), r(t)) = ẍ(t) = eiai = ∇ V (λ, ϕ, r). (48)
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whereai denote the components of the gravitational acceleration vector. They refer to the orthonormal base

vectorsei with e1 ande2 in direction tangential to the parameter lines of the sphereande3 directed radially

outwards.

The functional model in Eq. (48) is referred to as the acceleration approach. It balances kinematic orbit infor-

mation to gravitational features. In particular, numerical differentiation techniques provide satellite accelerations

ẍ(t) derived from the observed positionsx(t). The approach has been successfully applied to real CHAMP data

analysis in Reubelt et al. (2005). Moreover, Baur and Grafarend (2006) investigate hl-SST analysis of simulated

GOCE data.

SGG observations correspond to second-order derivatives of the geopotential in Eq. (46). They are by far

more sensitive to short-wavelength features than gravitational accelerations (first-order derivatives). Application

of the gradient operator to Eq. (48) yields

∇∇V (λ, ϕ, r) = ei ⊗ ejVij . (49)

Equation (49) results in an analytical expression of the gravitational tensor in terms of the gravity field model

parameters̄vl,m. Each single componentVij , referred to as gravity gradient (GG), constitutes one typeof obser-

vation. Exemplary for the radial componentV33

V33 =
GM

R3

∞
∑

l=0

l
∑

m=−l

(

R

r

)l+3

(l + 2)(l + 1)Ȳl,m(λ, ϕ)v̄l,m (50)

holds.

Commonly, SGG analysis is performed by analyzing individual GGs, in particular the main diagonal ele-

ments of the gravitational tensor. Details can be found in, e.g., Schuh (1996), Rummel et al. (1993), Klees et al.

(2000), Sneeuw (2000) and Pail and Plank (2002). A completely different approach is based on the rotational

invariants of the gravitational tensor (Rummel 1986). The benefit of this method arises from its independence of

the gradiometer instrument orientation in space. The invariants approach has been adopted to the GOCE mission

scenario in Baur and Grafarend (2006) and Baur et al. (submitted).

From the numerical point of view, Eqs. (48) and (49) constitute, in each case, a linear system of equations

with the unknown parameter vectorx = [v̄2,0, ..., v̄L,0, v̄2,1, ..., v̄L,L, v̄2,−1, ..., v̄L,−L]T , the vector of obser-

vationsy = [a1(t1), a2(t1), a3(t1), ..., a3(tn)]T , or y = [V11(t1), V12(t1), ..., V33(t1), ..., V33(tn)]T , and the

design matrixA describing the functional relationship between them. Notethat in satellite geodesy, typically

the number of observationsn is by far larger than the number of unknownsm to be resolved, i.e.,n ≫ m holds

yielding an overdetermined system.
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7 Numerical examples

To demonstrate the feasibility and benefit of LSQR preconditioning and regularization, numerical simulation

studies based on a 30-days GOCE-like synthetic test data setwith a sampling rate of∆t = 5 s is investigated.

The simulation is performed up to degree and orderL = 300 using the EGM96 gravity field model (Lemoine et

al. 1998). The synthetic data set is a result of the IAG Special Commission 7 (SC7) activities (Ilk et al. 2003).

Additionally, for hl-SST analysis, the satellite positioncoordinatesxi; i = 1, 2, 3 have been contaminated with

a normal distributed random noise sequenceεxi
∼ N(0, σxi

) with standard deviationσxi
= 1 cm.

Colored SGG noise is generated by a power spectral density model with a flat part of 3–4 mE Hz−
1
2 in the

measurement bandwidth (MBW) ranging from 5 mHz to 0.1 Hz (ESA1999). Although the noise characteristic

of the GOCE gradiometer has been updated due to several changes of the mission design (such as the abolition of

the field emission electronic propulsion thrusters), we stick here to the original stochastic properties. For noisy

SGG data analysis, decorrelation is applied as outlined in Sect. 2.1. Since the gradiometer reference frame axes

of data simulation are defined according to “along-track”, “cross-track” and “quasi-radial”, we transform the

functional model in Eq. (49) into the orbit frame.

Within this contribution, we restrict the attention on the radial hl-SST observationa3 and the quasi-radial

SGG measurement, denoted asV q
33. Moreover, the reference gravity field model OSU86F (Rapp and Cruz 1986)

complete to full analysis degree and orderL has been reduced from the data in advance. Thus, we estimate

corrections to a set of reference parameters rather than absolute values. The choice of the reference model is not

critical at all in our closed-loop simulation study.

We perform the calculations on a 64-processor cc-NUMA supercomputer using OpenMP for parallelization.

The platform is part of an SGI Altix 3700 system, consisting of 416 Intel Itanium21.3 GHz CPUs, 832 GByte

of memory and 2.8 TByte of scratch disk space. The total peak performance of the system is2.2 TFLOPS.

For LSQR implementation, the main effort occurs for design matrix assembly. Since each observation, i.e.,

each row ofA, can be treated separately, the parallelization of the algorithm is realized by distributing the

number of observations to the individual CPUs. Thus, the parallel region covers the successive design matrix

decomposition which is split (uniformly) among the processing elements used. Moreover, in case of PCA-

LSQR, the computation of the design matrix preconditioner is performed in parallel.
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Table 1. WRMS values (cm) of (quasi-)geoid height differences (computed on a global1◦ grid) with respect to EGM96

neglecting low-order coefficients:L = 100 : mthres = 10; L = 200 : mthres = 20; L = 300 : mthres = 30

Type of ResolutionL Considered Noise-free Noisy

observation resolution data data

hl-SST 100 75 4.6 38.3

SGG 100 100 5.9 10.2

200 200 2.0 6.1

300 230 1.1 · 10−2 13.3

7.1 Analysis results

In a first study, we perform both hl-SST and SGG data analysis of noise-free observation data without using

regularization. Thus, the model parameter estimates are affected by spectral leakage (and to a minor part by

aliasing) effects only. Their influence increases as the maximum degreeL decreases, since the unmodeled

signal content of the data is mapped to the coefficients resolved. This behavior is proved by the third column in

Table 1.

Table 1 presents latitude-weighted root mean square (WRMS)values of (quasi-)geoid height differences

with respect to EGM96, approximated by

hi = R

L
∑

l=2

l
∑

m=0

Ȳl,m(λ, ϕ)∆v̄l,m. (51)

The∆v̄l,m indicate the residual geopotential coefficients subject to∆v̄l,m = ˆ̄vl,m + v̄OSU86F
l,m − v̄EGM96

l,m and

ˆ̄vl,m the elements of̂x. Further

WRMSk
h =

√

√

√

√

∑N

i=1((h
k
i )2 cosϕi)

∑N

i=1 cosϕi

(52)

holds for the evaluation of the WRMS withN being the number of evaluation points considered, preferably

distributed on a regular grid of, e.g.,1◦.

Dependent on the satellite mission design, it is reasonableto leave out polar areas for the evaluation of

Eq. (52). In particular, the GOCE satellite ground-track will have a coverage of|ϕGOCE| ≈ 83◦. Figure 2

presents the characteristic of (quasi-)geoid height errors (RMS values per circle of latitude) of the parameter

estimate relative to the EGM96 model. The RMS values increase with increasing latitude. For|ϕ| > ϕGOCE

the values are not representative at all.

The low-order coefficients reflect the properties in the polar regions. Thus, instead of evaluating Eq. (52)

around a spherical belt only, alternatively the spherical harmonics with orderm < mthres can be neglected

for WRMSk
h computation. Van Gelderen and Koop (1997) deduced a degree-dependent rule of thumb for the
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non-resolvable maximal ordermthres subject tomthres ≈ l | π
2 − I | with I as the inclination of the satellite

orbit. For the computation in Table 1, we neglect low ordersmthres = 10 (L = 100), mthres = 20 (L = 200)

andmthres = 30 (L = 300) respectively.
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Fig. 2. RMS values (m) of (quasi-)geoid height errors per circle of latitude (SGG,L = 200). Solid line:mthres = 20,

dashed line:mthres = 0

Next we analyze noisy data, again without incorporating regularization. Figures 3 and 4 illustrate degree

error RMS (DE-RMS) values of the coefficient estimates. One month of observation data allows hl-SST analysis

approximately up to degree and order 80, whereas≈ 230 is reached for SGG. This agrees with what is currently

expected for the GOCE mission (Pail 2005). Note that the DE-RMS curves are truncated at the points where they

cross the EGM96 signal curve. These points we refer to as the “considered resolution”. For WRMS computation

in the fourth column of Table 1, only the coefficients up to the“considered resolution” have been taken into

account. Higher degrees can not be resolved.

Fig. 3. Analysis results of noisy hl-SST data in terms of DE-RMS values,L = 100
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Fig. 4. Analysis results of noisy SGG data in terms of DE-RMS values,L = 300

7.2 Truncation criterion

With regard to an appropriate stopping rule for the iterative LSQR process, different truncation criteria can be

applied, dependent on the philosophy for truncation. Mathematical stopping rules (Paige and Saunders 1982a)

are mainly based on the magnitude of the residual vector‖r̂k‖ = ‖Ax̂k−y‖, which is provided in each iteration

k thus requiring no additional computational costs. The process is truncated if‖r̂k‖, or a functional of it, falls

below a pre-defined threshold. Thus, the termination is related to mathematical properties of the method itself,

but can not serve any physical interpretation to the problemtreated. A completely different idea offers the cross

validation (CV) functional, an approach that is addressed in Björck (1996), Kusche and Mayer-Gürr (2001) and

Ditmar et al. (2003b).

We have chosen a truncation criterion apart from the methodsabove. It is related to the physical correspon-

dence of the estimate in terms of a gravity field functional. In particular, process termination is coupled to the

difference∆WRMSk,k−1
h = WRMSk

h − WRMSk−1
h , which is evaluated at the end of each iterationk. If the

value for∆WRMSk,k−1
h falls below the pre-defined truncation thresholdδ, i.e., if ∆WRMSk,k−1

h < δ holds,

the final estimate is found. However, due to the non-monotonic convergence of the LSQR method (cf. Fig. 5),

we recommend to continue the process for a few iterations beyond to ensure having really reached the truncation

thresholdδ.

7.3 Block-diagonal preconditioning

Table 2 presents runtime results for the basic LSQR implementation using eight CPUs. The truncation threshold

is fixed conservatively toδ = 0.25 mm. The values displayed in Table 2 correspond to the number of iterations

necessary to finally reachδ, i.e., the runtime for additional iterations beyond the threshold is not considered.

For hl-SST analysis withL = 100, convergence is achieved after 53 iterations. Approximately the same num-



23

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Number of Iterations

∆ 
W

R
M

S
 (

m
m

)

Fig. 5. Convergence behavior of LSQR (SGG,L = 100)

Table 2.Runtime results LSQR (8 CPUs)

Type of Resolution Number of Wall time

observation L iterations (h)

hl-SST 100 53 1.2

SGG 100 56 1.1

200 180 13.4

Table 3.Runtime results PCA-LSQR (8 CPUs)

Type of Resolution Number of Wall time Wall time

observation L iterations total (h) L−1

N (h)

hl-SST 100 6 0.4 0.2

SGG 100 8 0.4 0.2

200 14 2.6 1.4

250 19 5.1 2.6

300 32 14.4 4.8

ber holds for the equivalent SGG analysis. However, the number of iterations increases to 180 for a spectral

resolution ofL = 200.

Block-diagonal preconditioning according to Sect. 3 has been implemented and successfully parallelized.

Runtime decreases significantly since the number of iterations drops dramatically compared to the basic algo-

rithm. According to Table 3, forL = 100 convergence is achieved within less than 10 iterations. Runtime is

approximately one third compared to Table 2. RegardingL = 200, the number of iterations drops from 180 to

14. Runtime is reduced to19.4 % compared to basic LSQR.

Note that the computational costs within each iteration arecomparable for LSQR and PCA-LSQR. The ad-

ditional operations of applyingL−1
N and(L−1

N )T to a vector in the PCA-LSQR case have no significant runtime

effect. However, the setup of the (inverse) preconditioneritself is a quite costly process. Table 3 shows the part

for L−1
N calculation opposite to the total runtime. Roughly spoken,half the computing time is required forL−1

N
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Table 4.Runtime results PCA-LSQR (SGG,L = 200)

Number CPUs Iterations Wall time (h) Speed-up

1 14 19.68 1

8 14 2.59 7.6

16 14 1.38 14.3

32 14 0.72 27.3

64 14 0.41 48.0

Table 5.Runtime results SP-LSQR (hl-SST,L = 100, 1 CPU)

LSP Number Wall time Wall time

iterations total (h) QR decomposition (h)

- (LSQR) 53 9.9 -

20 33 7.0 0.2

50 17 11.4 6.8

computation. This can be improved by the approximate calculation of the block-diagonal preconditioner, but is

not considered here.

Moreover, exemplary for all scenarios, Table 4 displays runtime scaling dependent on the number of pro-

cessing units. The speed-upSp is defined as the ratio between serial runtimeT1 and the runtime achieved using

p processors, denoted asTp. Thus,

Sp =
T1CPU

Tp CPUs
(53)

holds. In the optimal case, the speed-up is equal top.

This is not realizable in practical applications due to communication and synchronization reasons. However,

the speed-up value is an appropriate quality measure of the parallel implementation. According to Table 4, for

our implementation, the speed-up is largely close to the number of CPUs used. This demonstrates the efficient

and powerful parallelization of the algorithm.

7.4 Subspace preconditioning

Table 5 summarizes runtime results for SP-LSQR. The subspaceW1 has been chosen to constitute the solution

space of the long-wavelength part of the gravitational spectrum with maximal resolutionLSP. With increasing

subspace dimension, the number of iterations drops accordingly. Note that if the subspace dimension is zero,

SP-LSQR equals the LSQR method from the methodological point of view.

On the other hand, the effort for preconditioning itself, inparticular the QR decomposition according to

Eq. (28), increases with increasingLSP. For this reason, the wall time measurements in Table 5 do notscale
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Table 6.Runtime results SP-LSQR (hl-SST,L = 100, LSP = 50)

Number Wall time Speed-up Wall time

CPUs 1 iteration (s) 1 iteration QR decomp. (h)

1 904 1 6.8

16 428 2.1 4.2

with the number of iterations. Even a deceleration can be observed forLSP = 50 compared to the LSQR version

without preconditioning. For the former, more than half theruntime is required for the QR decomposition

procedure.

From the computational point of view, subspace preconditioning turns out to be less effective than block-

diagonal preconditioning for two reasons. Firstly, as already mentioned in Sect. 4, the design matrixA has to be

assembled twice for each iteration. Secondly, the runtime effort for QR decomposition using LAPACK (linear

algebra package) routines (Anderson et al. 1999) increasesdramatically with increasing subspace dimension.

Moreover, in the current implementation the problem concerning the QR decomposition also affects the speed-

up of the method using different numbers of CPUs. This is illustrated in Table 6 comparing one to 16 CPUs.

The speed-up of one iteration has the value of only 2.1.

Besides the computational drawbacks of SP-LSQR, there is also a methodological one for the scenarios

investigated. Block-diagonal preconditioning performs much better than the subspace method. For hl-SST anal-

ysis, only six iterations are necessary using PCA-LSQR to reach the final estimate, whereas SP-LSQR does not

fall below 17 iterations according to the scenarios in Table5. This is mainly due to the special problem design

considered, i.e., a satellite orbit configuration close to the ideal conditions as outlined in Sect. 1.

7.5 Regularization

Tikhonov-Phillips regularization has been added successfully to the implementations. For R-LSQR, multiple

regularization parameter treatment has no significant effect on the overall runtime, cf. Table 7. The additional

costs considering 100 regularization parameters oppositeto the unregularized method are less than1 %.

However, to find the “best” regularization parameter amongst the a priori values, some quality criterion has

to be evaluated for each of them (the corresponding runtime is neglected in Table 7). Depending on the quality

measure, this is a more or less costly process and in general the procedure has to be repeated for each single

regularization parameter. In the case studies presented, we performed global WRMS evaluation of successive

estimates. This was done on a regular grid of1◦ resolution in latitude and10◦ resolution in longitude. For a
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Table 7.Runtime results R-LSQR (SGG,L = 200, 8 CPUs, 1 iteration)

Number regularization param. Wall time (s) Wall time (%)

no regularization 242.7 100.0

1 242.7 100.0

10 243.6 100.4

100 244.9 100.9

spectral resolution ofL = 200 and eight-CPUs parallel processing, truncation criterionevaluation requires 20 s

wall time for each regularization parameterκi.

8 Conclusions

In this contribution, we investigated and applied the iterative LSQR algorithm for satellite-based gravity field re-

covery. In particular, we performed hl-SST and SGG data analysis of a GOCE-like simulation scenario covering

one month of observation data with 5 s sampling.

The algorithm is characterized by transformation of the original LS problem to a bidiagonal subproblem,

which is solved in terms of a QR decomposition. In general, iterative solvers have only small memory require-

ments since they avoid design and normal matrix storage. Moreover, they are largely independent of the process-

ing platform, i.e., they are very well suited for parallel computing. However, opposite to brute-force LS solvers,

they do not provide the variance-covariance matrix of the parameter estimate. This is the major drawback of

iterative methods since the approximated computation of error estimates never yields exact information.

For space-geodetic applications, the basic LSQR algorithmaccording to Paige and Saunders (1982a;b) turns

out to be not very effective. In terms of LSQR tuning, we addressed (i) preconditioning, (ii) regularization and

(iii) parallel implementation.

Block-diagonal preconditioning has been proven to clearlyoutperform subspace preconditioning for two

reasons. Firstly, for the subspace method the twofold assembly of the design matrix in each iteration is unavoid-

able. Secondly, the numerical costs for the QR decomposition increase dramatically with increasing subspace

dimension, cf. Table 5. On the other hand, design matrix block-diagonal preconditioning performs very well.

According to Tables 2 and 3, the number of iterations reducesby a factor of around 10. Due to the additional ef-

fort for the computation of the preconditioner, the wall time reduces by a factor of 3–5. Actually, preconditioner

computation takes around half of the overall runtime.

Regularization in general form has been added to the original LSQR method by transformation of the ex-

tended minimization problem to standard form. Compared to the unregularized algorithm, runtime increases by
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less than1 % considering 100 regularization parameters at once. Thus, regularization requires only marginal ad-

ditional computational effort. However, the combination of block-diagonal preconditioning and regularization

in general form needs further investigation. In our currentimplementation, the transformation to standard form

can not be realized warranting preconditioning.

The LSQR method is well suited for parallel implementation.Very good scaling results could be achieved

up to 32 CPUs, cf. Table 4. For 64 CPUs, the speed-up decreasesto 48. The parallel efficiency strongly depends

on the problem dimension. Thus, we expect the scaling results to improve for larger problems.

In future, we aim to expand LSQR tuning for geopotential recovery. In particular, this involves variance

component estimation for the proper weighting of differentobservation types and the approximate computation

of error estimates.

Acknowledgements. This work was funded by the German Federal Ministry of Education and Research and the German Re-

search Foundation (DFG) through the Geotechnologien II program, Grant No. 03F0329B. Moreover, it was carried out under

the HPC-EUROPA project (RII3-CT-2003-506079), with the support of the European Community - Research Infrastructure

Action (under the FP6 "Structuring the European Research Area" Program). The authors greatly acknowledge constructive

comments by Pavel Ditmar and two anonymous reviewers of the manuscript.

References

Alkhatib H, Schuh W-D (2007) Integration of the Monte Carlo covariance estimation strategy into tailored solution proce-

dures for large-scale least squares problems. J Geod 81: 53–66 DOI: 10.1007/s00190-006-0034-z

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, DongarraJ, Du Croz J, Greenbaum A, Hammarling S, McKenney

A, Sorensen D (1999) LAPACK Users’ Guide (third edition). SIAM, Philadelphia

Baur O, Austen G (2005) A parallel iterative algorithm for large-scale problems of type potential field recovery from

satellite data. Proceedings Joint CHAMP/GRACE Science Meeting, Geoforschungszentrum Potsdam, online publica-

tion (www.gfz-potsdam.de/pb1/JCG))

Baur O, Grafarend EW (2006) High-Performance GOCE Gravity Field Recovery from Gravity Gradients Tensor Invariants

and Kinematic Orbit Information. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (Eds)

Observation of the Earth System from Space. Springer BerlinHeidelberg New York, pp 239–253

Baur O, Sneeuw N, Grafarend EW (submitted) Methodology and Use of Tensor Invariants for Satellite Gravity Gradiometry.

J Geod (submitted)

Björck A (1996) Numerical methods for least squares problems. SIAM, Philadelphia

Boxhammer Ch (2006) Effiziente numerische Verfahren zur sphärischen harmonischen Analyse von Satellitendaten. Disser-

tation, University of Bonn, 95pp

Boxhammer Ch, Schuh W-D (2006) GOCE gravity field modeling: computational aspects - free kite numbering scheme. In:

Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (Eds): Observation of the Earth System from

Space. Springer Berlin Heidelberg New York, pp 209–224

Chandra R, Menon R, Dagum L, Kohr D, Maydan D, McDonald J (2001) Parallel Programming in OpenMP. Academic

Press

Colombo OL (1984) The global mapping of gravity with two satellites. Netherlands Geodetic Commission, New Series,

7(3)



28

Ditmar P, Klees R, Kostenko F (2003a) Fast and accurate computation of spherical harmonic coefficients from satellite

gravity gradiometry data. J Geod 76: 690–705 DOI: 10.1007/s00190-002-0298-x

Ditmar P, Kusche J, Klees R (2003b) Computation of sphericalharmonic coefficients from gravity gradiometry data to be

acquired by the GOCE satellite: regularization issues. J Geod 77: 465–477 DOI: 10.1007/s00190-003-0349-1

ESA SP-1233 (1999) The four candidate Earth explorer core missions - gravity field and steady-state ocean circulation

mission. European Space Agency Report SP-1233(1), Granada

Gelderen M van, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71: 337–343 DOI:

10.1007/s001900050101

Golub GH, Kahan W (1965) Calculating the singular values andpseudoinverse of a matrix. SIAM J Numer Anal 2: 205–224

Gundlich B, Koch K-R, Kusche J (2003) Gibbs sampler for computing and propagating large covariance matrices. J Geod

77: 514–528 DOI: 10.1007/s00190-003-0350-5

Hanke M, Hansen PC (1993) Regularization methods for large-scale problems. Surv Math Ind 3: 253–315

Hanke M, Vogel CR (1999) Two-level preconditioners for regularized inverse problems I: Theory. Numer Math 83: 385–402

Hansen PC (1987) The truncated SVD as a method for regularization. Numer Math 27: 534–553

Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49: 409–436

Ilk KH, Visser P, Kusche J (2003) Satellite Gravity Field Missions. Final Report Special Commission 7, vol. 32, General

and technical reports 1999–2003

Jacobsen M, Hansen PC, Saunders MA (2003) Subspace preconditioned LSQR for discrete ill-posed problems. Numer Math

43: 975–989

Keller W (2002) A Wavelet Approach for the Construction of Multi-Grid Solvers for Large Linear Systems. In: Adam J,

Schwarz K-P (Eds) Vistas for geodesy in the new millennium. Springer Berlin, pp 265–270

Klees R, Koop R, Visser P, van den IJssel J (2000) Efficient gravity field recovery from GOCE gravity gradient observations.

J Geod 74: 561–571 DOI: 10.1007/s001900000118

Klees R, Ditmar P, Broersen P (2003) How to handle coloured observation noise in large-scale least-squares problems. J

Geod 76: 629–640 DOI: 10.1007/s00190-002-0291-4

Kusche J (2001) Implementation of multigrid solvers for satellite gravity anomaly recovery. J Geod 74: 773–782 DOI:

10.1007/s001900000140

Kusche J, Mayer-Gürr T (2001) Iterative Solution of Ill-Conditioned Normal Equations by Lanczos Methods. In: Adam J,

Schwarz K-P (Eds) Vistas for geodesy in the new millennium. Springer Berlin, pp 248–252

Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76: 359–368

DOI: 10.1007/s00190-002-0257-6

Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76: 641–652 DOI:

10.1007/s00190-002-0302-5

Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH,

Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The Development of the Joint NASA GSFC and

NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center, Greenbelt, 575pp

Nolet G (1993) Solving large linearized tomographic problems. In: Iyer HM, Hirahara K (Eds) Seismic Tomography: Theory

and Practice. Chapman & Hall, London, pp 248–264

Paige CC, Saunders MA (1982a) LSQR: An algorithm for sparse linear equations and sparse least squares. ACM T Math

Software 8: 43–71

Paige CC, Saunders MA (1982b) LSQR: Sparse linear equationsand least squares problems. ACM T Math Software 8: 195–

209

Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite

gravity gradiometry implemented on a parallel platform. J Geod 76: 462–474 DOI: 10.1007/s00190-002-0277-2

Pail R (2005) A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J Geod 79: 231–

241 DOI: 10.1007/s00190-005-0464-z



29

Phillips DL (1962) A technique for the numerical solution ofcertain integral equations of the first kind. Journal of the

Association for Computing Machinery 9: 54–97

Rapp RH, Cruz JY (1986) Spherical harmonic expansions of theEarth’s gravitational potential to degree 360 using 30’ mean

anomalies. Technical Report 376, Department of Geodetic Sciences and Surveying, Ohio Sate University, Columbus

Reubelt T, Götzelmann M, Grafarend EW (2005) Harmonic Analysis of the Earth Gravitational Field from Kinematic

CHAMP Orbits based on Numerically Derived Satellite Accelerations. In: Flury J, Rummel R, Reigber C, Rothacher M,

Boedecker G, Schreiber U (Eds) Observation of the Earth System from Space. Springer Berlin Heidelberg New York,

pp 27–42

Rummel R (1986) Satellite Gradiometry. In: Sünkel H (Ed) Mathematical and Numerical Techniques in Physical Geodesy.

Lect Notes Earth Sci 7, Springer Berlin, pp 317–363

Rummel R, Sansò F, van Gelderen M, Brovelli M, Koop R, Miggliaccio F, Schrama E, Scerdote F (1993) Spherical harmonic

analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, 39

Schmidt M, Fengler M, Mayer-Gürr T, Eicker A, Kusche J, Sánchez L, Han S-C (2007) Regional gravity modeling in terms

of spherical base functions. J Geod 81: 17–38 DOI: 10.1007/s00190-006-0101-5

Schuh W-D (1996) Tailored numerical solutions strategies for the global determination of the Earth’s gravity field. Mit-

teilungen der Universität Graz 81

Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geodätische

Kommission, Series C 527, Munich

Tikhonov AN (1963) Regularization of incorrectly posed problems. Sov. Mat. Dokl. 4: 1035–1038

Van der Sluis A, Van der Vorst HA (1987) Numerical solution oflarge, sparse linear algebraic systems arising from tomo-

graphic problems. In: Nolet G (Ed) Seismic Tomography. Reidel Publications, pp 49–84

Yao ZS, Roberts RG, Tryggvason A (1999) Calculating resolution and covariance matrices for seismic tomography with the

LSQR method. Geophys J Int 138: 886–894

Xu J (1997) An Introduction to Multilevel Methods. In: Ainsworth M, Levesley K, Marietta M, Light W (Eds) Wavelets,

Multilevel Methods and Elliptic PDEs. Numerical Mathematics and Scientific Computation, Clarendon Press, pp 213–

302


