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Abstract. We develop and apply an efficient strategy for Earth gravitiglfrecovery from satellite gravity gra-
diometry data. Our approach is based upon the Paige-Saitetative least-squares method using QR decom-
position (LSQR). We modify the original algorithm for spageodetic applications: Firstly, we investigate how
convergence can be accelerated by means of both subspabkmekdliagonal preconditioning. The efficiency
of the latter dominates if the design matrix exhibits blattkninant structure. Secondly, we address Tikhonov-
Phillips regularization in general. Thirdly, we demonstran effective implementation of the algorithm in a
high-performance computing environment. In this contartjmportant issue is to avoid the twofold compu-
tation of the design matrix in each iteration. The compotal platform is a 64-processor shared-memory
supercomputer. The runtime results prove the successfallg@lization of the LSQR solver. The numerical
examples are chosen in view of the forthcoming satellitesmis GOCE (Gravity field and steady-state Ocean
Circulation Explorer). The closed-loop scenario coversmonth of simulated data withs sampling. We focus
exclusively on the analysis of radial components of saediccelerations and gravity gradients. Our extensions
to the basic algorithm enable the method to be competititie well-established inversion strategies in satellite
geodesy, such as conjugate gradient methods or the bnatedpproach. In its current development stage, the

LSQR method appears ready to deal with real-data applitatio
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1 Introduction

Nowadays, geodetic scientists are in the favorable sgodt perform gravity field recovery by near-globally
distributed satellite-based observations. The CHAMP (lEhging Minisatellite Payload) and GRACE (Gravity
Recovery and Climate Experiment) missions have been dapaehfor a few years and still continuously pro-
vide gravity data. These missions will be complemented WithGOCE (Gravity field and steady-state Ocean
Circulation Explorer) satellite to be launched towardsehd of 2007.

Modelling of both the static terrestrial gravity field and femporal variations facilitate advanced research
in a multitude of geoscientific applications, such as thelstf the dynamics of the Earth’s lithosphere and
upper mantle, global sea level variations, ocean ciraiasind ocean mass and heat transport and ice mass
balance (ESA 1999). However, solving for the unknown patamseof the gravitational potential model, i.e.,
the coefficients of the corresponding harmonic series esipanin a least-squares (LS) adjustment procedure
is a challenging task. Millions of observations have to becpssed to resolve up to 100,000 unknown gravity
field parameters.

Paige and Saunders (1982a;b) published the LSQR algoit8@R is an acronym for a special method to
solve linear (ill-conditioned) LS problems using QR decasifion. Whereas the LSQR method is frequently
applied in geophysics, in seismic tomography in particiNan der Sluis and Van der Vorst 1987, Nolet 1993,
Yao et al. 1999), it has found only little use in geodetic agilons. Actually, large LS problems in geodesy are
mostly treated by conjugate gradient (CG) methods (Hestane Stiefel 1952), leading to the CGLS procedure.
Application of CGLS in terms of satellite gravity field rea@y can be found in, e.g., Schuh (1996), Pail and
Plank (2002) and Ditmar et al. (2003a). Geodetic probleragraated with LSQR in, e.g., Kusche and Mayer-
Girr (2001) and Baur and Austen (2005).

Both LSQR and CGLS are Krylov subspace-based iterative adstesigned to solve linear systems of
equations by means of successive approximations. They stpgaroximately the same storage and work re-
quirement demands and, mathematically, they generateathe sequence of approximations to the solution

in exact arithmetic. Within the scope of this contributiarg focus exclusively on the LSQR algorithm, which



has been claimed to outperform CG methods with regard tdlisgadf the iterative process on the grounds of
theoretical arguments (Paige and Saunders 1982a, Bjoffk Iicobsen et al. 2003).

Since memory requirements are small for these solvers,dheype implemented on an ordinary personal
computer (PC) if runtime criteria are disregarded. Howgteesolve large-scale problems within a reasonable
time-frame, parallel implementation is indispensablésBllows one to devote more computation time to tuning
and optimization efforts, which generally involve mulgpsolutions of the individual LS problem. Here, we
present the LSQR algorithm in its parallelized version g€penMP (Chandra et al. 2001). The computational
platform for numerical calculations is a 64-processor ¢¢MM\ (cache-coherent non-uniform memory access)
system supported by the Center for Computing and NetwoiRargices (SARA) in Amsterdam.

In terms of LSQR tuning, we perform preconditioning and tagmation by tailored adoption to satellite-
based gravity field recovery. Preconditioning can be redlin different ways to accelerate the convergence
rate. In satellite geodesy, it is well known that an ideaéHig® configuration, characterized by a circular and
repeating orbit with fixed inclination, leads to a strictliotk-diagonal normal matrix (Colombo 1984). In
reality, deviations from the ideal conditions have to bestalnto account. Nevertheless, the real normal matrix
typically shows block-dominant structure. Thus, its blaliigonal approximation constitutes an appropriate
preconditioner.

Normal matrix preconditioning with LSQR is investigatedBaur and Austen (2005). It turns out that the
twofold computation of the design matrix in each iteratisrunavoidable. This fact is of minor relevance for
solving small linear systems of equations. However, inli@eravity recovery, the number of observations,
i.e., the dimension of the design matrix row-space, amotmnseveral millions, causing the assembly of the
design matrix to become the most time consuming part of therighm. Here, we reformulate block-diagonal
normal matrix preconditioning to the level of the design rixafThe new formulation circumvents the need to
calculate the design matrix twice per iteration and thusim®rably reduces the computational effort.

An alternative for LSQR preconditioning has been proposeddzobsen et al. (2003), denoted as subspace
preconditioning. The basic idea is to split the solutioncgpiato two subspaces of different size. The splitting
decomposes the original problem into two subproblems. TeIsubspace problem is solved by direct inver-
sion, whereas the larger one is treated by LSQR with the ssubBpace solution projected to the larger space
as a preconditioner. Finally, the partial estimates coraplos overall solution vector.

Subspace preconditioning does not rely on a special blockiaant structure of the LS problem. Thus,

it is generally applicable to any linear minimization prein. Because of the analogy to multi-level methods,



subspace preconditioning using two subspaces is denotegbdevel method. Xu (1997) showed that multi-
grid methods fit into the framework of multi-level techniguépplication of these methods in satellite gravity
recovery have been investigated in, e.g., Kusche (2001Katidr (2002).

Boxhammer (2006) and Boxhammer and Schuh (2006) presemy &fficient method for the combination
of high-resolution and low-resolution data sets in a comin®mprocedure. The numbering scheme developed,
allows tailored preconditioning of systems of equatiorsuling from observation configurations providing
different types of data.

Regularization is of fundamental importance when treatlfqgpsed LS problems. To stabilize the inversion
procedure, Tikhonov-Phillips regularization (Phillip86R2, Tikhonov 1963) has been proven to perform very
well for space-geodetic applications (Kusche and Klee2D@tmar et al. 2003b, Schmidt et al. 2007). Paige
and Saunders (1982a;b) formulated a regularized LSQR guveeHowever, they only refer to regularization
with the identity matrix, known as ordinary ridge regressid/e adopt the method for general Tikhonov-Phillips
regularization by transformation of the general regukgian problem to its standard form (Bjorck 1996). More-
over, we investigate the combination of preconditionind eegularization.

The paper is organized as follows. The next section brieffigves the original LSQR algorithm, including an
outline concerning decorrelation and variance-covaggmopagation issues. Section 3 treats the reformulation
of the block-diagonal normal matrix preconditioner to thedl of the design matrix. Subspace precondition-
ing is addressed in Sect. 4. Section 5 introduces TikhorfoNig regularization to the algorithms presented
earlier. The methodology for GOCE gravity field recovery isgented in Sect. 6. In Sect. 7, we demonstrate
numerical examples in the context of a GOCE-like closeg-kimulation study. Moreover, we focus on aspects

concerning implementation and parallelization. Finglgct. 8 summarizes the conclusions of this contribution.
2 The basic LSQR method
A linear (or linearized) inverse problem can be defined asdhsolving the system

Ax =y +r. Q)

The design matriA relates the vector of the unknown parametets the vector of observationsandr is
a vector of data errors. Solving Eq. (1) ferby minimizing the L,-norm of the residual vector results in the

linear LS problem

min|Ax — | 2)
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Fig. 1. Flowchart of the LSQR method

Equation (2) is the starting point for LSQR representatidocording to Fig. 1, the algorithm works as
follows:
(i) Lanczos lower bidiagonalization procedure (Golub etl®65, Paige and Saunders 1982a) transforms the

original minimization problem to the simpler bidiagonakon
min [|Byay, — Brea|*. ®3)

This transformation is achieved by decomposing the desigmixnA (n x m) in an iterative manner into two
orthogonal matriceW 1 = [uy, ..., ux1] andVy = [vq, ..., vg], of dimensiong x (k+1)) and gn x k), as
well as a lower bidiagonal matri®;, of dimension (k+1) x k). Thus, the relationship ~ A, = UkHBka
holds.

The bidiagonalization process reads

Br+1Uk+1 = Avy — apuy, 4)

1 Vi1 = ATugr — Brp1ve %)



with the initial conditions;u; = y anda;vy = ATuy. The scalarsy,, 8, > 0 are chosen subject to
llug]l = ||vk]l = 1. The valuesy, constitute the main diagonal @&, andj; the first lower sub-diagonak
denotes the number of iterations and foe= m the matrixA is completely decomposed\(.—,, = A), but
usuallyk < m will be sufficient.8; = ||y|| corresponds to the norm of the observation vegtande; is the
first column of a unit matrix of appropriate dimension.

(i) The solution of the bidiagonal subproblem in Eqg. (3),

a; = R, 'Qx(Bier), (6)

is generated by a series of Givens rotations (Bjorck 199®uijh which the bidiagonal matriB;, is decom-
posed in an orthogonal matr@;, and an upper bidiagonal matiXy.
(iii) The K™ iterate of the original parameter vector is determined fEm (6), the solution of the subproblem,

and the matrixV subject to
X = Viay. (7)

Note that the column vectors &f;, span &-dimensional Krylov space.

To evaluate Eq. (7), it would be necessary to store all vedtor, ..., v, ). Paige and Saunders (1982a)
present a simple recursion relation to computenly from the last iterat&;_; and the present column vector
vi. The iterative process is terminated if tkié iterate meets a suitably chosen truncation criterion alsbail
discussed in Sect. 7.2.

For LSQR, the twofold computation of the design matAixaccording to Egs. (4) and (5) can be avoided
by introducing the temporary variablg, with hy, = >, A(j, :)uiﬂ. After calling thej™ row of A, denoted
asA(j,:), thej" loading to the producA”u,, ; consists of thg" row itself as well as th@" element of the
(unnormalized) vectouny, 4 1, i.e.,uiﬂ, which is already available from Eq. (4).

Pseudocode 1 presents a guideline for LSQR implementdticaddition, Pseudocode 2 shows an imple-

mentation of the Givens rotation.

2.1 Decorrelation

The LS problem formulation in Eq. (2) implies simplified sha@stic properties of the observation vegoi.e.,

uncorrelated and equally accurate observations. In itergérepresentation, the minimization problem reads

min |Ax — y|%-: )



Pseudocode 1The LSQR method to solve

min [|r]|” = miny |Ax -y’

Initialization
Lov=lyll, wi =4
Vi

2.V1 ::[XTth (6% ::”V1H7 v = ET

o

3'?‘1 =5
4.1 =
5.p0=m
First Iteration: k = 1
6.u2 = Avi —aqui, B2 = |juz]|, uz = %
7.h; = A" Bu,
8. [c1, s1, p1] = givrot(p1, B2)
9.¢1 =c11
10.¢2 = —s101
1l.q1 = -V
12.x1 = 1
13.ve = hy — B3v1, a2 = ||v2|, v2 = =
14. a0 = %
Further iterations: fork =2 : m
15.ui41 = Ave — apug, Brt1 = ||usll,
16.h, = AT Br1upi
17.0_1 = Sp_10%
18.pr = ck—10k
19. [ck, Sk, p] = QiIVIOt( Pk, Br+1)
20. ¢k = cror
21. ppr1 = —Spdbr
22.qr = ﬁ(vk - 91@71011%1)
23.X, = Xp—1 + Ordk

24. v =he — B Vi, aksr = Vel Vis =

Xk41

25. Ak4+1 = Bri1

_ Ug4a
Br+1

Vi1
Q41

Pseudocode 2Givens rotatioric, s, p] = givrot(p, 3)

if 3=0.0
a.c=10,s=0.0,p=p
else if| 3| > |p|
at=p/8 q=VIOTE
b.s=1.0/q, c=ts, p=¢qp
else
at=p/pq=VI0TE

b.c=1.0/q, s=tc, p=qp




with the observation variance-covariance informat®n= o?P~!. It is the product of the variance of unit
weighto? and the inverse positive definite weight mafxin the presence of colored noid; ! is a full matrix
or at least typically shows band structure of Toeplitz typlee width of the band depends on the correlation
length.

In terms of a noise whitening process, Schuh (1996) predanmeethod to transfer the correlated LS problem

in Eq. (8) to the uncorrelated formulation in Eq. (2). It issbd on the decomposition &f ! subject to
'~ F'F. 9)

The matrixF applied toy yields the decorrelated vector of (pseudo-)observatigns= Fy. Thus, in signal
processing terminolog¥ is a linear filter. Under the assumption of stationary noise i@egularly distributed
data, the filted® gets Toeplitz structure and it is implemented by means of BMA (auto-regressive moving
average) process.

For consistency reasons, according to Eqg. (1), the filtetdnag applied to both the columns of the design
matrix A and the residual vectaras well, yieldingAp = FA andrp = Fr. This results in the decorrelated

system of equations

Apx=yp+rp (10)
and thus, the decorrelated minimization problem

m}inHADX—yDHQ. (11)

The decorrelation process transforms the correlated L8lgmo (Eqg. 11) to the uncorrelated formulation in
Eq. (2). For this reason, throughout this contribution, @stnict ourselves to uncorrelated LS problem formu-
lations.

In our numerical applications (Sect. 7), we implementeddetation as described in Schuh (1996). After
the computation of a new row &, the filter is applied to each column of it as well as to the ola#gons. An
alternative approach has been proposed by Klees et al. 2¥2d on a fast method to solve a Toeplitz system

of linear equations.

2.2 Variance-covariance propagation

The variance-covariance matr&(%) of the parameter estimate is of utmost importance for thinénruse of
the LS result in terms of error propagation. Unfortunatiely;ontrast to direct LS solvers, iterative methods do

not provide this information. Here we give an outline of twaspibilities for evaluatin@ (%) with LSQR.



The first one has been derived by Yao et al. (1999) and is spaltjfirelated to the algorithm itself. It is

based on the explicit representation of the general inveree design matrix yielding

(%) = 6°Vi(B{By) ' V. (12)

whereX (x) is thek™ approximation to the “true” variance-covariance matrikjgat toX;_,, (%) = 3(%).
As the derivation of Eq. (12) is straightforward, we skip thetails here. The interested reader is advised to
consult the cited literature.

From the implementation point of view, the computatior®hf(x) only requires marginal additional effort.
The matricesV,, andB, have to be stored and the proddét(B7 B;) =V has to be evaluated. However,
the extended memory requirement for matrix storage coittisathe philosophy of LSQR. Thus, dependent on
the computation platforn®:, (%) evaluation is restricted to some maximum valuekfor

On the other hand, the goodness of the approximation predory depends on the number of iterations.
Moreover, as shown in Yao et al. (1998)andX; (x) do not necessarily exhibit the same convergence behavior,
but in generak converges faster than the variance-covariance matrixnAlll, this demonstrates the necessity
to investigate the method in detail for practical applicas.

An alternative and very effective approach to estimate #mgamce-covariance matrix has been published
recently by Alkhatib and Schuh (2007). As well as the Gibbm@ar method (Gundlich et al. 2003), it is based
on Monte Carlo integration techniques. However, in contrashe Gibbs sampler, it is particularly suited for

iterative solvers.

3 Block-diagonal preconditioning

The convergence behavior of an iterative solver is predantiy determined by the spreading of the singular
values of Eq. (1) or, equivalently, the condition numbertaf hormal matrix. Preconditioning is applied to
improve the condition of the normal equation system, andg tiouincrease the speed of convergence of the
iterative solver.

In order to outline the methodology of preconditioning oa tavel of the design matrix, we briefly review

preconditioning on the level of the normal matrix as presdim Baur and Austen (2005).

3.1 Normal matrix preconditioning: PCN-LSQR

The solution of Eq. (2) in the sense of the-norm is explicitly given as

(ATA)x = ATy. (13)
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Introducing the normal matri®N = (A7 A) and the right-hand side vectbr= ATy leads to

Nx = b, (14)

the normal equation system of a linear Gauss-Markov moakadrsion of Eq. (14) yields the best linear unbiased

estimate (BLUE) of the unknown parameter vector
% =N"'b. (15)

Let N,q denote the block-diagonal approximation of the true normatrix. If N itself shows block-

dominant structure, theN 4 represents an appropriate preconditionefoin terms of
NN =L (16)

Multiplying the unit matrixI = Ng(}Nbd in between the normal matrix and the unknown parameter vecto

the left-hand side of Eq. (14) results in
NN, Npax = b. 17)

Let N* = NNgd1 denote the modified normal matrix agdd = Nyqx the new parameter vector, then

Eq. (17) reads
N*%* =b. (18)

Thus, insertingN* andb for A andy into the LSQR procedure means solving the uniquely detexdyimoblem

in Eq. (18) instead of the overdetermined one in Eq. (1). Tiggraal parameter vector is subsequently obtained

by
% =N, %" (19)

The benefit of solving Eqg. (18) instead of Eq. (14) is a betvadition number oN* opposed tdN, resulting
in a higher convergence rate and a reduced number of negégsationsk.

However, the procedure of preconditioning on the level ef tlormal matrix entails two significant draw-
backs: (i) The design matrix needs to be accumulated twicégyation and (i) normal matrix preconditioning
involves solving a uniquely determined problem, wherea®RSs essentially designed to tackle overdeter-
mined ones. Therefore, preconditioning on the level of #gigh matrix is presented next in order to overcome

(i) and (ii).
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3.2 Design matrix preconditioning: PCA-LSQR

The principle for design matrix preconditioning is simitarthe procedure above. The preconditioner itself is
derived from the Cholesky factorization of the block-diagbapproximatioiNy,q of the true normal matriN

subject to

Npq = LLLn. (20)

Expanding the left-hand side of Eq. (1) with the unit malrix L;IlLN yields

AL;IILNX =y+4r. (21)
Further, with the substitutionAn = ALI:I1 andz = Lnx, Eq. (21) becomes

Anz=y +r. (22)

Thus,An andy enter the LSQR procedure to solve the overdetermined LSgmotesulting from Eq. (22).

The initial vector of unknowns is computed from

% = L'z 23
N

Again, the twofold evaluation of the design matrix per itema can be avoided. WitAn = AL;Il, the

bidiagonalization process (refer to Egs. (4) and (5)) bezom

Br+1up+1 = ALY v — aguy, (24)

a1Vt = (L ) TAT w1 — Beg1vi. (25)

For practical use, we app]ylg1 to v, before callingA. Then the temporary vector update is similar as described
in Sect. 2. Finally, applyLy')” to hy. Note that the numerical costs for assembiNg andLx have to be

taken into account.

4 Subspace preconditioning: SP-LSQR

Preconditioning in terms of subspace splitting is treatetlanke and Vogel (1999). Its special application to
LSQR as outlined in this section is based as illustrateddénldsen et al. (2003).

The basic idea is to split the solution sp@& into two subspace®’; € R™ andW3'~* € R™ with s < m
andWs$ U W'~ = R™. This kind of subspace preconditioning is also known aswuleelevel method (Hanke

and Vogel 1999), i.e., a special case of multi-level methods
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When assuming the columns of the mati&; € R™** spanning the subspa®®; and analogously the
columns of the matritW, € R™*(™~5) spanning the subspa&&,'~*, then the overall solutior € R™ of

the minimization problem in Eq. (2) can be formulated as ihedr combination
X = W1W1 + WQWQ. (26)

where the unknown parameter vecters andws denote the partial solutions according to the solution epac

decomposition. Inserting Eq. (26) into Eq. (2) yields

Wi
Wi1,W2 W2
Next, we perform QR factorization of the produkW ;. The factorization can be written as
. R
AW, = QR =[Y Z] =YR. (28)

0

For an overdetermined system > m), R (n x s) can be split in the upper triangular matii(s x s) and
the zero matriXd((n — s) x s) subject toR = [R” OT]T. Splitting the square orthogonal matiiX(n x n)
accordingly, i.e.Q = [Y Z] with Y(n x s) andZ(n x (n — s)), results in Eq. (28).

Pre-multiplying Eq. (27) bQ” = [Y Z]” yields

YTAW, YTAW, | | w, Yy [ |12
min — (29)
Y ZT AW, ZT AW, | | we AR
The lower minimization problem in Eq. (29),
min ||ZT AW,owy — ZTy||? = min |ZT Ap — ZTy||?, (30)
W2 P

is dependent omv, only (orp with p = Wowsy), asZ” AW, = 0 holds. The latter is a direct outcome of the
QR decomposition in Eq. (28).

The upper minimization problem in Eg. (29),

min |[Rw; + YTAW,wy — YTy|?, (31)

Wi1,W2

is dependent on botir; andws. In Eq. (31),AW; = YR and thusY” AW, = R is considered which again
results from Eq. (28). I8 < m holds, Eq. (31) denotes the small subspace problem, whitbeaolved easily

by direct inversion applied to

Rw; =YY" (y - AW,wy) =Y' (y — Ap). (32)
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Thus, the main computational effort occurs for solving thieimization problem in Eq. (30), which is
performed here by LSQR. The critical part of the algorithnthis QR decomposition in Eq. (28). Even when
storing and applying the orthogonal matfi or Z, by means of successive Householder transformations, the
effort for the decomposition itself as well as the applicatof Q in each iteration increases very fast when
expanding the subspace dimensio¥f. Thus, only ifs < m holds, the effort remains considerably small.

Subspace preconditioning modifies the original LSQR atboriconcerning the Lanzcos bidiagonalization
process. Actually, the minimization problem in Eq. (2) ismpaulated by replacing\ by Z” A andy by ZTy.

The latter substitution is not problematic. The transfdioreof the observation vector can be performed in the
initialization step of the algorithm. However, the manigtidn of the design matrix induces the bidiagonalization

process to be modified according to

Brt1ugs1 = ZT Avy — aguy, (33)

r1Vir1 = ATZug 1 — Brp1vi. (34)

Unfortunately, the principle to avoid the assembly of theigie matrix twice per iteration can not be trans-
ferred to SP-LSQR (subspace preconditioned LSQR). Foulzing the eIemenm{;H, the whole matrixA
has to be processed due to the multiplicatiorZdf from the left-hand side in Eq. (33). Thus, the temporary
vectorh,, can not be updated as outlined in Sect. 2 by calling'thew A (4, :) only once each iteration. This
is the major drawback of the method assuming the setuy isfa costly process.

To demonstrate the application of subspace preconditigniigravity field recovery, we consider the sim-
plest case of subspace splitting, iV, = [L,s) O(Sx(m_s))]T andWy = [0, I(Sx(m_s))]T. Depending
on the sequence of the unknowns assembled in the parameter x€by degree or by order), a low-degree,
respectively low-order, solution is obtained by directarsion of the small system.

The subspace solver is used to accelerate the iterativegsad the large system. Note that the subspace
method can be additionally accelerated by transformatidgheunknown parameter vector in terms of block-
diagonal preconditioning as illustrated in Sect. 3. Thiguiees the algorithm to be adapted accordingly and is
not addressed in this contribution.

For our application of subspace preconditioning in sagefieodesy, we have chosen the subspéigeo
constitute the solution space of the long-wavelength phathe gravitational spectrum. This is only one of

other different possibilities, but in general it seems tadeesonable to shift a certain frequency domain of the

gravitational spectrum to the subspate.
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5 Regularization of LSQR, PCA-LSQR and SP-LSQR

Regularization is a commonly used tool to overcome the nl#igof ill-posed inversion problems. Ill-posedness
means that the solution vect&rdoes not continuously depend on the given dai@hillips 1962, Tikhonov
1963). Different types of regularization have been appfadvarious applications such as the method of
Tikhonov-Phillips, truncated singular value decompositfHansen 1987) or iterative regularization methods.

As already mentioned, here we exclusively focus on TikheRbillips regularization.

5.1 Regularization of LSQR: R-LSQR

Extending Eq. (2) in terms of the auxiliary condition of nritizing the functionaiin, ||x||?, the regularized

LSQR minimization problem according to Paige and Saund&€82b) reads

y 2

VKl 0

(35)

min { [ Ax — y[* + l|x]?} = min

with the regularization parameterand the regularization matriX = I.

Equation (35) is known as regularization in standard forime Telative balance of the termi\x — y/||
and||x|| depends on the size @f If the regularization parameter is chosen too small, Ef) {8close to the
ill-conditioned minimization problem. On the other harfds iis too large, the solution of Eq. (35) might be far
away from the problem to be solved originally. Thus, an apgede balancing is of fundamental importance.

As the optimal regularization parametes,. is usually not known a priori, it is advantageous to solve
the linear LS problem for various regularization parameetgr i = 1,2, ..., im,ax- 1he optimal one is chosen
according to some quality criterion of the estimate, cf., e.g., Hanke and Hansen (1993), Kusche and Klees
(2002) or Ditmar et al. (2003b). In fact, the determinatidémg,; is a delicate topic.

Due to the extended minimization problem in Eq. (3B), ., changes from a bidiagonal to a tridiagonal
matrix. The secondary lower sub-diagonal throughout dostthe value,/k;. Only the QR decomposition
is affected by regularization but not the Lanczos step, ehgr., andxy ., is derived. Thus, the additional
computational effort constituteis,.x Givens rotations in each iteration, which is marginal evend large
number of regularization parameters.

For regularization with matri¥K # I, referred to as regularization in general form, it is conganhto

transform the extended minimization problem

min {[[Ax — y| + x]x/%} (36)
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to standard form. With Eq. (36), the extended normal eqoaystem (cf. Eq. (13)) reads
(ATA + kK)%, = ATy. (37)

Introducing the Cholesky factorization of the quadratidnmak with K = L L, applying(Lg")? from

the left-hand side to Eq. (37) and substituting the unknogmameter vecta,, accordingta, = Lk X, yields
(Lx)"ATALL +sDe, = (L") ATy, (38)

Finally, the substitutiodA kg = ALI}1 results in

Ak vy
c—

VKl 0
Equation (38) transforms the general regularization gob(Eq. 36) to its standard form in Eq. (39). Thus,

min
Cc

(39)

the properties of Eq. (35) solving for hold for Eq. (39) when solving foe. An estimate of the original
parameter vector is obtained by back substitution subfegt.t = Ll}lé,i. Note that for Tikhonov-Phillips

regularizationK typically is a diagonal matrix. Thu®,;x = Lﬂ holds withL;; = v/ K;;.
5.2 Regularization of PCA-LSQR: PCAR-LSQR

Two possibilities for the combination of block-diagona¢ponditioning as outlined in Sect. 3.2 and regulariza-
tion seem to be straightforward, i.e., (i) applying predtinding to the regularized problem, or (ii) applying
regularization to the preconditioned problem. In fact,tihe approaches are equivalent as will be shown next.

Extending Eq. (38) by preconditioning subjecfite- ngIlquI yields
(L )"ATALg' + sDLg' Lye, = (L )" Aly (40)
with Ly = LNLI_<1. Using¢,, = Lk X, EQ. (40) can be rewritten as
(LgH)TATALL' + kI Lk L' Lnk,. = (Lg' )T ATy. (41)
Equation (41) represents the preconditioned and regeldrinrmal equation system. In order to transform it to
standard form, the substitutiah, = LKLIZIlLNfc,{ = Lkx, = ¢, seems to be straightforward. But then we
return to Eq. (38), i.e., preconditioning vanishes.

The alternative option is to introduce the auxiliary pargen@ector according tdz = LnX,. TO ensure

the symmetry of the normal matrix, in this case Eq. (41) hdsetpre-multiplied Witi’(LKL;Il)T. With An =

AL, this option leads to

(ARAN + £(Ly ) TKLy)d; = Ay (42)
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or equivalently to

An y|?
d* —

VELN)TKLY! 0

min

(43)

Equation (43) coincides with the one that is directly obtdity applying regularization to the precondi-
tioned problem. The drawback of this approach is that itlte$n a minimization problem with regularization
in general form. Thus, in the currentimplementation, thalkimation of general-form regularization and block-
diagonal preconditioning can not be realized. Furtherstigations are necessary to overcome the combination

difficulties.

5.3 Regularization of SP-LSQR: SPR-LSQR

Regularization can be added without any problems to the SBR_procedure. Expanding Eq. (35) in terms of

regularization in general form yields

A VA RIE

X —

NS 0

min

(44)

With the substitutions\ = [AT \/EKT}T andy = [y” OT}T, Eq. (44) results in the stacked minimization

problem (Jacobsen et al. 2003)
min |Ax — y|? (45)

which can be solved according to the achievements in Seict.pérticular Egs. (26) to (32). All that has to be
considered is replacing by A andy by y.

In Eqg. (45), the leading dimension of the stacked arrays is ¢) with n the row-space dimension & and
¢ the number of additional conditions due to regularizatibimus, the leading dimension of the design matrix
is enlarged compared to the original formulationc = m holds, i.e.,c equal to the leading dimension &f

regularization is performed for the whole unknown parametetor.

6 Methodology for gravity field recovery

In the context of gravity field recovery, we focus on the GOCIEsion principle (ESA 1999). The positions
of the spacecraft are deduced from GPS (Global Positionystes) measurements between the low-orbiting
GOCE spacecraft{ 250 km) and the high-flying GPS satellites: (20, 000 km). This observation configura-

tion is referred to as high-low satellite-to-satelliteckang (hl-SST). It is restricted to recover long-waveldngt
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features only. For high-resolution geopotential deteatiom, in the framework of the GOCE mission, satellite
gravity gradiometry (SGG) will be realized for the first time

The combination of both techniques leads to the best p@sSIBICE-only gravity field solution (ESA 1999).

It can be be performed by superposition of the observatistesys of equations in a common LS adjustment. For
proper weighting of different observation groups, varenomponent estimation using Monte-Carlo techniques
has been proven to perform very well in a simulation envirentr(Kusche 2003). We investigate the hl-SST
and SGG observation scenario separately from each othovale several examples for the use of the LSQR
method in satellite geodesy. The achievements made whkisdope of these case studies can be transferred to
comparable space-geodetic experiments.

Gravitational field modeling in terms of a spherical harntoseries expansion of the potential function
V(A o, 7) is given with Eq. (46). Both the attenuation factdy/-)!*! and the4r-normalized surface spheri-
cal harmonics] .., (), ¢), cf. Eq. (47), depend on the spherical coordingtes, 7). Therein, A denotes East
longitude, ¢ latitude andr the radial distance from the origin. Furthét,,,, (sin ) are the fully normalized

associated Legendre functions of the first kind.

[ l I+1
GM R - _
Ve =S S <—> Tim (X @) Bm (46)
=0 m=—1
_ P 1 (sin ) cos mA 0<m<l
Yim(A @) = (47)

P (sing)sin|m| A —1<m <0

In theory, an infinite series is necessary to fully charaoéghe geopotential, but practically the double sum
in EqQ. (46) is truncated at a maximum degfedetermined by parameters of the satellite mission and thiesde
resolution of the field. Both the geocentric constart/ and the major semi-axiB of a reference ellipsoid are
fixed. The series coefficients ,,, are unknown parameters. Their estimation can be performsiddy globally
distributed observation data such as provided by GOCE.

The orbit of the spacecraft is tracked continuously by GP&sitiering the satellite free-falling around
the Earth, the hl-SST observation equation can be formililetea simple way. According to Eq. (48), the
acceleration of the satellite (reduced by all disturbinig@t such as tidal forces) is equal to the terrestrial

attraction, i.e., the gradient of the Earth’s gravitatiqatential:

%X (A(®), (1), r(t)) = %(t) = eja; = V V(A p,7). (48)
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wherea; denote the components of the gravitational acceleratiatoveThey refer to the orthonormal base
vectorse; with e; andes in direction tangential to the parameter lines of the spla@igke; directed radially
outwards.

The functional modelin Eq. (48) is referred to as the acegilen approach. It balances kinematic orbit infor-
mation to gravitational features. In particular, numdritifierentiation techniques provide satellite accelienag
%(t) derived from the observed positioré&). The approach has been successfully applied to real CHAN® da
analysis in Reubelt et al. (2005). Moreover, Baur and Geasfd(2006) investigate hl-SST analysis of simulated
GOCE data.

SGG observations correspond to second-order derivativikeaeopotential in Eq. (46). They are by far
more sensitive to short-wavelength features than grémitataccelerations (first-order derivatives). Applioati

of the gradient operator to Eq. (48) yields
VVV\p,7) = e; @ e;Vij. (49)

Equation (49) results in an analytical expression of theitgonal tensor in terms of the gravity field model
parameters, ,,. Each single compone#t;, referred to as gravity gradient (GG), constitutes one bffmdbser-
vation. Exemplary for the radial componén

%) l +3
Vo= Gr Y X (T) 04D+ DFin O (50)

=0 m=—1
holds.

Commonly, SGG analysis is performed by analyzing individe&s, in particular the main diagonal ele-
ments of the gravitational tensor. Details can be found.m, &chuh (1996), Rummel et al. (1993), Klees et al.
(2000), Sneeuw (2000) and Pail and Plank (2002). A completfflerent approach is based on the rotational
invariants of the gravitational tensor (Rummel 1986). Taedfit of this method arises from its independence of
the gradiometer instrument orientation in space. The ian#s approach has been adopted to the GOCE mission
scenario in Baur and Grafarend (2006) and Baur et al. (Stdsait

From the numerical point of view, Eqgs. (48) and (49) contgitin each case, a linear system of equations
with the unknown parameter vect&r= [v2.0, ..., 01,0, 2,1, -, VL. L, V2,1, ---, U1, —1,]© , the vector of obser-
vationsy = [ai1(t1), az(t1), as(t1), .., az(tn)]", ory = [Vii(t1), Viz(t1), ..., Vaz(t1), ..., Vaa(tn)]", and the
design matrixA describing the functional relationship between them. Nbé in satellite geodesy, typically
the number of observatiomsis by far larger than the number of unknowngo be resolved, i.en > m holds

yielding an overdetermined system.
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7 Numerical examples

To demonstrate the feasibility and benefit of LSQR precdoniitg and regularization, numerical simulation
studies based on a 30-days GOCE-like synthetic test dawitbe sampling rate ofAt = 5s is investigated.
The simulation is performed up to degree and otder 300 using the EGM96 gravity field model (Lemoine et
al. 1998). The synthetic data set is a result of the IAG Sp&aanmission 7 (SC7) activities (llk et al. 2003).
Additionally, for hI-SST analysis, the satellite positionordinates:;; i = 1,2, 3 have been contaminated with
a normal distributed random noise sequenge~ N (0, o,,) with standard deviation,, = 1 cm.

Colored SGG noise is generated by a power spectral densitelngth a flat part of 3—4 mE Hz2 in the
measurement bandwidth (MBW) ranging from 5 mHz to 0.1 Hz (B9A9). Although the noise characteristic
of the GOCE gradiometer has been updated due to severalehafte mission design (such as the abolition of
the field emission electronic propulsion thrusters), wekdtiere to the original stochastic properties. For noisy
SGG data analysis, decorrelation is applied as outline@at. 2.1. Since the gradiometer reference frame axes
of data simulation are defined according to “along-tracktoss-track” and “quasi-radial”, we transform the
functional model in Eq. (49) into the orbit frame.

Within this contribution, we restrict the attention on ttealial hI-SST observation; and the quasi-radial
SGG measurement, denoted/ds. Moreover, the reference gravity field model OSU86F (RappGruz 1986)
complete to full analysis degree and ordehas been reduced from the data in advance. Thus, we estimate
corrections to a set of reference parameters rather thatugdsalues. The choice of the reference model is not
critical at all in our closed-loop simulation study.

We perform the calculations on a 64-processor cc-NUMA stgraputer using OpenMP for parallelization.
The platform is part of an SGI Altix 3700 system, consistifig 6 Intel Itanium21.3 GHz CPUs, 832 GByte
of memory and 2.8 TByte of scratch disk space. The total peafopnance of the system 22 TFLOPS.

For LSQR implementation, the main effort occurs for desigtrim assembly. Since each observation, i.e.,
each row ofA, can be treated separately, the parallelization of therifgo is realized by distributing the
number of observations to the individual CPUs. Thus, thalpdmregion covers the successive design matrix
decomposition which is split (uniformly) among the prodéegselements used. Moreover, in case of PCA-

LSQR, the computation of the design matrix preconditioegrarformed in parallel.
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Table 1. WRMS values (cm) of (quasi-)geoid height differences (coteg on a global® grid) with respect to EGM96
neglecting low-order coefficientd: = 100 : mtnres = 10; L = 200 : Mghres = 20; L = 300 : Mthres = 30

Type of Resolution. Considered Noise-free  Noisy

observation resolution data data
hl-SST 100 75 4.6 38.3
SGG 100 100 5.9 10.2
200 200 2.0 6.1
300 230 1.1-1072 133

7.1 Analysisresults

In a first study, we perform both hl-SST and SGG data analyfsioise-free observation data without using
regularization. Thus, the model parameter estimates &eetafl by spectral leakage (and to a minor part by
aliasing) effects only. Their influence increases as theimmamx degreel decreases, since the unmodeled
signal content of the data is mapped to the coefficientsvedoll his behavior is proved by the third column in
Table 1.

Table 1 presents latitude-weighted root mean square (WRMIBEes of (quasi-)geoid height differences

with respect to EGM96, approximated by

L l
hi=RY Y Vim( @) At m. (51)

The A, ,,, indicate the residual geopotential coefficients subjecdt,, = ., + EE’EU%F - ﬁEﬁM% and

U1.m the elements of. Further

Sy ((hF)? cos i)
Zij\il CoS ©; 52)

WRMS} =
holds for the evaluation of the WRMS witN being the number of evaluation points considered, prefgrab
distributed on a regular grid of, e.ds.

Dependent on the satellite mission design, it is reasornableave out polar areas for the evaluation of
Eqg. (52). In particular, the GOCE satellite ground-track Wwave a coverage ofpcoce| =~ 83°. Figure 2
presents the characteristic of (quasi-)geoid height erffl@MS values per circle of latitude) of the parameter
estimate relative to the EGM96 model. The RMS values inergéth increasing latitude. Fdp| > vcock
the values are not representative at all.

The low-order coefficients reflect the properties in the padgions. Thus, instead of evaluating Eg. (52)

around a spherical belt only, alternatively the spheri@ahionics with ordern < myu.es Can be neglected

for WRMSZ computation. Van Gelderen and Koop (1997) deduced a defpendent rule of thumb for the



21

non-resolvable maximal ordey,..s subject tom.es = I | 5 — I | with I as the inclination of the satellite
orbit. For the computation in Table 1, we neglect low ordetg,.s = 10 (L = 100), minhres = 20 (L = 200)

andmgnres = 30 (L = 300) respectively.

o
©

° °
= 2 ‘

RMS of geoid height errors (m)
o
N

---- - ‘ ==

.0 90
Latitude (deg)

&
o
|

Fig. 2. RMS values (m) of (quasi-)geoid height errors per circleatitlide (SGG,L = 200). Solid line: m¢nres = 20,
dashed linempres = 0

Next we analyze noisy data, again without incorporatingilagzation. Figures 3 and 4 illustrate degree
error RMS (DE-RMS) values of the coefficient estimates. Ooatimof observation data allows hl-SST analysis
approximately up to degree and order 80, where@80 is reached for SGG. This agrees with what is currently
expected for the GOCE mission (Pail 2005). Note that the IMBSRurves are truncated at the points where they
cross the EGM96 signal curve. These points we refer to ascthresidered resolution”. For WRMS computation
in the fourth column of Table 1, only the coefficients up to thensidered resolution” have been taken into

account. Higher degrees can not be resolved.

107+ Signal EGM96

0 20 4 60 80 100

0
Degree

Fig. 3. Analysis results of noisy hl-SST data in terms of DE-RMS eall = 100
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Fig. 4. Analysis results of noisy SGG data in terms of DE-RMS valdes; 300

7.2 Truncation criterion

With regard to an appropriate stopping rule for the itemti$QR process, different truncation criteria can be
applied, dependent on the philosophy for truncation. Mathtécal stopping rules (Paige and Saunders 1982a)
are mainly based on the magnitude of the residual véiétdr = || A%, —y||, which is provided in each iteration

k thus requiring no additional computational costs. The esads truncated it ||, or a functional of it, falls
below a pre-defined threshold. Thus, the termination igedlto mathematical properties of the method itself,
but can not serve any physical interpretation to the proliteated. A completely different idea offers the cross
validation (CV) functional, an approach that is addressdgjdrck (1996), Kusche and Mayer-Gurr (2001) and
Ditmar et al. (2003b).

We have chosen a truncation criterion apart from the methbdse. It is related to the physical correspon-
dence of the estimate in terms of a gravity field functionalpérticular, process termination is coupled to the
differenceAWRMS}* " = WRMS} — WRMS} !, which is evaluated at the end of each iteratiorf the
value for AWRMS;"*~* falls below the pre-defined truncation threshéld.e., if AWRMS;"*~! < ¢ holds,
the final estimate is found. However, due to the non-monotoonvergence of the LSQR method (cf. Fig. 5),
we recommend to continue the process for a few iterationsrio ensure having really reached the truncation

threshold.

7.3 Block-diagonal preconditioning

Table 2 presents runtime results for the basic LSQR impléatien using eight CPUs. The truncation threshold
is fixed conservatively té = 0.25 mm. The values displayed in Table 2 correspond to the nunfbtarations
necessary to finally reach i.e., the runtime for additional iterations beyond theetirold is not considered.

For hI-SST analysis witl, = 100, convergence is achieved after 53 iterations. Approxitpdle same num-
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Fig. 5. Convergence behavior of LSQR (SGG~ 100)

Table 2. Runtime results LSQR (8 CPUs)

Type of Resolution  Number of Wall time

observation L iterations (h)
hl-SST 100 53 1.2
SGG 100 56 1.1
200 180 13.4

Table 3.Runtime results PCA-LSQR (8 CPUSs)

Type of Resolution  Number of Walltime Walltime

observation L iterations total (h) Lg' ()
hl-SST 100 6 0.4 0.2
SGG 100 8 0.4 0.2
200 14 2.6 14

250 19 5.1 2.6

300 32 14.4 4.8

ber holds for the equivalent SGG analysis. However, the rarrobiterations increases to 180 for a spectral
resolution ofL = 200.

Block-diagonal preconditioning according to Sect. 3 hasnbienplemented and successfully parallelized.
Runtime decreases significantly since the number of itaratdrops dramatically compared to the basic algo-
rithm. According to Table 3, fol. = 100 convergence is achieved within less than 10 iterationstiRenis
approximately one third compared to Table 2. Regarding 200, the number of iterations drops from 180 to
14. Runtime is reduced tt9.4 % compared to basic LSQR.

Note that the computational costs within each iterationcaraparable for LSQR and PCA-LSQR. The ad-
ditional operations of applyiny' and(Ly")” to a vector in the PCA-LSQR case have no significant runtime
effect. However, the setup of the (inverse) preconditiagtsetf is a quite costly process. Table 3 shows the part

for Lgl calculation opposite to the total runtime. Roughly spokeif the computing time is required fc'lirlg1
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Table 4. Runtime results PCA-LSQR (SGG, = 200)

Number CPUs Iterations Walltime (h) Speed-up

14 19.68 1

14 2.59 7.6
16 14 1.38 14.3
32 14 0.72 27.3
64 14 0.41 48.0

Table 5. Runtime results SP-LSQR (hl-SSII,= 100, 1 CPU)

Lsp Number  Wall time Wall time
iterations  total (h) QR decomposition (h)

- (LSQR) 53 9.9 -
20 33 7.0 0.2
50 17 11.4 6.8

computation. This can be improved by the approximate cafimn of the block-diagonal preconditioner, but is
not considered here.

Moreover, exemplary for all scenarios, Table 4 displayginu@ scaling dependent on the number of pro-
cessing units. The speed-Sp is defined as the ratio between serial runtifheand the runtime achieved using

p processors, denoted &s. Thus,

T;
S, = ~Z1CPU (53)
Tp CPUs

holds. In the optimal case, the speed-up is equal to

This is not realizable in practical applications due to camination and synchronization reasons. However,
the speed-up value is an appropriate quality measure ofafal@l implementation. According to Table 4, for
our implementation, the speed-up is largely close to thebrarmaf CPUs used. This demonstrates the efficient

and powerful parallelization of the algorithm.

7.4 Subspace preconditioning

Table 5 summarizes runtime results for SP-LSQR. The suledpfachas been chosen to constitute the solution
space of the long-wavelength part of the gravitational spetwith maximal resolutior.gp. With increasing
subspace dimension, the number of iterations drops acagydiNote that if the subspace dimension is zero,
SP-LSQR equals the LSQR method from the methodological pbiview.

On the other hand, the effort for preconditioning itself piarticular the QR decomposition according to

Eq. (28), increases with increasidgyp. For this reason, the wall time measurements in Table 5 decadée
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Table 6. Runtime results SP-LSQR (hl-SSII,= 100, Lsp = 50)

Number Wall time Speed-up Wall time
CPUs  1literation(s) 1literation QR decomp. (h)

1 904 1 6.8
16 428 2.1 4.2

with the number of iterations. Even a deceleration can berves forLgsp = 50 compared to the LSQR version
without preconditioning. For the former, more than half tatime is required for the QR decomposition
procedure.

From the computational point of view, subspace precondlitig turns out to be less effective than block-
diagonal preconditioning for two reasons. Firstly, asadgementioned in Sect. 4, the design matkixhas to be
assembled twice for each iteration. Secondly, the runtifioetéor QR decomposition using LAPACK (linear
algebra package) routines (Anderson et al. 1999) incredfrsesatically with increasing subspace dimension.
Moreover, in the current implementation the problem conicgythe QR decomposition also affects the speed-
up of the method using different numbers of CPUs. This isitlated in Table 6 comparing one to 16 CPUs.
The speed-up of one iteration has the value of only 2.1.

Besides the computational drawbacks of SP-LSQR, therests almethodological one for the scenarios
investigated. Block-diagonal preconditioning performsambetter than the subspace method. For hl-SST anal-
ysis, only six iterations are necessary using PCA-LSQR4dohehe final estimate, whereas SP-LSQR does not
fall below 17 iterations according to the scenarios in Tabl€his is mainly due to the special problem design

considered, i.e., a satellite orbit configuration closéntitleal conditions as outlined in Sect. 1.

7.5 Regularization

Tikhonov-Phillips regularization has been added sucodigsb the implementations. For R-LSQR, multiple
regularization parameter treatment has no significanteffie the overall runtime, cf. Table 7. The additional
costs considering 100 regularization parameters opptusitee unregularized method are less thah.

However, to find the “best” regularization parameter amotigsa priori values, some quality criterion has
to be evaluated for each of them (the corresponding runsmeglected in Table 7). Depending on the quality
measure, this is a more or less costly process and in geheragkrbcedure has to be repeated for each single
regularization parameter. In the case studies presentegewormed global WRMS evaluation of successive

estimates. This was done on a regular grid dfesolution in latitude and0° resolution in longitude. For a
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Table 7.Runtime results R-LSQR (SGG, = 200, 8 CPUs, 1 iteration)

Number regularization param.  Wall time (s)  Wall tinf@)(

no regularization 242.7 100.0
1 242.7 100.0
10 243.6 100.4
100 244.9 100.9

spectral resolution of. = 200 and eight-CPUs parallel processing, truncation criteeiealuation requires 20 s

wall time for each regularization parametgr

8 Conclusions

In this contribution, we investigated and applied the tigesl SQR algorithm for satellite-based gravity field re-
covery. In particular, we performed hl-SST and SGG datayaismbf a GOCE-like simulation scenario covering
one month of observation data with 5s sampling.

The algorithm is characterized by transformation of theiodl LS problem to a bidiagonal subproblem,
which is solved in terms of a QR decomposition. In generataiive solvers have only small memory require-
ments since they avoid design and normal matrix storageeMar, they are largely independent of the process-
ing platform, i.e., they are very well suited for parallehgputing. However, opposite to brute-force LS solvers,
they do not provide the variance-covariance matrix of theupeter estimate. This is the major drawback of
iterative methods since the approximated computationrof @stimates never yields exact information.

For space-geodetic applications, the basic LSQR algomdteording to Paige and Saunders (1982a;b) turns
out to be not very effective. In terms of LSQR tuning, we addea (i) preconditioning, (ii) regularization and
(iii) parallel implementation.

Block-diagonal preconditioning has been proven to cleadperform subspace preconditioning for two
reasons. Firstly, for the subspace method the twofold asiyashthe design matrix in each iteration is unavoid-
able. Secondly, the numerical costs for the QR decompasditicrease dramatically with increasing subspace
dimension, cf. Table 5. On the other hand, design matrixiattiagonal preconditioning performs very well.
According to Tables 2 and 3, the number of iterations redbgesfactor of around 10. Due to the additional ef-
fort for the computation of the preconditioner, the walléimeduces by a factor of 3-5. Actually, preconditioner
computation takes around half of the overall runtime.

Regularization in general form has been added to the otiglB@R method by transformation of the ex-

tended minimization problem to standard form. Compareti¢amnregularized algorithm, runtime increases by
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less thanl % considering 100 regularization parameters at once. Thys)arization requires only marginal ad-

ditional computational effort. However, the combinatidrbfock-diagonal preconditioning and regularization
in general form needs further investigation. In our curierglementation, the transformation to standard form
can not be realized warranting preconditioning.

The LSQR method is well suited for parallel implementatigery good scaling results could be achieved
up to 32 CPUs, cf. Table 4. For 64 CPUs, the speed-up decreaé8sThe parallel efficiency strongly depends
on the problem dimension. Thus, we expect the scaling reguimprove for larger problems.

In future, we aim to expand LSQR tuning for geopotential very. In particular, this involves variance
component estimation for the proper weighting of differeinéervation types and the approximate computation

of error estimates.
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