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S U M M A R Y
Theoretical models of the viscoelastic relaxation of a spherical Earth are derived to model
large-scale postseismic deformation resulting from great earthquakes (M > 7) over decadal
timescales. Most existing models of postseismic deformation do not consider strong lateral
heterogeneities in mantle viscosity, in particular in the subducting slab where such events occur.
In addition, the self-gravitation effect is often treated only approximately. Both effects become
important when observations from space geodetic techniques such as GPS and GRACE are
interpreted. In this paper, we present a spectral finite-element approach that allows these
two effects to be considered in a rigorous way. In this way, much larger lateral viscosity
variations can be handled than by perturbation techniques. We derive interface conditions for
an arbitrary shear fault in the form of double-couple forces that are equivalent to a prescribed
dislocation and simulate a relaxation process for an incompressible Maxwell earth with a 3-D
viscoelastic structure. Computational results are validated for a spherically symmetric model
by an independent method based on the inverse Laplace integration, and good agreement is
obtained. As an example, we apply this approach to the 2004 Sumatra–Andaman earthquake
and simulate a large-scale postseismic gravity potential variation by a forward calculation. In
the presence of a slab, the secular variation in geoid height change decreases by 30 per cent
for wavelengths longer than 500 km, with respect to the case excluding the slab. The effect of
the slab can exceed 0.3 mm yr−1 for short-term variations when the asthenosphere viscosity is
1019 Pa s, which are larger than the observation errors of GRACE. For a displacement field, a
decrease in deformation rates can amount to 70 per cent due to the inclusion of a slab, which
is detectable with geodetic observations such as GPS. The effect of the slab is attenuated in
the gravity field for such longer wavelengths since horizontal scales of the slab are smaller
than its spatial resolution. Lateral heterogeneities in viscosity due to a slab should therefore
be considered for interpreting observed postseismic relaxation due to a large thrust event in a
subduction zone.

Key words: Satellite geodesy; Transient deformation; Seismic cycle; Time variable gravity;
Subduction zone processes; Dynamics of lithosphere and mantle.

1 I N T RO D U C T I O N

Advanced space geodetic observations such as GPS and GRACE have revealed that the 2004 Sumatra–Andaman earthquake (M w = 9.3;
Stein & Okal 2005)) caused crustal movement and gravity variation at spatial scales exceeding 1000 km (Banerjee et al. 2005; Han et al. 2006;
Chen et al. 2007; Panet et al. 2007). The interpretation of such large-scale deformation requires the application of a theoretical framework
that includes the effects of the curvature of the Earth and its self-gravitation (Sun & Okubo 1993; Sun et al. 1996; Piersanti et al. 1995;
Pollitz 1997; Wang 1999; Pollitz 2003; Tanaka et al. 2006, 2007). For instance, co- and postseismic crustal movement associated with the
Sumatra event has been estimated with spherically symmetric earth models by Boschi et al. (2006), Fu & Sun (2006) and Pollitz et al. (2006).
Piersanti et al. (1997) and Piersanti (1999) modelled postseismic deformation caused by the 1964 Alaska and 1960 Chile events, using an
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incompressible spherical earth model. The minute coseismic gravity change caused by the 2003 Tokachi–Oki earthquake with M w = 8.0
was detected by a network of superconducting gravimeters, even at an epicentral distance of 1000 km and was successfully reproduced by a
theory based on a spherical earth model (Imanishi et al. 2004).

Postseismic deformation induced by large earthquakes over decadal timescales is driven by the viscoelastic relaxation of the Earth,
reflecting mainly the rheology of the asthenosphere (e.g. Thatcher & Rundle 1979; Fukahata et al. 2004; Lorenzo-Martin et al. 2006).
Most previous theories of viscoelastic postseismic deformation of spherical earth models are based on the normal mode approach (Peltier
1974), assuming radial stratifications of the elastic parameters, density and viscosity. Sabadini et al. (1984) calculated perturbations in the
moment of inertia induced by posteismic deformation of incompressible earth models. Pollitz (1992) computed surface deformation for
a compressible earth model in the absence of self-gravitation. Later, he incorporated the effect of self-gravitation approximately into the
formulation, neglecting time variations in the perturbed gravity potential (Pollitz 1997). He also showed that viscoelastic relaxation may
account for postseismic deformation caused by local events with shorter timescales (e.g. Pollitz et al. 2001). Piersanti et al. (1995) derived
normal mode solutions for a self-gravitating, incompressible and multilayered earth model. Combining the reciprocity theorem (Okubo 1993)
with the normal mode method, Wang (1999) computed vertical deformation in the presence of self-gravitation and compressibility for earth
models with a simple viscosity profile. Tanaka et al. (2006, 2007), on the other hand, showed that the numerical integration for the inverse
Laplace transform is valid for computing relaxation processes of finely stratified, compressible and self-gravitating earth models, without
imposing additional constraints on the viscoelastic parameters.

These approaches, however, do not consider the lateral heterogeneities in rheology that occur in plate subduction zones where large
earthquakes (M w ∼ 8) have frequently occurred. Temperature variations inferred from seismic tomography indicate that a slab has a higher
viscosity than the surrounding mantle by several orders of magnitude (e.g. Zhao et al. 1994 and Chapters 1.3 and 3.2 in Karato 2003).
Nevertheless, only a small number of methods have been proposed for calculating postseismic relaxation of a spherical Earth with a laterally
heterogeneous viscosity distribution. Pollitz (2003) developed a semi-analytical approach to take into account laterally heterogeneous elastic
parameters and viscosity by applying seismic scattering theory to the normal mode representation established in his previous theory (Pollitz
1997). Finite element methods have also been applied to include the effect of the Earth’s curvature and self-gravitation (e.g. Bolte et al.
2007). In most previous finite element modelling, however, self-gravitation is not treated as a body force, but its effect is only simulated
approximately (e.g. Cohen 1994; Wang et al. 2001; Hu et al. 2004).

In studies of ‘coseismic’ deformation, on the other hand, Fu & Sun (2007) applied a perturbation method for tidal deformation to
consider global lateral heterogeneities in density for a spherical model. Du et al. (1994), later corrected by Cervelli et al. (1999), derived a
general solution of the elastic response of a laterally heterogeneous half-space medium by using a perturbation method (references describing
solutions for particular cases can be also found in the review by Du et al. 1994).

The studies dealing with lateral heterogeneities in computations of the viscoelastic response of the Earth to surface loading have the
same theoretical framework as that of postseismic relaxation. Several approaches have been developed, including an iterative technique to
estimate eigenmode coupling in the Laplace domain (D’Agostino et al. 1997), a perturbation method in Cartesian geometry (Kaufmann &
Wolf 1999), a perturbation theory making use of the eigenfunction expansion formalism (Tromp & Mitrovica 2000), as well as finite element
approaches (e.g. Sabadini et al. 1986; Gasperini & Sabadini 1989; Kaufmann et al. 1997; Martinec 2000; Zhong et al. 2003).

A suitable method for computing the postseismic relaxation of a spherical Earth in the presence of a subducting plate is the spectral
finite-element approach (Martinec 2000). This technique was applied by Klemann et al. (2007) to model the response of a slab structure to
glacial changes in Patagonia, which showed the substantial influence of slab geometry on the induced displacement field. The advantages
of this method are (1) the effects of the Earth’s curvature and self-gravitation are rigorously treated; (2) the method enables much larger
variations in viscosity to be considered than is possible by perturbation methods; (3) the parametrization of stress is based on tensor spherical
harmonics, without a need to use the Laplace transform, avoiding coupling between Laplace eigenmodes influenced by different spherical
harmonic degrees (e.g. Wu 2002) and (4) the weak formulation used and the finite element representation in the radial direction allows us to
treat seismic sources in a more analytical way.

In this study, we apply the spectral finite element approach to viscoelastic deformation caused by an internal dislocation to investigate
the effect of a subducting plate on postseismic relaxation in a self-gravitating spherical earth model. In the subsequent section, we explain
how to modify the boundary conditions in Martinec (2000), originally formulated for a surface load, to treat an internal dislocation and derive
their spectral finite element representation for an arbitrary shear dislocation, including strike-slip and dip-slip components. In Section 3, the
derived boundary conditions are validated by an independent method to calculate postseismic relaxation in a spherically symmetric model
(Tanaka et al. 2006, 2007). In Section 4, postseismic deformation in the presence of a slab is simulated. Effects due to a slab are discussed
by comparing the results with those computed for a model excluding the slab. Our conclusions are summarized in Section 5.

2 M E T H O D

2.1 An outline of the spectral finite element approach for surface loading

In this section, we give an outline of the spectral finite-element approach presented by Martinec (2000), which will be modified to con-
sider postseismic deformations in the same mathematical framework. The governing equations for viscoelastic deformation of an initially
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hydrostatically pre-stressed self-gravitating sphere can be written as

divτ − ρ0gradφ1 + div(ρ0u)gradφ0 − grad(ρ0u · gradφ0) = 0, (1)

∇2φ1 + 4πGdiv(ρ0u) = 0 (2)

(e.g. Dahlen 1974), where u, φ, τ and G represent the displacement, the gravity potential increment, the stress tensor and Newton’s gravitational
constant, respectively, ρ 0 = ρ 0(r ) is the initial density, r is the radial distance from the centre of the Earth and the hydrostatic and the perturbed
states are expressed by the subscripts 0 and 1, respectively. Moreover, the constitutive equations for a Maxwell viscoelastic material and the
constraint of incompressibility are written as

τ̇ = τ̇ E − μ

η
(τ − �I), (3)

τ E = �I + 2με, (4)

divu = 0, (5)

where ε = 1
2 (gradu + gradTu) is the strain tensor, � is the pressure increment, I is the second-order identity tensor and the dots denote time

derivatives. μ = μ(r ) denotes the 1-D (spherically symmetric) elastic rigidity and η = η(r , θ , ϕ) represents the 3-D viscosity, where θ and ϕ

are colatitude and longitude, respectively.
The boundary conditions are imposed at the Earth’s surface and the discontinuity between the mantle and the fluid outer core. At the

surface, a surface-mass density and the associated potential discontinuity are given. At the core–mantle boundary, the continuity of the normal
component of the displacement and the stress vector, while assuming free-slip behaviour, are employed.

To solve these boundary value problems, a single-level explicit time-differencing scheme is introduced into the time derivative in the
constitutive equation (eq. 3), and a finite-element approximation is applied in the radial direction. The angular dependence in the field variables
u, φ, � and ε are described by expanding these quantities into spherical harmonics:

u(r, θ, ϕ) =
∞∑
j=0

j∑
m=− j

[
U jm(r )S(−1)

jm (θ, ϕ) + Vjm(r )S(1)
jm(θ, ϕ) + W jm(r )S(0)

jm(θ, ϕ)
]
, (6)

φ1(r, θ, ϕ) =
∞∑
j=0

j∑
m=− j

Fjm(r )Y jm(θ, ϕ), (7)

�(r, θ, ϕ) =
∞∑
j=0

j∑
m=− j

� jm(r )Y jm(θ, ϕ), (8)

ε(r, θ, ϕ) =
∞∑
j=0

j∑
m=− j

6∑
λ=1

ελ
jm(r )Zλ

jm(θ, ϕ), (9)

where Y jm(θ , ϕ) denotes a scalar spherical harmonic of degree j and order m and S(λ)
jm , λ = −1, 0, 1, and Z(λ)

jm , λ = 1, . . . , 6, are vector and
tensor spherical harmonics (Martinec 2000), respectively. Their definitions are given in appendix B of Martinec (2000). In eq. (6), terms
including U jm and V jm express spheroidal motion and terms including W jm describe toroidal motion. The finite element representation for
the radial functions in eqs (6)–(8) can be defined as

[U jm(r ), Vjm(r ), W jm(r ), Fjm(r )] =
P+1∑
k=1

[
U k

jm, V k
jm, W k

jm, Fk
jm

]
ψk(r ), (10)

where ψk(r ) = rk+1−r
hk

and ψk+1(r ) = r−rk
hk

denote the piecewise linear finite elements, and

� jm(r ) =
P∑

k=1

�k
jmξk(r ), (11)

where ξ k(r ) = 1 for r k ≤ r ≤ r k+1, denotes the piecewise-constant finite elements. Here, hk = r k+1 − r k and P denotes the number of
subintervals on r CMB = r 1 < r < r P+1 = a, where r CMB is the radial distance at the core–mantle boundary and a is the radial distance at the
Earth’s surface.

The solution of the problem, that is, the expansion coefficients of the finite element functions in eqs (10) and (11), are determined so
that the following variational equality is satisfied for all test functions, δu, δφ1 and δ�, in the same functional space as the solutions ui+1,
φi+1

1 and �i+1:

δE(ui+1, φi+1
1 , �i+1, δu, δφ1, δ�) = δF i+1(δu, δφ1), (12)

where i denotes the ith time step, and δE and δF represent the variations of the energy functionals and the variations of the functionals
associated with applied forces and viscoelastic dissipation, respectively. The bilinear functional of the solution and the test function on the
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left-hand side of eq. (12) are defined as the sum of the variations in the energy associated with the pressure, elastic shear energy, gravitational
energy and the term associated with the uniqueness of the solution (Martinec 2000):

δE(u, φ1,�, δu, δφ1, δ�) = δEpress(u,�, δu, δ�) + δEshear(u, δu)

+δEgrav(u, φ1, δu, δφ1) + δEuniq(u, δu). (13)

The linear functional at the right-hand side of eq. (12) is defined as

δF i+1(δu, δφ1) = δF i
diss(δu) + δF i+1

surf (δu, δφ1) + δW i+1(δu, δφ1). (14)

Here, δF i+1
surf in eq. (14) represents the functional related to a prescribed surface load and can be specifically written as

F i+1
surf =

∫ (
bi+1

0 · u + bi+1
1 φ1

)
dS, (15)

bi+1
0 = −[er · τ i+1]+− = −g0(r = a)σ i+1er , (16)

bi+1
1 = − [(

gradφi+1
1 + 4πGρ0ui+1

) · er

]+
−

= − 1

4πG

j + 1

a
φi+1

1 − σ i+1,
(17)

where d S denotes the element of the external surface with radius r = a and er , σ and g0 are the unit normal vector, the surface mass-load
density and the unperturbed gravity, respectively. δW i+1 denotes the variation of the work done by the applied internal forces, which does not
appear for the case of surface loading but will be introduced in Section 2.2 when postseismic deformation is discussed. δF i

diss is the variation
of the dissipative energy defined as [− ∫

(τ V,iδε)dV ], which can be evaluated by the volume integration of the product of the non-elastic
part of the stress tensor computed for the displacement at the previous time step i and the strain calculated for the test function. By this
term, coupling effects between the spheroidal and toroidal deformation due to lateral heterogeneity in viscosity are taken into account. The
other terms in eq. (12) are evaluated at the current time step (i + 1), meaning the solution at the current time can be recursively determined
once an initial value is given. Consequently, the solution is obtained such that the difference of the energy caused by the deformation (= E)
from the sum of the energy generated by the boundary conditions and the dissipated energy (= F ) takes a stationary value at each time step
[δ(E − F ) = 0]. Considering that eq. (12) holds for all δu, δφ1 and δ�, it is finally reduced to the form of the following linear algebraic
equation:

Axi+1 = f i+1, f i+1 = f i+1
(
bi+1

0 , b1
i+1, xi

)
, (18)

where xi+1 denotes the solution vector at the current time (i + 1) and A is the time-independent matrix, whose expression is explicitly given
in Martinec (2000) and bi+1

0 , bi+1
1 and x0 are the prescribed boundary and initial conditions.

2.2 Spectral finite element description of the source conditions

The governing equations for viscoelastic deformation caused by a dislocation in an initially hydrostatic, self-gravitating and incompressible
spherical Earth have exactly the same forms as eqs (1)–(5) (e.g. Piersanti et al. 1995). Therefore, by specifying the appropriate interface
conditions corresponding to postseismic deformation, we can use the spectral finite element approach in computations of postseismic
relaxation.

2.2.1 Boundary conditions for postseismic relaxation

Boundary conditions for postseismic deformation are imposed at the Earth’s surface (r = a), a seismic source and the core–mantle boundary.
The free surface condition is constituted by setting the surface-mass density to zero in eqs (16) and (17):

τ · er = 0, (19)

(gradφext
1 − gradφ1 − 4πGρ0u) · er = 0, (20)

gradφext
1 = − j + 1

a
φ1, (21)

which agrees with the corresponding surface condition for postseismic deformation (e.g. Sun & Okubo 1993). Here, φext
1 is the perturbation of

the gravitational potential on the exterior side of the surface (Martinec 2000). The dislocation condition across a fault surface can be written
as (Dahlen 1972)

[u]+− = �u, (22)

[φ1]+− = 0, (23)

[n · τ ]+− = ∇� · ([u]+−n · τ ), (24)
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Figure 1. (a) A prescribed dislocation. (b) The equivalent double-couple forces. The same as fig. 4 in Dahlen (1972).

[(gradφ1 + 4πGρ0[u]+−) · n]
+
− = 0, (25)

where �u, n and ∇� ≡ ∇ − n(n · ∇) denote a prescribed dislocation vector, the unit vector normal to the fault plane � and the surface
gradient operator on �, respectively. The constraint at the core–mantle boundary is the solid–liquid condition, as in the case of surface
loading.

2.2.2 How to incorporate the dislocation condition into the presented method?

The split-node technique (Melosh & Raefsky 1981) has been often used to consider a dislocation condition when co- and postseismic
deformations are modelled by a finite element method, (e.g. Suito & Hirahara 1999; Hu et al. 2004). A merit of this technique is that the
formulation of the boundary condition applies neither net forces nor moments to a finite element grid (Melosh & Raefsky 1981). We do not,
however, use this technique, since the formulation becomes much more complex and computationally expensive. In the spectral finite element
approach followed in this work, the finite elements are introduced in the radial coordinate only. Therefore, when a dislocation is considered
across a vertical fault along a latitude line, for instance, the integration domains over the angular variable θ must be divided into two regions,
0 ≤ θ ≤ θ 0 and θ 0 ≤ θ ≤ π , where θ 0 denotes colatitude at which a source is located. This division breaks the orthogonality of the spherical
harmonics when deriving the equation of the energy variation (eq. 12) and reduces computational efficiency.

To consider the dislocation conditions (eqs 22–25), we apply equivalent double-couple forces (e.g. Dahlen 1972). That is, the effect of a
prescribed displacement discontinuity across a fault surface is exactly the same as the effect of a hypothetically introduced extra body force
into a fault-free medium (Dahlen 1972). The derivation of the equivalent forces is described in the same paper (Dahlen 1972). We take an
example of equivalent double-couple forces for an infinitesimal fault surface in an isotropic and initially hydrostatically pre-stressed elastic
medium, a fault normal to the direction of the x2 axis and the dislocation vector parallel with x1 in a Cartesian axis system x 1, x 2, x 3 (Fig. 1).
Then, the equivalent forces are defined as

f1(r) = −M0δ(x1)δ(x2)
d

dx3
δ(x3), (26)

f2(r) = 0, (27)

f3(r) = −M0δ(x2)δ(x3)
d

dx1
δ(x1), (28)

M0 = μ(r )�udA, (29)

where r = (x 1, x 2, x 3) and dA, �u and M 0 are the area of an infinitesimal fault surface, a prescribed slip and the moment magnitude,
respectively, and δ(x i ) is the Dirac’s delta function. The expressions of the equivalent forces for more general cases can be found in Dahlen
(1972).

The advantage of applying equivalent forces is that it is not necessary to perform the division of the integration domain with respect to
colatitude θ and longitude ϕ, which originates from the split-node technique. Instead, new variables b0, representing the equivalent forces,
are introduced in the variation of the linear functional δW in the last term of eq. (14). The angular dependence of equivalent forces is then
expanded in terms of vector spherical harmonics, similar to that used in eq. (6). This reduces net forces and moments caused by equivalent
forces given on the horizontal surface of r = r s, where r = r s is the radial distance to the source, compared with the case in which equivalent
forces are applied to finite elements deployed along the horizontal direction. As a consequence, effects due to net forces and moments on
computational results become sufficiently small (Section 3). In addition, the net force and moment summed over the whole Earth affect
deformations of spherical degrees 0 and 1 only, which can be neglected in practice.

2.3 Expressions of boundary conditions using double-couple forces for various sources

We now derive the boundary conditions for all types of shear faults, including strike-slip and dip-slip mechanisms.
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Figure 2. Vertical strike-slip dislocation located below the equator and equivalent double-couple forces to the dislocation (arrows in the right-hand box). �u
denotes the prescribed slip at the source, S, and the fault strike is eastward. 	er , 	eθ and 	eϕ are the unit base vectors at S, and (a) and (b) show the single-couple
forces forming the double-couple forces. The fault plane with an infinitesimal area is marked by d A. The direction of the single-couple forces (a) is parallel
to the fault plane and is the same as that of the dislocation (represented by ±	νϕ ). The conjugate single-couple forces (b) have a direction perpendicular to the
fault, but the moment is opposite to that of the single-couple forces (a) so that the sum of the two moments vanishes (denoted by ±	νθ ).

2.3.1 Vertical strike-slip fault

We first derive double-couple forces for a vertical strike-slip fault. Fig. 2 depicts a configuration of this problem in the conventional
spherical coordinate system, whose unit base vectors are er , eθ and eϕ . We assume a point dislocation along the direction of ±eϕ located at
(θ0 = π

2 , ϕ0 = 0). The equivalent double-couple forces at the source are drawn in the figure. They consist of (1) the single-couple forces in
the direction of ±eϕ parallel to the fault and (2) the conjugate single-couple forces in the direction of ±eθ perpendicular to the plane with
ϕ = ϕ0.

The double-couple forces equivalent to the point dislocation are expressed by combining point forces expanded on a sphere. A point
force with a unit magnitude applied at (r 0, θ 0, ϕ0) can be written in terms of vector spherical harmonics, S(λ)

jm , as

f(r, θ, ϕ) = δ(r − r0)

r 2
0

∑
j,m

{
νr Y ∗

jm(θ, ϕ)|θ0,ϕ0 S(−1)
jm (θ, ϕ)

+
[
νθ

∂Y ∗
jm(θ, ϕ)

∂θ
+ νϕ

1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

S(1)
jm(θ, ϕ)

+
[

− νθ

1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ
+ νϕ

∂Y ∗
jm(θ, ϕ)

∂θ

]
θ0,ϕ0

S(0)
jm(θ, ϕ)

}
(30)

(eq. 257 in Takeuchi & Saito 1972). Here, ν r, νθ and νϕ represent the three components of the unit direction vector of the prescribed force, f,
at θ = θ 0, ϕ = ϕ0 and the asterisk denotes complex conjugate. After substituting (ν r , νθ , νϕ) = (0, 0, ± 1) into eq. (30), point forces forming
the single-couple forces (1) given at the southern and northern sides of the fault, θ = θ0 ± �θ

2 , can be represented as

fθ0±(r, θ, ϕ) = ± δ(r − r0)

r 2
0

∑
j,m

{[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0± �θ

2 ,ϕ0

× S(1)
jm(θ, ϕ) +

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0± �θ

2 ,ϕ0

S(0)
jm(θ, ϕ)

}
, (31)

where r0 denotes the radial distance of the point source. We substitute these two forces into the boundary functional b0 ≡ −[τ · er ]+− and
compute the variation of the work due to the applied body forces:

δW =
∫

b0 · δudS = −
∫

[τ · er ]− · δudS =
∫

(fθ0+ + fθ0−) · δudS. (32)

Here, we applied the forces at the minus side of dS. The integration in eq. (32) is carried out on the spherical surface at radius r0 (i.e. dS =
r 2

0 sin θdθdϕ). When the moment magnitude is M 0 ≡ μ(r 0)�u dA, where �u and dA denote the prescribed slip and an infinitesimal area of
the fault, respectively, the magnitude of these forces can be represented in terms of the length of the moment arm �l as
M0

�l
= M0

r0�θ
. (33)

Performing the integration over the angular variable in eq. (32), multiplying the result by M0
�l and taking the limit of �θ → 0 as M 0 = constant,

we obtain

δW = δ(r − r0)
∑
j,m

[{
∂

∂θ

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]}
θ0,ϕ0

δVjm +
[

∂2Y ∗
jm(θ, ϕ)

∂θ 2

]
θ0,ϕ0

δW jm

]
�θ

M0

r0�θ

= δ(r − r0)
∑
j,m

[{
∂

∂θ

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]}
θ0,ϕ0

δVjm +
[

∂2Y ∗
jm(θ, ϕ)

∂θ 2

]
θ0,ϕ0

δW jm

]
μ(r0)�udA

r0
. (34)
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Similarly, substituting (ν r, νθ , νϕ) = (0, ±1, 0) into eq. (30), point forces forming the conjugate single-couple forces (b) given at
ϕ = ϕ0 ± �ϕ

2 , can be represented as

fϕ0±(r, θ, ϕ) = ± δ(r − r0)

r 2
0

∑
j,m

{[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0± �ϕ

2

S(1)
jm(θ, ϕ)

+
[

− 1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0± �ϕ

2

S(0)
jm(θ, ϕ)

}
. (35)

The magnitude of these forces is

M0

�l
= M0

r0 sin θ0�ϕ
(36)

(Fig. 2). Substituting these forces into fθ0± in eq. (32) and following the same procedure to derive eq. (34), the variation of the work due to
the conjugate forces can be written as

δW = δ(r − r0)
∑
j,m

{[
1

sin θ

∂2Y ∗
jm(θ, ϕ)

∂ϕ∂θ

]
θ0,ϕ0

δVjm

+
[

− 1

sin θ2

∂2Y ∗
jm(θ, ϕ)

∂ϕ2

]
θ0,ϕ0

δW jm

}
μ(r0)�udA

r0
. (37)

Finally, taking the sum of eqs (34) and (37) and integrating the result over an incremental area that includes the source (r = r 0), we
obtain an expression of the energy variation for the source with a unit area:

δW = δW (E) + δW (ET), (38)

δW (E) = μk�u�A

r0

jmax∑
j

j∑
m=− j

{
1

sin θ

∂2Y ∗
jm(θ, ϕ)

∂θ∂ϕ
+ ∂

∂θ

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]}
θ0,ϕ0

δV k
jm, (39)

δW (ET ) = μk�u�A

r0

jmax∑
j

j∑
m=− j

[
∂2Y ∗

jm(θ, ϕ)

∂θ 2
− 1

sin2 θ

∂2Y ∗
jm(θ, ϕ)

∂ϕ2

]
θ0,ϕ0

δW k
jm, (40)

where �A = 1 and j max is a cut-off degree of representation (6), and the superscript k at δV k
jm and δW k

jm indicates that δW is applied at the kth
element on the right-hand side in eq. (18), that is, for r 0 = r k . The superscripts (E) associated with the spheroidal motion and (ET) related to
the toroidal motion after δW are introduced for later convenience. For time index i > 0, eq. (38) must be multiplied by exp[−(μk/ηk)i�t],
where �t denotes a prescribed time step in the time-difference scheme, otherwise the double-couple forces would be constant over time,
consequently increasing the resulting dislocation for a Maxwell viscoelastic body.

The summation over j in eqs (39) and (40) starts from j = 1 because the deformation for j = 0 is not induced when incompressibility
is assumed (Martinec 2000). For j ≥ 1, the following relationship holds∫

S(λ)
jmd� =

√
4π

3
δj1(δλ,−1 + 2δλ,1)em, (41)

where em = ez,− 1√
2
(ex + iey), 1√

2
(ex − iey) for m = 0, 1, − 1, respectively, where i denotes the imaginary number (eq. B7 in Martinec 2000).

As a result, the net force and the net torque over the entire sphere occur for j = 1. To be specific, the net force can be written as

F ≡
∑

i

∫
fi d� =

∫ [
(fθ0+ + fθ0−)

M0

r0�θ
+ (fϕ0+ + fϕ0−)

M0

r0 sin θ�ϕ

]
r2 sin θdθdϕ. (42)

Substituting eqs (31) and (35) into eq. (42) and using the relationship of eq. (41), we have

F = M0
δ(r − r0)

r0

∑
j,m

[
∂

∂θ

(
1

sin θ

∂Y ∗
jm

∂ϕ

)
+ 1

sin θ

∂2Y ∗
jm

∂ϕ∂θ

]
θ0,ϕ0

∫
S(1)

jmd�

= − 2M0
δ(r − r0)

r0

1

tan θ0
(sin ϕ0ex + cos ϕ0ey). (43)

The net torque, on the other hand, can be defined as

N ≡
∑

i

∫
(ri × fi )d�

=
∫

r0 ×
[

(fθ0+ + fθ0−)
M0

r0�θ
+ (fϕ0+ + fϕ0−)

M0

r0 sin θ�ϕ

]
r2 sin θdθdϕ, (44)

which remains for the toroidal forces of j = 1, since∫
r × S(−1)

jm d� =
∫

r × S(1)
jmd� = 0, (45)
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Figure 3. Vertical dip-slip dislocation located below the equator and equivalent double-couple forces to the dislocation. For details, see the caption of Fig. 2.

∫
r × S(0)

jmd� = −r

∫
S(1)

jmd� = −2

√
4π

3
rδ j1em . (46)

Substituting eqs (31) and (35) into eq. (44) and using eqs (45) and (46), the net torque finally becomes

N = −M0δ(r − r0)
∑
j,m

[
∂2Y ∗

jm

∂θ 2
− 1

sin θ2

∂2Y ∗
jm

∂ϕ2

]
θ0,ϕ0

∫
S(1)

jmd�

= 2M0δ(r − r0)

[
cos θ0ez + cos θ0

tan θ0
(− cos ϕ0ex + sin ϕ0ey)

]
. (47)

The above net force and net torque, however, causes no translation and rotation of the entire sphere since the uniqueness of the solution is
guaranteed by the last term in eq. (13). It is also known that the deformation for j = 1 excited in a laterally homogeneous earth model is
negligibly small in the total deformation (Sun & Okubo 1993). In a practical computation, therefore, we may neglect the terms with j = 1 as
long as inhomogeneous viscosity structures with such a long wavelength (20 000 km) are not considered.

Since a slip on a shear fault does not change gravitation, the boundary term b1 in eq. (17) vanishes and the boundary condition eq. (25)
is satisfied identically.

2.3.2 Vertical dip-slip fault

Next, we consider a vertical dip-slip fault (Fig. 3). In this case, the two single-couple forces illustrated in panels (a) and (b) are considered.
The single-couple forces (Fig. 3a) can be written by substituting (ν r, νθ , νϕ) = (±1, 0, 0) into eq. (30) and replacing θ 0 by θ0 ± �θ

2 ,

fθ0±(r, θ, ϕ) = ± δ(r − r0)

r 2
0

∑
j,m

[Y ∗
jm(θ, ϕ)]θ0± �θ

2 ,ϕ0
S(−1)

jm (θ, ϕ). (48)

Following the same procedure as in the strike-slip case, we obtain the expression for the variation of the work as

δW (B) = μk�u�A

r0

jmax∑
j

j∑
m=− j

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δU k
jm . (49)

The label (B) is introduced for later convenience.
For the conjugate single-couple forces (2), we place the forces in the direction of ±eθ at different depths (r = r k+1, r k−1) to approximate

the derivative of the δ function with respect to r (see eq. 26). These forces can be written as

fr±(r, θ, ϕ) = ± δ(r − rk±1)

r 2
0

∑
j,m

{[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

S(1)
jm(θ, ϕ)

+
[

− 1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

S(0)
jm(θ, ϕ)

}
. (50)

Multiplying the magnitude of these forces by

M0

�l
= M0

rk+1 − rk−1
, (51)

we obtain

δW± = ±δ(r − rk±1)
M0

rk+1 − rk−1

∑
j,m

{[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δV k±1
jm (θ, ϕ)

+
[

− 1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δW k±1
jm (θ, ϕ)

}
. (52)
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We should note that in this expression, the forces of the same magnitude are prescribed at two different depths, causing a net torque in the
spectral domain with respect to r = 0. To correctly consider the effect of the dislocation, torques generated by the applied two forces must
balance. To achieve this, we multiply the magnitude of the force applied at r k+1 by the factor rk

rk+1
and that applied at r k−1 by rk

rk−1
. Without

introducing these factors, a difference in displacement will increase over time, and reach approximately 10 per cent at the fluid limit.
Finally, substituting M 0 = μ(r k)�udA into eq. (52) and integrating the result over a small area that includes the source, we obtain the

variations of the work for a vertical dip-slip fault with a unit area that are applied at the (k + 1)th and (k − 1)th elements:

δW‖+1 ≡ δW (D+) + δW (D+T), (53)

δW (D+) = μk�u�A

r0

rk

rk+1 − rk−1

(
rk

rk+1

)∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δV k+1
jm , (54)

δW (D+T ) = −μk�u�A

r0

rk

rk+1 − rk−1

(
rk

rk+1

)∑
j,m

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δW k+1
jm , (55)

δW‖−1 ≡ δW (D−) + δW (D−T), (56)

δW (D−) = −μk�u�A

r0

rk

rk+1 − rk−1

(
rk

rk−1

) ∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δV k−1
jm , (57)

δW (D−T ) = μk�u�A

r0

rk

rk+1 − rk−1

(
rk

rk−1

)∑
j,m

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δW k−1
jm . (58)

The equivalent forces for j = 1 may be neglected for the same reason as for the strike-slip case.

2.3.3 Shear fault

We consider a shear fault with dip and rake angles of δ and α, respectively (Fig. 4). In this case, equivalent double-couple forces can be
decomposed into the following six components. First, Figs 5(A)–(D) show four types of ‘single’-couple forces associated with a dislocation
in the dip direction. The corresponding double-couple forces can be obtained by subtracting the expressions for the dip angle of δ + π/2
from those for δ. In the previous section, we have derived the expressions for single-couple forces Figs 5(B) and (D) (vertical dip-slip). The
representations of Figs 5(A) and (C) are obtained by changing the direction of the applied forces by π /2. Considering the contributions from
the conjugate single-couple forces, the variation of the work for the spheroidal components can be written as

δW (A) = −μk�u�A

r0
sin 2δ sin α

∑
j,m

[
∂2Y ∗

jm(θ, ϕ)

∂θ 2

]
θ0,ϕ0

δV k
jm, (59)

δW (B) = −μk�u�A

r0
cos 2δ sin α

∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δU k
jm, (60)

δW (C+) = μk�u�S

r0
sin 2δ sin α

rk

rk+1 − rk−1

(
rk

rk+1

) ∑
j,m

Y jm(θ, ϕ)∗|θ0,ϕ0δU k+1
jm , (61)

Figure 4. Definitions of the dip angle, δ, and rake angle, α. �u denotes the applied coseismic dislocation. (a) shows a cross-section of ϕ = constant. The thick
solid line denotes the fault. �u is positive when the upper plane of the fault moves northwards. (b) A plan view, where the edges of the fault are marked by
the solid and dashed lines. The solid line corresponds to the most shallow edge. The slip vector on the upper plane of the fault is shown. The rake angle is
measured on the fault. The strike angle is 90◦ (eastward; see also Fig. 6).
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Figure 5. Partition of the single-couple forces equivalent to a shear dislocation shown in Fig. 4 into er and eθ components, representing the spheroidal part
(dip-slip, a, b, c, d), and eϕ components, representing the toroidal part (strike-slip, e, f). Angles δ and α correspond to those in Fig. 4. �l in the left-hand boxes
denotes the moment arm length. cos δ and sin δ after �l in the right-hand boxes are factors to account for the contribution from each type of the single-couple
forces to the moment magnitude. The conjugate single-couple forces are not shown.

δW (C−) = −μk�u�S

r0
sin 2δ sin α

rk

rk+1 − rk−1

(
rk

rk−1

) ∑
j,m

Y jm(θ, ϕ)|θ0,ϕ0δU k−1
jm , (62)

δW (D+) = −μk�u�S

r0
cos 2δ sin α

rk

rk+1 − rk−1

(
rk

rk+1

) ∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δV k+1
jm , (63)

δW (D−) = μk�u�S

r0
cos 2δ sin α

rk

rk+1 − rk−1

(
rk

rk−1

) ∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δV k−1
jm , (64)

δW (AT ) = μk�u�S

r0
sin 2δ sin α

∑
j,m

[
∂

∂θ
(

1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ
)

]
θ0,ϕ0

δW k
jm, (65)

δW (D+T ) = μk�u�S

r0
cos 2δ sin α

rk

rk+1 − rk−1

(
rk

rk+1

)∑
j,m

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δW k+1
jm , (66)

δW (D−T ) = −μk�u�S

r0
cos 2δ sin α

rk

rk+1 − rk−1

(
rk

rk−1

) ∑
j,m

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δW k−1
jm . (67)

Here, sin α is included to account for the effect of the rake angle, and the labels (A), (B), . . . , (D±) of δW correspond to the types of
single-couple forces depicted in Fig. 5. The T in the labels (AT), etc. denotes that the variation of the work is associated with the toroidal
displacement, δW jm.

Figs 5 (E) and (F), on the other hand, show two types of single-couple forces that are responsible for a strike-slip dislocation. The
expression for type Fig. 5(E) is given by eqs. (39) and (40), whereas the variation for Fig. 5(F) can be derived in the same manner as in case of
Fig. 5(B). Considering the geometrical effect of the dip and rake angles, the toroidal components of the variation of the work can be written as

δW (ET ) = μk�u�A

r0
sin δ cos α

∑
j,m

[
∂2Y ∗

jm(θ, ϕ)

∂θ 2
− 1

sin2 θ

∂2Y ∗
jm(θ, ϕ)

∂ϕ2

]
θ0,ϕ0

δW k
jm, (68)

δW (F+T ) = μk�u�A

r0
cos δ cos α

rk

rk+1 − rk−1

(
rk

rk+1

)∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,,ϕ0

δW k+1
jm , (69)
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δW (F−T ) = −μk�u�A

r0
cos δ cos α

rk

rk+1 − rk−1

(
rk

rk−1

)∑
j,m

[
∂Y ∗

jm(θ, ϕ)

∂θ

]
θ0,ϕ0

δW k−1
jm , (70)

δW (E) = μk�u�A

r0
sin δ cos α

∑
j,m

[
1

sin θ

∂2Y ∗
jm(θ, ϕ)

∂θ∂ϕ
+ ∂

∂θ

(
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

)]
θ0,ϕ0

δV k
jm, (71)

δW (F+) = μk�u�A

r0
cos δ cos α

rk

rk+1 − rk−1

(
rk

rk+1

)∑
j,m

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δV k+1
jm , (72)

δW (F−) = −μk�u�A

r0
cos δ cos α

rk

rk+1 − rk−1

(
rk

rk−1

) ∑
j,m

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δV k−1
jm . (73)

Thus, the expressions for the boundary conditions for a shear fault along a latitude line have been obtained (eqs 59–73).

2.3.4 Consideration for strike angle

So far, we have derived source conditions for an infinitesimal fault along the direction of eϕ . In this section, we derive boundary conditions
for a shear fault with an arbitrary strike angle, �. As in the previous section, we assume that a prescribed slip has both dip- and strike-slip
components on an inclined fault (δ �= π

2 ). The derivation is done in a similar manner to the cases for � = 90◦. The following five steps, which
are summarized in Table 1, are carried out for each type of single-couple forces in Fig. 5.

Step (1): A single force with a unit magnitude f whose direction is parallel to a prescribed dislocation is considered. The three components
of the unit direction vector shown in Table 1 are substituted into eq. (30). The relationship between the horizontal components of the single
force and strike angle, �, is illustrated in Fig. 6.

Step (2): By differentiating the representation of the single force obtained in step (1) in the direction perpendicular to the dislocation,
the corresponding single-couple forces are formed. For types (A), (B) and (E), the differentiation with respect to the horizontal coordinates
as (sin � ∂

∂θ
+ cos � 1

sin θ

∂

∂ϕ
) is used. For the other types, the differentiation is represented by applying the single forces to the two different

depths (Fig. 5).
Step (3): The moment magnitude caused by the single-couple forces is multiplied by the factor corresponding to each type. The first

factor denotes the effect of the rake angle, the second appears only in the dip-slip component and the third reflects the variation of the moment
arm length for each type (Fig. 5).

Step (4): Expressions for conjugate single-couple forces are derived. For the dip-slip components, (A–D), this is achieved by replacing
the dip angle δ by δ + π/2 and reversing the sign of the moment. For the strike-slip components, (E) and (F), the strike angle is substituted
(Table 1), since the conjugate single-couple forces are on the horizontal plane.

Step (5): The obtained expressions for the single-couple forces and their conjugate single-couple forces are substituted into the equation of
the variation of the work (e.g. eq. 32) and integrated with respect to the angular variables. From types (A), (D), (E) and (F), the variation in
the work associated with both spheroidal and toroidal motion are derived. For types (B) and (C) related to the vertical displacement δU jm, the
toroidal motion does not exist.

Implementing the above five steps, the variation in the work corresponding to each type of single-couple forces classified in Fig. 5 finally
becomes

δW (A) = −μk�u�A

r0
sin 2δ sin α

∑
j,m

[
sin2 �

∂2Y ∗
jm(θ, ϕ)

∂θ 2
+ sin � cos �

{
∂

∂θ

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]

+ 1

sin θ

∂2Y ∗
jm(θ, ϕ)

∂θ∂ϕ

}
+ cos2 �

1

sin2 θ

∂2Y ∗
jm(θ, ϕ)

∂ϕ2

]
θ0,ϕ0

δV k
jm, (74)

δW (AT ) = μk�u�A

r0
sin 2δ sin α

∑
j,m

{
sin2 �

∂

∂θ

[
1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
+ sin � cos �

×
[

− ∂2Y ∗
jm(θ, ϕ)

∂θ 2
+ 1

sin2 θ

∂2Y ∗
jm(θ, ϕ)

∂ϕ2

]
− cos2 �

1

sin θ

∂2Y ∗
jm(θ, ϕ)

∂θ∂ϕ

}
θ0,ϕ0

δW k
jm, (75)

δW (B) = −μk�u�A

r0
cos 2δ sin α

∑
j,m

[
sin �

∂Y ∗
jm(θ, ϕ)

∂θ
+ cos �

1

sin θ

∂Y ∗
jm(θ, ϕ)

∂ϕ

]
θ0,ϕ0

δU k
jm, (76)

δW (C+) = μk�u�A

r0
sin 2δ sin α

rk

rk+1 − rk−1

(
rk

rk+1

)∑
j,m

Y jm(θ, ϕ)∗|θ0,ϕ0δU k+1
jm , (77)
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Figure 6. The relationship between the strike angle, �, and the horizontal components of the unit direction vector of a single force, (νθ , νϕ ).
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Thus, we have obtained the representations for the boundary conditions for a point dislocation with an arbitrary strike, dip and rake
angles (eqs 74–88).

3 VA L I DAT I O N O F T H E M E T H O D

In this section, we validate the source conditions derived in Section 2 by comparing numerical results obtained by this approach with those
obtained by the method presented in Tanaka et al. (2006, 2007). The latter employs a numerical inverse-Laplace integration to compute
viscoelastic responses to an internal dislocation for a spherically symmetric earth model. Moreover, self-gravitation and the Earth’s curvature
are treated rigorously. Since the approach in the current work does not transform viscoelastic responses into the Laplace domain, comparisons
with results calculated by a completely different algorithm are feasible for earth models with 1-D viscosity profiles as a special case.

To compute a deformation caused by a finite fault, integrating responses to point sources is necessary on the fault plane. To eliminate
errors due to this integration, we employ a point source model for the validations in Sections 3.1 and 3.2. Results for more than one point
source are compared in Section 3.3.

3.1 Case (I): lower-degree gravity potential change

First, we check if variations in the lower-degree gravity potential field are computed correctly. We set the cut-off degree of spherical harmonics
to 40 for computational results from both methods, corresponding to a half wavelength of 500 (=20 000/40) km, and compare variations
for j ≤ 40. The reason why we introduce such a cut-off degree is that the lower-degree gravity potential field can be observed by GRACE
satellites. In analyses of GRACE data, higher-degree spherical harmonic expansion coefficients of the gravity potential field are filtered out
(e.g. Gaussian) to reduce observation noises, which results in a spatial resolution of several hundred kilometres (e.g. Chen et al. 2007). Since
we do not compare our results with observed data, we simply omit higher-degree terms instead of applying the same filter as used in the
GRACE data analysis.

Fig. 7 (Left-hand panel) shows co- and postseismic geoid height changes due to a point source with a dip-slip mechanism, computed by
the method presented in this study. The source is located at (θ , ϕ) = (90◦, 0◦) (i.e. colatitude and longitude = 0◦). The source depth is 20 km
and the dip and rake angles are 20◦ and 90◦, respectively. A Heaviside-type source function is used. The direction of the slip is northwards
on the upper plane of the fault, and the moment magnitude is 8.4 [�u = 10 m, �A = (100 km)2]. The radial profile of the earth model’s
density, the shear modulus and the viscosity are listed in Table 2, along with the radial intervals of the 1-D grid. The density and the shear
modulus are obtained by averaging the values of the PREM (Dziewonski & Anderson 1981) for five layers. The viscosity is 1030 Pa s within
the lithosphere down to a depth of 45 km, 1019 Pa s between 45 and 200 km and 1021 Pa s between 200 km and the core–mantle boundary (η(I)

in the table). The time step is 5 yr for all the computations in this study. The results in Fig. 1 are shown for up to 100 yr after the event, where
the dominant viscoelastic relaxation has almost finished (note that the time interval is 50 yr between the last two contours for t = 50–0 and
t= 100–0). The right-hand panel displays the profile along the line P–Q in the left-hand panel on which the result calculated by the method
of Tanaka et al. (2006, 2007) is superimposed. The same earth model and fault parameters are used in the latter computation. We see an
excellent agreement for all the time instants shown.
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Figure 7. (Left-hand panel) The geoid height change computed for a point source with a dip-slip mechanism (� = 90◦, δ = 20◦, α = 90◦, M w = 8.4). A
Heaviside-type source time function is used. The horizontal and vertical axes denote longitude and latitude in degrees, respectively. The coseismic change is
marked with t = 0, where t is time in years. The contour interval is 0.25 mm, and the dashed lines correspond to negative values. The postseismic variation
is shown in the difference from the coseismic change that occurs during the shown periods. The cut-off degree is 40. The earth model shown in Table 2 with
viscosity η(I ) is used. (Right-hand panel) A comparison in the profile of the geoid height change along the line P–Q in the left hand panel (longitude = 0◦).
The open circles represent the result obtained by the approach presented in this study, whereas the solid line shows the result obtained by the method of Tanaka
et al. (2006) for the same model. The cut-off degree is also the same.

Table 2. The earth model parameters employed for the validation of the method described in this work. λ is used in Appendix A.

r (km) �r (km) ρ (g cm−3) μ (GPa) η(I) (Pa s) η(II) (Pa s) λ (GPa)

0–3480 50 10.8 0 0 0 –
3480–5701 20 5.0 228 1021 1021 396
5701–5951 10 3.9 105 1021 1021 189
5951–6171 5 3.4 70 1021 1021 123
6171–6301 5 3.4 70 1019 1019 123
6301–6326 2 3.0 51 1019 1030 74
6326–6371 1 3.0 51 1030 1030 74

Fig. 8 shows co- and postseismic geoid height changes caused by a vertical strike-slip source (� = 30◦, δ = 90◦, α = 0◦). Except for the
strike, dip and rake angles, all the parameters are the same as those used in the verification for the dip-slip source. Again we see an excellent
agreement between the results obtained by the two different methods.

3.2 Case (II): displacement field

Next, we determine if the displacement field is calculated correctly, assuming a comparison with GPS data. In contrast to Case (I), a cut-off
degree is determined so that the truncation error is sufficiently small in the summation of the spherical harmonics. To reduce computational
costs, however, we calculate a response to a deeper earthquake than the example shown in Case (I), since the convergence is faster for a
deeper source (Sun & Okubo 1993). In the following, we set the cut-off degree to 500 for a source depth of 50 km, which corresponds to a
truncation error of 1.8 per cent with respect to the case for j max → ∞ (Sun & Okubo 1993). For the purpose of validating computed results,
however, a truncation error does not matter, since it is common to the two approaches based on spherical harmonic expansions.

Fig. 9 shows the vertical and horizontal displacement fields due to a dip-slip point source, computed by the method presented in this
study. The lithospheric thickness is 70 km and the viscosity is 1019 Pa s for depths between 70 and 200 km (η(II) in Table 2). The other earth
model parameters and the source mechanism are the same as in the computation for the dip-slip source in Case (I). The profiles of the vertical
and horizontal displacements along the lines P–Q and R–S are shown in Fig. 10, on which the results calculated by the approach of Tanaka
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Figure 8. (Left-hand panel) The geoid height change computed for a point source with a strike-slip mechanism (� = 30◦, δ = 90◦, α = 0◦, M w = 8.4). The
contour interval is 0.2 mm. (Right-hand panel) A comparison in the profile of the geoid height change along the line P–Q in the left-hand panel (longitude =
4◦). See the caption of Fig. 7 for details.

Figure 9. The surface displacement computed for a point source with a dip-slip mechanism (� = 90◦, δ = 20◦, α = 90◦, M w = 8.4). The source depth is
50 km. The contour intervals for the vertical displacement are 0.5 and 0.25 m for co- and postseismic changes, respectively. The cut-off degree is 500. The
earth model shown in Table 2 with viscosity η(I I ) is used.
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Figure 10. A comparison between the profiles of the displacement field computed with the approach presented in this study (open circles) and that computed
with the method of Tanaka et al. (2006, 2007) (solid lines). The vertical displacement along the line P–Q in Fig. 9 (longitude = 0◦) is displayed in the left-hand
panel, whereas the east–west and north–south components of the horizontal displacement along the line R–S in Fig. 9 (longitude = 0.5◦) are shown in the
middle and right-hand panel, respectively.

Table 3. The earth model prameters employed for the validation of the
method described in this work for the shallower earthquake.

r (km) �r (km) ρ (g cm−3) μ (GPa) η (Pa s)

0–3480 50 10.8 0 0
3480–5701 40 5.0 228 1019

5701–5951 5 3.9 105 1019

5951–6251 2 3.4 70 1019

6251–6301 0.5 3.4 70 1019

6301–6326 0.5 3.0 51 1019

6326–6371 0.25 3.0 51 1030

et al. (2006, 2007) are superimposed. In general, the two results agree very well with each other (10 per cent at the maximum) for all the time
instants shown.

3.3 Case (III): response to shallow sources distributed around the equator

Finally, we confirm if the source conditions are valid for computing a response to a finite fault. This can be achieved by putting more than
one point source at different depths (Ds) and colatitudes and longitudes (θ 0 and ϕ0). In addition, we check if deformation due to shallower
sources is computed correctly. The latter requires a huge memory for the 3-D numerical computation since a cut-off degree to guarantee a
relative accuracy of 10−4 for the convergence of the spherical harmonics amounts to 6000 for Ds = 10 km (Sun & Okubo 1993). The required
memory increases approximately with ( j max)2, and, for example, is around 20 GB for the previous case with j max = 500. It is therefore
impossible at present to compute the responses for all degrees and orders up to 6000, even with a parallel computational environment. In this
validation, therefore, we neglect dependences on the longitude ( ∂

∂ϕ
= 0) and carry out a partial validation for zonal terms only.

As an example, we consider a dip-slip fault of dip angle of 20◦ that consists of three sources: (Ds , θ 0) = (20 km, 90◦); (15 km, 89.917◦)
and (10 km, 89.834◦). The width of each fault segment is 10 km (the total width = 30 km) and the slip is 10 m. The strike angle is the same as
before. For this 2-D axisymmetric problem, the toroidal deformation W j0 vanishes due to a symmetry, and the deformation depends only on
the epicentral distance perpendicular to the fault strike. The earth-model parameters used are listed in Table 3. In this model, the asthenosphere
viscosity is set to 1019 Pa s. The characteristic time is approximately 10 yr.

Fig. 11 shows a comparison between the displacement field computed by the present method and that obtained by the method of Tanaka
et al. (2006, 2007). The computation of higher-degree harmonics is implemented in the same manner as for lower-degree harmonics, and
no approximations or filtering techniques are applied. Nevertheless, an excellent agreement between results is again seen. In addition, the
agreement in the displacement field with a wavelength of approximately 10 km in the vicinity of the equator (89.9◦ < θ < 90◦) indicates that
results from the presented approach are still stable for higher spherical-harmonic degrees, when using more than one source.

C© 2008 The Authors, GJI, 176, 715–739

Journal compilation C© 2008 RAS



732 Y. Tanaka et al.

Figure 11. A comparison in the spheroidal displacement caused by a finite fault in an axisymmetric earth model. The fault model consists of three sources.
Their colatitudes and source depths are described in the text. Dip angles are 20◦ for all sources and the fault is descending to the south. The horizontal axis
denotes colatitude in degree. ur and u θ denote the vertical and horizontal displacements. Positive values in ur indicate uplift. Positive values in u θ are directed
southwards. The solid lines show the result obtained by the approach applied in this study, whereas the diamonds show the results obtained by the method of
Tanaka et al. (2006, 2007). The cut-off degree is 6000 for both approaches. Time t is given in years. The earth-model parameters are shown in Table 3.

4 I N C LU S I O N O F A S L A B

In this section, we simulate postseismic relaxation in the presence of a slab. The source conditions that have been validated for spherically
symmetric earth models are also valid for 3-D viscosity models because the term describing the effect of a 3-D viscosity structure (δFdiss

in eq. 14) is decoupled from the source term (δW). The algorithm to compute this dissipation term was already validated, using an analytic
solution for a special case of a 2-D problem (Martinec 2000). Therefore, to confirm if computational results for 3-D viscosity models are
correct, it is sufficient to show that the obtained results converge against smaller sizes of the finite element grid (�r ), shorter time steps (�t)
and higher cut-off degrees ( j max).

In the following, we apply the presented approach to three cases: the dip-slip events used in Cases (I) and (II) in the previous section
and the 2004 Sumatra–Andaman earthquake.

4.1 The slab structure

Fig. 12 illustrates the viscosity structure employed for the simulation of the three events. For simplicity, an axisymmetric slab is assumed.
Such a 2-D slab is employed in other studies using a finite element method (e.g. Suito & Hirahara 1999). The lateral heterogeneity in viscosity
is considered in the radial interval of 6171 km ≤ r ≤ (6371 − L) km, where L denotes the lithospheric thickness. The viscosity within the
lithosphere, η lith, is 1030 Pa s. The viscosity in the asthenosphere, η1, is 1019 Pa s and the maximum viscosity within the slab, ηslab, is set to
1023 Pa s, which is sufficiently high to account for elasticity on timescales shorter than 1000 yr. The viscosity within the slab is smoothed with
a cosine function so that the viscosity on the centre line of the slab {θ = θ c(z) ≡ 90◦ + [(L − Ds)/tan δ − (L/2)/tan δ + z/tan δ]/110, where
z is a depth from the bottom of the lithosphere in km and 110 � 6371 × 2 π/360◦} equals ηslab and those at θ = θ c ± (L/tan δ)/110 become
η1 (Fig. 12). δ is the dip angle. For depths greater than 200 km, a 1-D viscosity structure is assumed (1021 Pa s down to the core–mantle
boundary).

Figure 12. The viscosity structure including a 2-D slab. The slab viscosity η is smoothed with a cosine function. η = 1023 Pa s on the inclined dashed line in
the middle and decreases to 1019 Pa s on the dashed lines at both sides. For r ≤ 6171 km, η = 1021 Pa s.
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Figure 13. (Left-hand panel) The geoid height change computed for the model including the slab. The earth-model parameters and the source mechanism are
the same as those used in Fig. 7, except for including the slab depicted in Fig. 12. The contour interval is 0.25 mm and the dashed lines correspond to negative
values. (Right-hand panel) A comparison in the profile of the geoid height change along the line P–Q in the left-hand panel (longitude = 0◦). The solid and
dashed lines denote the results obtained for the model including the slab and that for the model excluding the slab, respectively.

A viscosity value in the asthenosphere should be determined so that simulated results agree with observation data. Previous studies of
postseismic deformations have employed asthenosphere viscosity ranging from 1017 to 1020 Pa s (e.g. Pollitz et al. 2001; Fukahata et al. 2004;
Lorenzo-Martin et al. 2006). In the studies of postglacial rebounds, the average mantle viscosity is considered to be around 1021 Pa s, which
has been well constrained from comparisons with sea level changes, and so on (e.g. Peltier 1998). In general, spatial scales of postseismic
deformations are smaller than those of postglacial rebounds. This implies that postseismic deformation reflects a locally low viscosity
compared with the global viscosity structure. It is known that viscosity of rocks consisting of the asthenosphere becomes smaller in the
presence of water (Karato 2003). The above viscosity inferred from postseismic data may be due to water supply from a subducting plate
(Iwamori 2007; Kawakatsu & Watada 2007) and the existence of fluids in the lower crust (Reyners et al. 2007).

The viscosity beneath the lithosphere employed in this simulation (1019 Pa s) is a middle value of the previous cases. For a given viscosity,
we will focus on differences between predicted results for models including and excluding a slab.

4.2 Application to lower-degree gravity potential changes: Case (I)

First, we compute the response to a point source to grasp the effects due to the slab. The employed earth model and the source parameters are
the same as those in Section 3.1, except for including the above slab. The lithosphere thickness, L, and the source depth, Ds , are 45 and 20 km,
respectively. The point source is set at (θ 0, ϕ0) = (90◦, 0◦). The dip angle of the slab and the point source is 20◦. Fig. 13 (left-hand panel)
shows the geoid height change computed for the model including the slab. The coseismic change is the same as that for the model excluding
the slab (Fig. 7). This is reasonable because the difference in the viscosity structure is not reflected in the elastic deformation. For t > 0, we
see that the postseismic change becomes smaller when including the slab by approximately 30 per cent (Figs 7 and 13). In addition, we find
that the difference between the two models is larger at larger colatitudes. To see this difference in more detail, we compare the profiles along
the line P–Q with longitude 0◦ (Fig. 13; right-hand panel). Within the slab subducting to the south, the effective viscoelastic dissipation is
reduced due to a higher viscosity, which results in a smaller amplitude for the surface deformation at latitudes <3◦N. The difference between
the two profiles increases with time and its characteristic time is similar to that for the model excluding the slab, showing that a spatial pattern
is modified in the presence of the slab.

The secular variation in the geoid height change is at most 0.06 mm yr−1 for the model including the slab (t = 10– 25, Fig. 13; right-hand
panel). The difference in the rate caused by including the slab is 0.02 mm yr−1 for the first 5 yr and 0.07 mm yr−1 for t = 10–25 yr after the
event at an epicentral distance of 0◦, where the maximum change is expected. These rates and rate differences are below detectable signal

C© 2008 The Authors, GJI, 176, 715–739

Journal compilation C© 2008 RAS



734 Y. Tanaka et al.

Figure 14. (Left-hand panel) The vertical displacement computed for the model including the slab. The earth model parameters and the source mechanism
are the same as those used in Fig. 9, except for including the slab depicted in Fig. 12. The contour interval is 0.5 and 0.1 m for the co- and postseismic
displacements, respectively, and the dashed lines correspond to negative values. (Right-hand panel) A comparison in the profile of the vertical displacement
along the line P–Q in the left-hand panel (longitude = 0◦). The solid and dashed lines denote the results obtained for the model including and excluding the
slab, respectively.

strengths by GRACE, since differences between secular variations obtained from results published by different analysis centres amount to
0.1–0.2 mm yr−1 for wavelengths of several hundred kilometres.

4.3 Application to a displacement field: Case (II)

Next, we compute a postseismic displacement caused by a relatively deep event. The employed earth model and the source parameters are
the same as those in Section 3.2, except for including the slab, where L and Ds are 70 and 50 km, respectively. The dip angle of the slab and
the point source is 20◦.

Fig. 14 (left-hand panel) shows the vertical displacement computed for the model including the slab. The coseismic change is the same
as that in Fig. 9 (left-hand panel). For t > 0, a more drastic change is caused by the inclusion of the slab compared with the cases for
the lower-degree potential field. The amplitude for the vertical deformation decreases by approximately 80 per cent, and the spatial pattern
of the uplift and subsidence becomes wider in the east–west direction (Figs 9 and 14, left-hand panels), with the nodal line, on which the
vertical displacement equals zero, moving towards the south by ∼0.4◦ at longitude 0◦. Consequently, the vertical deformation changes from
subsidence to uplift at epicentral distances between 0.1◦ and 0.5◦ at the continental side, where geodetic observations are carried out.

Fig. 14 (right-hand panel) shows a comparison in the profile along the line P–Q shown in the left-hand panel. In contrast to Case (I)
(Fig. 13; right-hand panel), we find that the uplift at the northern side also deceases, because epicentral distances where the uplift occurs are
smaller than the subducting slab width (note that the horizontal scale in Fig. 14, right-hand panel, is 1/10 of that in Fig. 13, right-hand panel).
The vertical displacement rate for the model including the slab (the solid line) is 10 mm yr−1 for the first 5 yr, 3 mm yr−1 between t=10 and
25 yr and 0.2 mm yr−1 between t = 50 and 100 yr after the event at an epicentral distance of 0.3◦ S. These rates are detectable by decadal
continuous GPS measurements, levelling and tide gauge observations. Excluding the slab inverts the signature of the deformation rate. The
accumulated difference in the displacement caused by including the slab amounts to 0.6 m over 100 yr at an epicentral distance of 0.3◦ S
(Fig. 14 right-hand panel). Considering the effect of a slab is important when correcting apparent vertical deformation due to postseismic
relaxation at tide gauge stations for monitoring long-term sea level change (e.g. Melini et al. 2004).

Fig. 15 (left–hand panel) displays the horizontal displacement calculated for the model, including the slab. We see that the amplitude of
the horizontal deformation decreases drastically as in the vertical deformation (note that the vector scale is different from that used in Fig. 9;
right-hand panel). Moreover, spatial variations become smoother when the slab is considered. A comparison in the profile of the north–south
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Figure 15. (Left-hand panel) The same as Fig. 14 but for the horizontal displacement. (Right-hand panel) A comparison in the profile of the north–south
component of the horizontal displacement along the line P–Q (longitude = 0◦; northward positive). The solid and dashed lines denote the results obtained for
the model including and excluding the slab, respectively.

component at longitude 0◦ is shown in Fig. 15 (right-hand panel). The displacement rate is 15 mm yr−1 for the first 5 yr, 6 mm yr−1 between
t = 10 and 25 yr and 0.4 mm yr−1 between t = 50 and 100 yr after the event at the epicentral distance of 0.3◦ S for the model including
the slab. For t ≤ 10, we see that the signature of the displacement rate is inverted at epicentral distances around 0.6◦ S. Excluding the slab
increases these rates by approximately three times. For this event, the displacement rates and the rate differences due to the inclusion of the
slab are detectable by continuous GPS observations.

4.4 Application to a geoid height change due to the 2004 Sumatra event

Finally, as a more realistic example, we calculate a posteismic geoid height change caused by the 2004 Sumatra earthquake, with a
rectangular fault model. We construct this fault model, using the result of the seismological analysis by Yamanaka (2004; http://www.eri.u-
tokyo.ac.jp/sanchu/Seismo Note/seismo Note/2004/EIC161a.html). The position of the fault inferred from the coseismic slip distribution is
shown in the box for t = 0 of Fig. 16. The length and the width of the fault are 1000 and 200 km, respectively. On the fault plane, 125 point
sources are placed to approximate the finite fault (5 in the dip direction ×25 in the strike direction). A uniform slip is assumed on the fault
plane. For each point source, the slip and the area is set to 10 m and 40 km2, so that the total moment magnitude equals 9.3. The strike, dip
and rake angles are 340◦, 8◦ and 112◦, respectively. The fault slip is considered for depths between 0 and 28 km (�200 km × tan 8◦). The
lithospheric thickness, L, is 30 km and Ds = 3, 8, 14, 20 and 25 km. The density and the elastic parameters are shown in Table 2. The slab
structure is shown in Fig. 12.

Fig. 16 shows a comparison between the computational results for the model including the slab and that for the model excluding the
slab. The spatial pattern of the co- and postseismic variations is modified by the strike-slip component, compared with the case for α = 90◦

(Fig. 13). Since the dip-slip component is dominant (α = 112◦), however, the effects due to the slab are similar to those seen for the point
source with the purely dip-slip mechanism (Section 4.2). The horizontal scale of the slab amounts to approximately 1400 km (=200 km
/tan 8◦), which is larger than the half wavelength corresponding to the cut-off degree (500 km). Therefore, the postseismic gravity potential
changes with wavelengths exceeding 1000 km are significantly attenuated due to the higher viscosity of the slab. On the whole, the postseismic
amplitude decreases by approximately 30 per cent in the presence of the slab. The decrease is proportionally larger at the northeast side of
the fault, where the slab is subducting. The decreased amplitude of the postseismic uplift over the fault due to the slab can be explained as
follows. In the asthenosphere, the stress accumulation caused by the coseismic deformation is concentrated beneath the lower end of the fault.
To relax this coseismic stress change, when the slab is excluded, a symmetric viscoelastic flow pattern with respect to the fault is generated in
the cross-section perpendicular to the fault’s strike. In other words, two flows toward the fault from far fields conflict with each other beneath
the fault, which causes a mass concentration there. When the slab is included, the flow from the northeast side where the slab is subducting
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Figure 16. The geoid height changes caused by the 2004 Sumatra event computed for the model excluding (left-hand panel) and includng (right-hand panel)
the slab. The contour interval is 2.5 mm. The moment magnitude is 9.3. The dots in the boxes for t = 0 denote the point sources used to approximate the
rectangular fault.

is attenuated, which decreases the concentration of the mass, compared with the case excluding the slab. Consequently, the increase in the
gravity potential over the fault becomes smaller in the presence of the slab.

The secular variation in the geoid height change expected from the model including the slab is 1 mm yr−1 for the first 5 yr, 0.3 mm yr−1

for t = 10–25 yr and 0.1 mm yr−1 for t = 50–100 yr after the event at the centre of the uplift. Excluding the slab overestimates the rate by
approximately 40 per cent with respect to the model including the slab. From this model, we can see that effects of the slab are not negligible
when interpreting short-term variations in GRACE gravity potential fields up to 5 yr after the event.

In the present model, as an example, we have taken 1019 Pa s for the asthenosphere viscosity to estimate the secular variation in the geoid
height change. Since the relaxation time is proportional to the viscosity for a Maxwell solid, if a smaller viscosity is given as a viscosity
model, the simulated rate of the geoid height change becomes larger. Some studies based on a geodetic inversion employ viscosity values
lower than 1019 Pa s. For instance, levelling data associated with the postseismic vertical movement due to the 1946 Nankai earthquake are
explained with an asthenosphere viscosity of 5 × 1018 Pa s (Fukahata et al. 2004). If we apply this value to our example, the deformation rate
of the geoid height becomes twice as large. This implies that detecting the effects of a slab may be easier in some subduction zones having a
lower viscosity.

5 D I S C U S S I O N S A N D C O N C LU S I O N S

The spectral finite element approach for surface loading (Martinec 2000) has been extended to viscoelastic deformation caused by an internal
dislocation. This approach enables us to consider the effects of self-gravitation, sphericity and large lateral viscosity contrasts in a rigorous
way. Hence, this method is suitable for computing large-scale postseismic deformation for cases such as a subducting plate. The spectral
finite-element representations of the boundary conditions are derived for a shear fault with arbitrary strike, dip and rake angles by using
the equivalent double-couple forces. These representations are validated by an independent method, based on the numerical inverse Laplace
integration (Tanaka et al. 2006, 2007) and good agreement is obtained between the computed results for 1-D viscosity models.

Using the derived source conditions, we have simulated postseismic relaxation for models including a slab. The posteismic deformation
at the surface decreases at epicentral distances located above the subducting slab, since the slab’s higher viscosity than in the surrounding
asthenosphere hinders the effective viscoelastic dissipation. The attenuation of its amplitude is larger in the displacement field than in the
gravity potential field since the spatial scale of the slab (approximately 200 km) is smaller than the resolution of the lower-degree gravity
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potential field (500 km), and the lateral heterogeneity due to the slab are less reflected in the longer-wavelength deformation. The inclusion
of the slab reduces the rate of the geoid height change by 30 per cent and the displacement rate by 70–80 per cent. The decrease caused
by including the slab qualitatively agrees with the result of Yoshioka & Suzuki (1999), who constructed 3-D structural models, using the
finite-element method without incorporating gravitational effects. The case studies show that these effects are not negligible for interpreting
GRACE and GPS data, especially for large events that occur at a subduction zone with a lower viscosity.

The presented approach requires larger computational costs when calculating higher-degree terms that are needed to estimate smaller-
scale deformations due to a shallower event. For an axisymmetric model, higher-degree computations are possible in a standard computational
environment as shown in Section 3.3. For a 3-D model, a method should be considered to treat higher-degree terms in a computationally less
expensive way. For example, it may be possible to replace higher-degree terms corresponding to sufficiently small variations compared to the
lithosphere and slab by the coseismic responses computed from the method of Tanaka et al. (2006, 2007), since for such degrees, the excited
stress does not reach the asthenosphere and the resultant postseismic relaxation can be neglected.

In this study, as a first step, we have assumed incompressibility and have shown that the spectral finite-element approach for 3-D viscosity
structures is valid for modelling postseismic relaxation. Nostro et al. (1999), however, pointed out that the assumption of incompressibility
produces a large difference in a computational result of postseismic deformation for a 2-D flat-earth model with a laterally homogeneous
viscoelastic structure. Tanaka et al. (2007) showed that displacement rates for a spherically symmetric model differ by 10–25 per cent when
considering compressibility. The question therefore arises as to which factor would be more important in modelling postseismic relaxation—
the inclusion of a slab or consideration of compressibility. To confirm this, we compute a gravity variation for the dip-slip event used in
Case (I), assuming a spherically symmetric and compressible earth model. The result is shown in Appendix. Both effects are of the same
order of magnitude, hence both factors should be considered. To introduce compressibility into the present method for 3-D viscosity models,
we should modify the constitutive equations used in this paper. A spectral representation of the constitutive equations for 1-D compressible
earth models was already given in Hanyk et al. (1995). Therefore, we can extend this formulation into 3-D cases. The boundary conditions
at a seismic source derived in this study can be used without modifications since their representations do not depend on the bulk modulus for
shear dislocations. To interpret observed postseismic deformation more accurately and investigate rheology in seismogenic zones, we will
continue to develop a method to take into account the effects due to compressibility.
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A P P E N D I X A : E F F E C T S D U E T O C O M P R E S S I B I L I T Y F O R A S P H E R I C A L LY
S Y M M E T R I C M O D E L

A method to compute postseismic gravity potential change for a spherically symmetric, self-gravitating and compressible earth model was
developed in Tanaka et al. (2006, 2007), which is also used in this study to validate the source conditions in Section 3, for an incompressible
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Figure A1. The geoid height change computed for a compressible earth model excluding the slab. The contour interval is 0.25 mm. The earth model parameters
are shown in Table 2, including the elastic constant, λ. The source mechanism is the same as that used in Fig. 7 (Left-hand panel).

model as a special case. Using this method, we calculate a geoid height change caused by the dip-slip event used in Case (I) for a compressible
model excluding the slab. The earth model parameters and the source mechanism are the same as in the incompressible case except that the
elastic constant, λ, is added. The employed λ is shown in Table 2, which is based on the averaged PREM.

Fig. (A1) displays the result computed with the same cut-off degree, j max = 40. By comparing Fig. 7 (Left-hand panel) with this figure,
we see that a large difference is caused by considering compressibility in the coseismic change. In particular, the geoid height decreases
above the source and in the surrounding area, which is not seen in the incompressible case. The amplitude at the centre of the uplift, however,
is almost the same (∼0.5 mm). For t > 0, the spatial pattern of the uplift and subsidence is similar to that for the incompressible model
(the uplift in the centre surrounded by the subsidence in the north and the south). However, the amplitude of the postseismic change for the
compressible case is reduced by approximately 70 per cent. For this event, the effects due to compressibility are approximately twice as large
as the effects of the lateral heterogeneity in viscosity due to the slab.
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