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Abstract. Annual maximum discharge is analyzed in the
Mekong river in Southeast Asia with regard to trends in av-
erage flood and trends in variability during the 20th century.
Data from four gauging stations downstream of Vientiane,
Laos, were used, covering two distinct hydrological regions
within the Mekong basin. These time series span through
over 70 years and are the longest daily discharge time se-
ries available in the region. The methods used, Mann Kendal
test (MK), ordinary least squares with resampling (OLS)
and non-stationary generalized extreme value function (NS-
GEV), are first tested in a Monte Carlo experiment, in or-
der to evaluate their detection power in presence of changing
variance in the time series. The time series are generated us-
ing the generalized extreme value function with varying scale
and location parameter. NSGEV outperforms MK and OLS,
both because it resulted in less type II errors, but also be-
cause it allows for a more complete description of the trends,
allowing to separate trends in average and in variability.

Results from MK, OLS and NSGEV agreed on trends in
average flood behaviour. However, the introduction of a
time-varying scale parameter in the NSGEV allowed to iso-
late flood variability from the trend in average flood and to
have a more complete view of the changes. Overall, results
showed an increasing likelihood of extreme floods during the
last half of the century, although the probability of an aver-
age flood decreased during the same period. A period of en-
hanced variance in the last quarter of the 20th century, esti-
mated with the wavelet power spectrum as a function of time,
was identified, which confirmed the results of the NSGEV.

We conclude that the absence of detected positive trends
in the hydrological time series was a methodological mis-
conception due to over-simplistic models.

Correspondence to:J. M. Delgado
(jdelgado@gfz-potsdam.de)

1 Introduction

Detecting trends in hydrological variables has been given
emphasis in recent years, due to an increasing scientific con-
sensus on anthropogenic climate change. Indeed, climatic
mechanisms are being triggered that increase the potential
for intense precipitation around the world (Kundzewicz and
Schellnhuber, 2004) and particularly in Asia (Cruz et al.,
2007). However, this change is considered not to be spatially
or temporally uniform: different studies show significant in-
creases in extreme precipitation and discharge in many coun-
tries (Petrow and Merz, 2009; Robson, 2002; Kunkel et al.,
1999), whereas many others do not find evidence on this re-
gard (Robson et al., 1998; Svensson et al., 2006; Kundzewicz
et al., 2005; Mudelsee et al., 2003). Nevertheless, global cli-
mate models claim that climate change would drive up ex-
treme precipitation and river discharge (Nijssen et al., 2001;
Palmer and R̈ais̈anen, 2002; IDAG, 2005).

Although Katz and Brown(1992) prove the importance
of change in variability (also referred to as the scale pa-
rameter of certain statistical distributions), and despite the
existence of several frequency models in the literature that
take non-stationarity of the scale parameter into account (see
Strupczewski et al.(2001), Hundecha et al.(2008) andVil-
larini et al.(2009), orKhaliq et al.(2006) for a review), many
studies in meteorology and hydrology still do not attempt to
detect a trend in this parameter. In fact, the effect that change
in variability produces in the detection of usual trends in av-
erage flood is only poorly understood.

After a first approach to studying the variability of the
flood regime of the Mekong river, our case study, we were
motivated into a deeper investigation on how trend detec-
tion methods are affected by a time-dependent change in
variance. The methods, some of them not explicitly taking
into account change in variance, were chosen mainly because
of their simple underlying concepts, widespread use and
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Fig. 1. Map showing part of Southeast Asia and main waterways
(blue line) within the Mekong basin (delimited by the red line).
Discharge gauging stations used in this study are marked with dark
dots.

for being fundamentally different: the ordinary least squares
with statistical significance obtained from resampling (OLS),
the Mann-Kendall test (MK) and the non-stationary gener-
alized extreme value function (NSGEV) with location and
scale parameter as a function of time. The performance of
trend detection tests in the presence of time-varying variabil-
ity is investigated in a Monte Carlo experiment. We generate
many synthetic time series with a priori knowledge of their
variance based on the generalized extreme value function and
try to detect a trend with the aforementioned methods. These
methods are conceptually different and each of them focus
on different definitions of what a trend is, yielding different
responses to a change in variance.

Another important aspect of variability is its link to vulner-
ability on the societal level. One of the drivers of vulnerabil-
ity is variability and change in the environmental conditions
(Turner et al., 2003), and the probability of exposure to stress
or perturbations of the system is a part of the vulnerability
equation (Luers et al., 2003; Adger, 2006). Therefore, meth-
ods for identifying periods of enhanced variability are cru-
cial to contextualize and provide a quantitative background to
vulnerability assessments in the field. Additionally, a frame-
work that assumes a non-stationary approach to frequency
analysis is necessary to quantify the change in the probability

of an extreme event. That is accomplished in this work by
using the wavelet power spectrum and the NSGEV model,
respectively.

Further motivating our work is a general public consen-
sus on an increase in the flood damage and risk during the
last century in the Mekong basin (Campbell, 2007; Käkönen,
2008), although the scarce published studies that attempt to
identify trends in river discharge or precipitation point to a
negative trend (Campbell, 2007; Lu and Siew, 2006). Model
outputs also point to a future increase in the intensity of flood
events in the region due to climate change (Milly et al., 2002;
Hoanh et al., 2003; Kiem et al., 2008). Even disregarding an-
thropogenic climate change, trends are expected, as an effect
of an interannual to decadal organization in climate (Black,
2002) as well as changes in monsoon intensity over centen-
nial to millenial timescales (Zhang et al., 2008).

The purpose of this work is to evaluate whether there is a
trend in average flood and in flood variability on four stations
along the Mekong river and evaluate how such a change in
variability might affect the power of usual trend detection
tests.

2 Data and geographical extent

The present study analyzes the only available long daily
discharge time series in the river Mekong. These are
available for Vientiane (1913–2000), Thakhek (1924–2000),
Pakse (1923–2000) and Kratie (1924–2007) and shown in
Fig. 2. The time series were used in their full length. The
data was provided by the Southern Institute of Water Re-
sources Research in Ho Chi Minh City, Vietnam, and are
not publicly available. The daily discharge is estimated by
the use of a rating curve and daily water level readings. Dis-
charge measurements do not exist for the years before 1960
and therefore the values here presented were estimated using
the rating curves from 1960 on.

The data was checked for quality. The extent to which er-
rors in the time series would influence the results of the NS-
GEV had to be tested. In order to do that, we removed noise
by applying a wavelet filter to the data. This noise was then
shuffled on annual blocks, amplified by 10% and added to the
denoised time series. Then, the NSGEV was applied. This
procedure was repeated 1000 times and its results recorded.
Over 90% of the trials yielded a trend with the same slope as
the one obtained for the original series.

A second quality assessment could be performed only for
data from Vientiane, Thakhek and Pakse, for which rating
curves were available. Discharge was measured directly on
different campaigns, which yielded different rating curves.
We used rating curves from 1960 and from 2002 to trans-
form the available water level time series (1960–2000) in
discharge time series. On both cases, the choice of the rat-
ing curve did not affect the significant trends detected by the
NSGEV.
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Fig. 2. Time series of annual maximum discharge used in this study.

Special care should be payed to Kratie, where rating
curves only exist for the 1960s and after 2000 and for which
we did not have access to water level records. However, the
data was allegedly corrected and gaps were filled based on
the station of Stung Treng, about 100 km upstream (MRC,
2004).

The flood index used was the annual maximum discharge
series (AMAX), obtained from daily discharge. This de-
scribes well the flood hydrograph, which depends on the
same forcing mechanisms and arrives roughly at the same
time for every year.

The Mekong river lies in Southeast Asia and its
800 000 km2 catchment is shared by China, Myanmar, Thai-
land, Laos, Cambodia and Vietnam (Fig.1). In China,
the river flows on the Tibetan plateau through the Yunnan
province, mainly fed by snow melting in Spring and receiv-
ing a small proportion of monsoon precipitation. The Yun-
nan component makes up for 16% of the whole annual runoff
(MRC, 2005). In the lower basin, the Mekong may be di-
vided into three main reaches: from the Chinese border to
the beginning of the eastern highlands on the Laos-Vietnam
border (more or less near Vientiane), from there on to Kratie
and from Kratie to the delta. The main differences concern
the flood generation during the monsoon season, the first
reach being mainly fed by moisture from the bay of Bengal
(thus related with the Indian monsoon – IM); the second be-
ing fed by strong orographic precipitation from westerly air
masses that cross Southeast Asia until they meet the eastern
highlands, although they are forced by the monsoon system
over the Western North-Pacific, east of Southeast Asia; and
finally the third sharing the same source of moisture as the
second, but in a relatively flatter terrain. These two moisture
sources have different forcing large scale atmospheric circu-
lation patterns and onset times.

3 Methods

We start by a methodological definition of the different types
of trends we are aiming at. As we use different methods
that detect trends in different aspects of the data, we distin-
guish two groups of trends: a trend in average flood, which
is a change in a statistic related to or describing the expected
value of the time series, may it be the mean, the location
parameter of the underlying distribution or another related
parameter; and a trend in flood variability, which may be de-
tected by an estimation of average variance on a given year
or of the changes in the scale parameter of the underlying
distribution. In the case of the NSGEV, where both a trend
in average flood and a trend in flood variability may be de-
tected at the same time, caution is needed when interpreting
the results. From a negative trend in the location parameter
and a positive on the scale parameter may emerge an almost
zero trend in the mean of the distribution (Zhang et al., 2004),
although the statistical properties of the sample are being af-
fected by a change. To avoid that, when dealing with NS-
GEV, we never refer to a trend in the mean, but explicitly to
a trend in the location parameter or in the scale parameter.

Three methods were used to estimate trends in the average
of the time series (as inZhang et al., 2004): linear regres-
sion in a least square sense, an inappropriate but straightfor-
ward and often used method for detecting trends in extreme
values; the Mann-Kendall test (Kendall, 1938), a powerful
non-parametric trend test for every kind of time series; and
the non-stationary generalized extreme value model (Coles,
2001), a parametric statistical test that accounts for the skew-
ness of the data.

Assessing the significance of a linear regression as an esti-
mate for a trend was done following the resampling method-
ology given byKundzewicz and Robson(2004). According
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Fig. 3. (a)the estimated probability density function of AMAX for different years according to NSGEV with a negative trend in the location
parameter and a positive trend in the scale parameter.(b) the residual probability plot, presented as a diagnostic of the NSGEV model
application.(c) same as (b) but for the residual quantile plot.

to this method, a time series with a trend is represented by

x(t) = b1+b2t +εt (1)

whereb1 and b2 are the terms of the linear trend and are
estimated by the method of the least squares andεt is the
deviation of the trend line to the time series. Ifεt is nor-
mally distributed, then its expected value is 0.εt is often not
normally distributed and does not even have a symmetric dis-
tribution in the case of climate variables. We use this method
nevertheless as a reference, because it is easy to use and often
adopted in trend assessments.

The Mann-Kendall test (Kendall, 1938) is a non-
parametric statistical test that evaluates whether there is a
trend in a time seriesxi of size n. Each element ofxi is
compared with its successorsxi+j , with 0< j < n. zij is de-
fined as equal to 1 ifxi+j > xi , to -1 if xi+j < xi and to 0 if
xi+j = xi . We then compute

Z =

n−1∑
i=1

n−i∑
j=1

zij

√
n(n−1)(2n+5)/18

(2)

Z follows a normal distribution with standard deviation 1 and
expected value 0, when there is no trend inxi . By computing
Z, it is possible to test the statistical significance of rejecting
the null hypothesis “no trend inxi”.

The NSGEV function was used following the methodol-
ogy inColes(2001). This model is an extended parametriza-
tion of the generalized extreme value function (GEV), a
combination of three families of extreme value distribution,
Gumbel, Fŕechet and Weibull (Jenkinson, 1955). The cumu-
lative GEV distribution function is written as:

F(x) =

exp

[
−

(
1−

ξ
σ

(x −µ)
) 1

ξ

]
if ξ 6= 0

exp
[
−exp

(
−

(x−µ)
σ

)]
if ξ = 0

(3)

wherex is the random variable and the rest are the distribu-
tion parameters, which are fit to the sample with the max-
imum likelihood estimator. According to this parametriza-
tion, the location (µ, which defines the position of the
function with regard to the origin) and scale parameter (σ ,
which defines the spread of the distribution) are made time-
dependent following a desired function. The shape parame-
ter (ξ , defining additional shape characteristics of the func-
tion) is left constant. Starting with this distribution, we fitted
different combinations of linear and second degree time de-
pendent parameters and evaluated the contribution of each
combination by estimating the deviance statistic (see below).
The combinations start from a stationary model, to which we
add terms one by one, as inHundecha et al.(2008). This
explicitly accounts for changes in average and variance over
time, as seen in the example shown in Fig.3a for Thakhek,
yielding a different probability distribution each year (tails
grow fatter with time). A first approach for the time depen-
dent parameterization ofµ andσ is a linear dependency:

β(t) = β0+β1t (4)

The parameterβ represents generically the location and the
scale parameter. The linear model was extended with a sec-
ond order term in a consecutive step. However, the signifi-
cance of a second degree time dependence was investigated
only on one of the parameters, in order to guarantee the con-
vergence of the numerical procedure:

β(t) = β0+β1t +β2t
2 (5)

The second degree extension may become important, be-
cause it accounts for the change in the sign of the trend,
which may occur at the time scale analyzed. Accepting more
than one maximum or minimum would mean that we would
be considering a cycle and not a trend (Wu et al., 2007), so
higher degree co-variation was not considered.
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To find the best fit of the parameter set to the sample, the
maximum likelihood criterium was used. Instead of the loca-
tion and scale parameter, the whole expressions ofµ(t) and
σ(t) were inserted in the likelihood function:

L =

n∏
t=1

σ(t)−1exp

[
−

(
1−ξ

x(t)−µ(t)

σ (t)

)]
(6)

wherex(t) is the element of the time series corresponding to
time t .

Both the linear and second degree model are a general-
ization of the stationary GEV. They necessarily yield a set
of parameters that are at least as good as the particular case
of β0,β1 = 0. However, if the results are very similar to the
stationary case, it can be argued that the differences were
obtained by chance and not due to an improvement in the
description of non-stationarity. Therefore, a likelihood de-
viance statistic was used to raise confidence in the model.
Let M0 be a submodel of modelM1, stationary and non-
stationary, respectively, whose log-likelihood isl0 and l1.
The deviance statistic is given by:

T = 2(l1− l0) (7)

whereT isχ2
q distributed, andq is the difference between the

number of free parameters inM1 andM0. We rejectM0 at
1−α significance level, if the integral of theχ2

q distribution
from T to infinity is smaller thanα.

The addition of parameters to the model was done on a
forward selection: we started with the stationary GEV and a
higher term was added only when a significant improvement
in the fit was indicated by the deviance statistic. The final
parametrization was tested by deriving its covariance matrix
and testing each parameter witht tests. This was done using
a distribution-based bootstrap method with stratified design.

After obtaining a statistically significant model, either sta-
tionary, linear, or second order, baseline values are estab-
lished for the stationary case with the GEV distribution. As
a measure of an average flood, we used the 2 year return pe-
riod flood according to the stationary GEV fitted to the sam-
ple. As a measure of extreme floods we used the threshold
of the 20 year return period discharge of the sample, when
estimated with a stationary GEV model. Note that the return
period is given by

R =
1

1−F(x)
(8)

whereF(x) is the cumulative probability from Eq.3.
The goodness of fit of the NSGEV may be also visually

inspected by plotting a diagnostic. Two types are given in
Coles(2001): a residual probability plot and a residual quan-
tile plot. Both diagnostic plots represent standardized vari-
ables: first the modeled probability against the plotting po-
sitions and second the observed discharges against the mod-
eled discharge corresponding to the respective plotting posi-
tion. These are presented in Fig.3b and c as an example.

The estimation of variance against time was done with
the wavelet power spectrum (WPS) (Torrence and Compo,
1998), which is the squared absolute value of the wavelet
transform. The wavelet transform may be described as a cor-
relation coefficient between the time series and a given and
well known function that slides over the time domain and
is scaled to account for different frequencies. A coefficient
is therefore given for every scale and time step, building a
two dimensional plot. The present application used aMorlet
wavelet, which is a complex valued, nonorthogonal function.

The average variance over the time domain was also ob-
tained by the wavelet. If we integrate the power spectrum
with respect to the scales, we obtain for each year the local-
ized variance over a chosen scale range. This is an useful
tool for validating the NSGEV in terms of variability, as it
explicitly shows the changes in variance over time.

In order to test the ability of the different models to detect
trends under presence of a trend in variance, we performed
a Monte Carlo experiment using synthetic AMAX time se-
ries. The synthetic annual maximum discharge time series
were generated without simulating the annual cycle or mod-
eling the temporal occurrence of flood peak. The reason is
that the annual cycle is very stable, defined by the monsoon
precipitation that arrives approximately at the same time of
the year (MRC, 2005). The same may be said about the flood
season. More than one flood peak per year can occur, but al-
ways within the same flood season, close to the maximum,
and they are imposed on the annual flood hydrograph, which
is unique for any given year but similar in shape between
different years. The annual maximum discharge is able to
represent the magnitude of the flood.

The chosen distribution for the generation of the synthetic
annual maximum discharge time series was the GEV dis-
tribution with time varying location and scale parameter (a
NSGEV model), which are the analogues to mean and stan-
dard deviation of a normal distribution. We used a NSGEV
with linearly varying location and scale parameter fitted to
the AMAX of Pakse as a baseline, as in Eq.4. The trend
in the location parameter was kept constant and equal to
the baseline model. The different trends in the scale pa-
rameter tested in the Monte Carlo experiment may be de-
fined as:σk(t) = σ Pakse

0 +kσ Pakse
1 t, k = 0, 0.2, 0.4, ... ,2, where

σ Pakse
0 = 3.42× 103 m3/s andσ Pakse

1 = 45m3/s (the lower in-
dex identifies the term in Eq.4). For the location parame-
ter µPakse

0 = 3.63×104m3/s andµPakse
1 = −26m3/s; the shape

parameter was kept constant:ξ Pakse
= −0.19. Note that an

analogue experiment was performed byZhang et al.(2004),
where the range of trends in the location parameter used was
greater than the one used in the present work. The only
restrictions for the synthetic time series are that each data
point may not be greater than 1.5 times the maximum histor-
ical discharge and not lower than half the minimum recorded
AMAX. Next, we tested the occurence of type I errors (de-
tecting a trend when there is none in the data) by running the
same Monte Carlo experient this time with a constant scale
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Fig. 4. Number of trends detected at a 90% significance level in
1000 synthetic time series using OLS, MK and NSGEV. The time
series were generated using the NSGEV model with a constant trend
in the location parameter and a varying one in the scale parameter.
Different rates of change for the scale parameter are given in the
abscissa.µ refers to the detected trends in the location parameter
andσ to the ones in the scale parameter derived by the NSGEV
model. Plus and minus signs indicate positive and negative trend.

parameter (no trend in the scale parameter) and a varying
rate of change in the location parameter, analogous to the one
used previously for the scale parameter. If the results show
a rate of detected trends in the scale parameter significantly
above or below the nominal significance level (10%), the ex-
perience will be not valid, because either it is biased (below
the nominal significance level) or produces too many type I
errors (above the nominal significance level).

The three trend detection methods, OLS, MK and NSGEV
with the forward selection of linear terms described earlier,
were applied to the 1000 synthetic time series. Results are
presented and discussed in Sect.4.

4 Results and discussion

4.1 Trend detection with changing variance

Figure 4 shows the number of detected negative trends
among 1000 trials for each of the positive scale parameter
rate of change (Eq.4), given a constant negative trend in
the location parameter of the synthetic time series. A first
observation is that NSGEV is the most powerful method to
detect a trend in average flood (µ(–) in Fig. 4). In second
comes MK and finally OLS. Their performance for constant
scale parameter was 77%, 69% and 51% for NSGEV, MK
and OLS, which is greater than inZhang et al.(2004), be-
cause of different significance levels. However, it is also
seen that all the methods loose power in detecting the nega-
tive average trend, when the samples are driven with a strong
positive scale parameter trend. For example, MK detects 3
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Fig. 5. Number of trends detected at a 90% significance level in
1000 synthetic time series using OLS, MK and NSGEV. The time
series were generated using the NSGEV model with a varying trend
in the location parameter and a constant scale parameter. Different
rates of change for the location parameter are given in the abscissa.
µ refers to the detected trends in the location parameter andσ to the
ones in the scale parameter derived by the NSGEV model. Plus and
minus signs indicate positive and negative trend. The sum of the
power of detection of positive and negative trends on the scale pa-
rameter is within the 90% confidence intervals around the nominal
significance level chosen for this work (10%).

times less negative trends in the presence of a strong trend in
the scale parameter than it would with a constant scale pa-
rameter, whereas OLS more than 9 times less. This means
that regarding the detection of trends in average floods, an
error of type II (failure to detect an existing trend) is more
likely to occur in the presence of a strong temporal change in
variability.

Secondly, we observed that the rate of trend detection in
the scale parameter was 12% (presented are only the rate of
detection of positive trends, which is 8% ), which is within
acceptable ranges of the 10% nominal significance level.
This was thoroughly tested in the second Monte Carlo expe-
rience, where the confidence intervals were also estimated,
as described below. Although not shown in the figures, the
NSGEV was the method with less errors of type I.

Thirdly, detecting a trend in the scale parameter with NS-
GEV appears to be free of problems. The power of the NS-
GEV increases with a steeper trend in the scale parameter.
The stepwise forward selection of parameters yielded better
results than when we estimated each parameter individually.
By testing the model improvement by adding one additional
parameter at a time, instead of constructing a complex model
and then testing it, we were able to validate each of the pa-
rameters involved.

Regarding our test for false positives, the results in Fig.5
show an almost constant rate of detection of trends in scale
parameter, around 5%. However, if we add the detected
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negative trends, we get an average of 10% type I errors,
which is the nominal significance level. As for the detection
of trends in the location parameter whenµ1 = 0, MK and
OLS show 9 and 11% of false positives. NSGEV presents
again a total of 10%, when we sum the positive and nega-
tive detected trends (shown are only the number of detected
negative trends).

Another observation in Fig.5 is that the number of de-
tected trends in the scale parameter remains constant. This
means that the number of false positives is not dependent on
the intensity of the trend in the location parameter.

Although we used the 90% significance level for all the
methods, this does not mean that we can trust the results
equally, due to the fact that statistical significance was com-
puted following three different methods. On the same line,
the results must be interpreted according to the method used,
because each of them is conceptually different. For example,
it is expected that OLS places a greater weight on greater
magnitudes than NSGEV: the method is based on gaussian
assumptions, whereas the sample that it is applied to has
more frequent high peaks than it had if it was driven from
a normal distribution, given GEV’s heavy tail. Regarding
MK, we cannot expect to cover the change in the frequency
of extreme high floods, which itself may induce a significant
perception of a trend, because it places the same weight on
an upper percentile value as on a median value. This affects
its ability to incorporate the more frequent occurence of ex-
tremes, which is well described by the NSGEV, for example.
In summary, the different methods focus on different aspects
of the time series, which means that the user should be aware
of each method’s limitations. As it will be seen in the appli-
cation to the case study, the use of NSGEV allows the study
of different sets of magnitudes, for example greater magni-
tudes of the time series or average values: we can focus on
which percentile of the time series we want to analyze and es-
timate its change over time. Moreover, it allows to perform
both a trend detection test and a frequency analysis.

We learn from this exercise that different methods are af-
fected differently by a change in variance in the time series.
Namely, the power of detection of an average trend decreases
greatly for MK and OLS, to a level where they resulted in a
type II error in most of the test trials. OLS even detects more
positive trends than negative when the trend in scale parame-
ter is greater thanσ Pakse

1 , probably due to being based on a nor-
mal distribution, when the data is clearly non-normal. When
suspecting changes in variance, NSGEV should be used, as
it explicitly accounts for change in the scale and location pa-
rameter. Even when only considering a trend in the location
parameter, it was by far the best method tested.

Results from trend detection should be considered with
caution and always validated against other methods. Further,
and equally important, a possible change in variance should
be considered, as it can affect the trend detection results even
with high significance levels, as shown in this section. Sim-
ple methods are available that give an idea of the change in

Table 1. Summary of the trend analysis of AMAX in the lower
Mekong river. “–” stands for negative trend and “+” for positive
trend. Bold lettering indicates 90% statistical significance.

Vientiane Thakhek Pakse Kratie

OLS – – – –
Mann-Kendall – – – –

NSGEV
µ trend – – – –
σ trend – + + –

variance of the time series over time. Computing a mov-
ing window variance or the average variance obtained from
the wavelet power spectrum (Torrence and Compo, 1998)
are straightforward choices, although in the case of skewed
datasets, as normally meteorological and hydrological data
are, the NSGEV or the Generalized Additive Models for Lo-
cation, Scale and Shape (GAMLSS) (Villarini et al., 2009)
could be a better option.

4.2 Flood trends in the Mekong river

A summary of the trend analysis of four stations on the
Mekong river is presented in Table1, where the results of
MK, OLS and NSGEV with linearly varying parameters are
shown. A first inspection reveals apparent consensual results:
a negative trend is affecting all four stations. Only in Pakse
there is some uncertainty regarding the trend, because it is
not statistically significant. This may be due to the fact that
it has the strongest scale parameter trend, identified by NS-
GEV, which, according to the results of the previous section,
leads to a relatively large type II error. However, when we
distinguish the trend in the average flood and the trend in
variability, we obtain different conclusions regarding how we
see the flood regime of the Mekong during the 20th century.
This is analyzed with respect to trends in flood variability in
Sect.4.3.

Table1 shows overall agreement between methods in de-
tecting average flood trends: MK, OLS and NSGEV all de-
tect negative trends in average flood in all stations. This con-
trasts with public and local managers’ perceptions as stated
in Campbell(2007) and with the hypothesis of a strengthen-
ing large-scale monsoon system (Anderson et al., 2002). We
know, however, that average flood trend detection methods
like OLS and MK do not capture what may be the most inter-
esting aspect of change in the flood regime: variability (Katz
and Brown, 1992; Kundzewicz and Schellnhuber, 2004). In-
deed, the trends in the greater flood magnitudes at Thakhek
and Pakse become ascendant if the AMAX are modeled by
NSGEV with a linear trend in both parameters. This means
that the flood regime became more variable during the 20th
century. Extremely high flood events were experienced more
often than before, although intercalated with years of below-
average flooding. Therefore, in present and according to
the NSGEV model, the probability of experiencing a greater
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Table 2. Estimated parameters for the nonstationary and stationary GEV. Zeros are displayed for terms that did not satisfy the criterium of
the forward selection described in Sect.3.

Station
Location parameter Scale parameter Shape parameter

Stationary Nonstationary Stationary Nonstationary Stationary Nonstationary

µ µ0 µ1 σ σ0 σ1 σ2 ξ ξ0

Vientiane 15 457.3 16 930.1 −32.6 3085.9 2947.3 0 0 −0.20 −0.18
Thakhek 24 250.4 26 047.1 −46.4 4376.0 2960.0 30.1 0 −0.32 −0.30
Pakse 35 460.9 35 590.8 0 5530.8 3831.3 39.0 0 −0.20 −0.30
Kratie 46 100.2 49 749.0 −96.7 7074.1 9202.3 −196.6 2.5 −0.28 −0.29

than average flood in Thakhek and Pakse is greater than be-
fore. This is an interesting result, not only because it matches
projections from regional and global climate models (Milly
et al., 2002; Kiem et al., 2008), but also because it adds on
the discussion of trend detection: within certain hydrological
systems, MK, OLS or NSGEV with only varying location
parameter may not fully describe change in the flood regime.

But why does not Vientiane present the same behaviour?
The answer lies probably in the regions of influence of the
two components of the monsoon (Sect.4.3): the Indian mon-
soon (IM) and the Western North-Pacific monsoon (WNPM).
These two components had different periods of enhancement
during the 20th century. They also influence regional pat-
terns of precipitation (Wang et al., 2001). Vientiane receives
its flood waters from moisture entering the continent through
the bay of Bengal and from melting of snow in the Tibetan
plateau. Downstream of Vientiane, the contribution from the
highlands on the border between Laos and Vietnam is domi-
nant (MRC, 2005); there, the flood generation is linked with
a combination of WNPM and IM, whereas in the south it is
linked predominantly with WNPM (Delgado et al., 2010).

The variability trend in Kratie does not match Pakse and
Thakhek further upstream. Indeed, a light negative linear
change in the scale parameter was found to be significant, al-
though this was the only station where a second degree trend
in the scale parameter of the NSGEV proved to be significant
(Table2), when compared to the linear model. The analysis
of this trend is done in Sect.4.3, where it is also compared
with other measures of variability.

When focusing on trends in average flood, the three meth-
ods seem to agree that floods decreased on average over the
20th century. However, the scale parameter obtained by the
NSGEV model presents a significant trend, revealing that the
underlying distribution may be changing in a way that may
affect extremes differently than it affects average floods. This
is discussed in the next section.

4.3 Trends in flood variability

Variability was assessed in two different ways. First, the
number of parameters of the NSGEV was increased one by
one, and the improvements evaluated by a deviance statistic.

The maximum parametrization allowed was a second degree
variation of each of the parameters. This procedure is ex-
plained in Sect.3 and inColes(2001). The diagnostic plots
for Thakhek are presented, showing a fair fit of the linear
NSGEV (Fig.3b and c). Secondly, a more adaptive method
is used, the wavelet power spectrum, that is able to outline
both the dominant modes of variability and how they vary
with time (Torrence and Compo, 1998). The power spectrum
was computed for the whole scale domain showing periods
of short term variability.

The result of the parameter forward selection is presented
in Table2. The values presented are all above the 90% sig-
nificance level. Note that for Pakse, only the scale parameter
has a trend and that Kratie has a second degree positive term
in the scale parameter. The covariance matrix of the models
obtained were verified witht tests, as explained previously.
As in Table1, trends in the location parameter are negative,
except for Pakse, where the trend in the scale parameter is
the strongest of all stations. The main change introduced by
the forward selection of model parametrization is the second
degree in the scale parameter for Kratie. The fact that this
second degree is significant means that there is an inflection
in the scale parameter during the 20th century.

The results of the NSGEV regarding baseline values
(probability of exceedence of the 20 year return period and
of the 2 year return period of the distribution according to
the stationary GEV) are given against time in Figs.6 and
7. The second degree variation of the scale parameter for
Kratie is evident in the figure. According to this model, the
probability of exceedingQGEV

T =20 decreased in Vientine dur-
ing the 20th century by 0.08, whereas it increased by 0.03
and 0.10 in Thakhek and Pakse. During the same period,
the probability of an average flood was decreasing in all sta-
tions. This difference between Vientiane and the two down-
stream stations may be explained by the different hydrolog-
ical regimes within the Mekong river: downstream of Vien-
tiane, the contribution of the flow generated in the highlands
on the Laos-Vietnam border, whose variability is modulated
by the WNPM, starts to affect the flood hydrograph, whereas
upstream it is still mainly affected by the Yunnan component.
According to the model, the probability of exceedingQGEV

T =20
in Kratie presents an inflection point around the 1970s. This
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Fig. 6. Probability (computed with NSGEV) of exceeding the 20-
year flood estimated by the stationary GEV in Vientiane, Thakhek,
Pakse and Kratie.

decade might represent the beginning of an enhancement in
flood variability, as detected byWang et al.(2001) for the ac-
tivity of the WNPM. By the end of the century, the estimated
increase is of 0.06. Although this inflection is also seen in
the average variance plots (Fig.8), it is not present if one
uses a linear model for describing the scale parameter. This
possible change of behaviour between Kratie and upstream
stations may be explained with the important contribution of
tributaries with their mouth between Pakse and Kratie, like
the Se San and Se Kong (Tonle San and Tonle Kong in Cam-
bodia) and the more southward landfall of typhoons in the
past decades (Ho et al., 2004).

The fact that in the beginning of the time series, the prob-
ability of an extreme flood is very high for Kratie may be
due to errors in rating curves, or filling of gaps in the record
using an upstream station, as discussed previously. The NS-
GEV model fit was here driven by the high flows recorded
in the early decades of the time series, which are difficult
to validate, due to lack of other sources of data (for this re-
gion, reliable reanalysis climatic datasets are available only
after 1950 and earlier tributary discharge records do not ex-
ist). For the later 20th century, the discharge could be com-
pared and validated with precipitation data, which suggests
climatic causes for the increase in variability reported. In-
deedWang et al.(2001) andHo et al. (2004) show an en-
hancement of the WNPM index variance and typhoon activ-
ity in the 1980s, respectively. One can find, additionally to
atmospheric, other plausible forcing mechanisms for change
in the hydrological system. Some of these factors were ap-
proached byLu and Siew(2006) andHaddeland et al.(2006).
Regarding water use, the latter modeled the irrigation de-
mand for river Mekong and, as far as model results are to
be trusted, the impact of irrigation on the monthly average
discharge is relatively little and only evident on the dry sea-
son, i.e. irrigation does not affect flood discharge because of
insufficient volumes compared to flood volume and also be-
cause during the monsoon season irrigation requirement is at
its minimum. Regarding changes caused by dam building,
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Fig. 7. Same as in Fig.6, but for the probability of exceeding the
2-year flood.

Lu and Siew(2006) argues that this effect is limited to the
upper reaches of the Mekong. Furthermore, the first of the
Chinese dams was commissioned in 1993, while the reported
enhancement in variance starts earlier, in the early eighties.
This is enough to dismiss dams as the cause for different be-
havior of the flood variability during the last 20 years of the
20th century in Vientiane and downstream stations, although
their impact is not fully assessed, especially since other dams
have been commissioned in recent years both on the main
stem and on tributaries. Regarding land use and land use
change, it is difficult, if not impossible at present, to evalu-
ate its effect on the Mekong floods due to the lack of long
term data on land use. Furthermore, the “effects of land
use change on the magnitude of flood peaks in large rivers
are difficult to evaluate because such changes are rarely fast
and consistent (except perhaps where population pressure is
very high) and often compounded by climatic variability”
(Bruijnzeel, 2004). This is however not enough to dismiss
a possible contribution of land use change to change in ex-
treme floods in a region under dramatic social and economic
changes in the last decades (MRC, 2005).

The average variance obtained by integration of the
wavelet power spectrum over the scale domain, presented
in Fig. 8, confirms the result of NSGEV: a period of en-
hanced variance is observed in the last quarter of the 20th
century for all stations except Vientiane. This enhancement
is made evident by the bold contours that represent times and
frequencies of significant variability (Torrence and Compo,
1998). The average variance in the middle plot shows in-
creasing variability in the last quarter of the 20th century in
the two downstream stations of Pakse and Kratie, this fea-
ture being less evident in Thakhek and residual in Vientiane.
The descending-ascending behaviour of variance in Kratie is
reproduced by the probability of exceedingQT =20 shown in
Fig. 6, due to the 2nd degree variation of the scale parame-
ter of the NSGEV. It is also visible in the power spectrum of
Kratie (Fig.8) indicated by the areas of significance.

The separation between trend in average flood and trend
in flood variability by NSGEV proves to be more useful than
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Fig. 8. Top: wavelet power spectrum of AMAX for Vientiane(a), Thakhek(b), Pakse(c) and Kratie(d). Colder colors correspond to smaller
wavelet coefficients and warmer colors to greater wavelet coefficients. Bold contours enclose significant times and frequencies, whereas the
shaded area is outside the cone of influence and should be interpreted with caution. Middle: Average variance (normalized) over the scale
domain. Bottom: AMAX time series.

usual trend detection methods like OLS or MK, as it provides
a probabilistic interpretation of the trend, including describ-
ing the change in probability of occurence of a certain flood.
In this sense, although negative average flood trends in all
stations are found, the theoretical probability of an extreme
event, for example exceeding the 20-year return period, in-
creases over time in the three donwstream stations Thakhek,
Pakse and Kratie, at least in the last years of the 20th century
(Fig. 6).

5 Conclusions

Usual methods of trend detection like linear regression
(OLS) and Mann-Kendall test (MK) proved to loose detec-
tion power in presence of changes in variance. In a Monte
Carlo experiment it was shown that the introduction of a
trend in the scale parameter made the number of detected
trends drop to less than half with MK and less than a quarter
with OLS. Therefore, the number of type II errors increases
with increasing trends in the scale parameter. The use of NS-
GEV is advantageous both because of its power of detection
in presence of changing variance and because it allows to de-
tect trends in different flood magnitudes with a probabilistic
approach.

Regarding the flood regime of the Mekong, it is clear that
although average magnitude floods have a negative trend,
variability is increasing, both shown by an increase in vari-
ance and by a positive trend in the scale parameter of a fitted
NSGEV model, for stations downstream Vientiane. Accord-
ing to the fitted distribution, the increase in the theoretical
probability of extreme floods is driven by the scale parame-
ter. In this conceptualization, both very large floods and very
small floods increase in frequency, with a decrease in fre-
quency of average floods. This motivates further research on
the causes and temporal scale of this variability change.

Differences between Vientiane and downstream stations
were explained by the influence of regional patterns of pre-
cipitation and runoff generation. In the first case the floods
mostly originate from rainfall and snowmelt on the upper
Mekong basin, and in the second case from intense rain-
fall over the highlands on the Laos-Vietnam border. These
two sources of runoff originate from two distinct atmospheric
processes, having therefore different periods of enhance-
ment.

The causes for the detected changes in variance are still
unknown and probably range from climate oscillations, cli-
mate change and changes in the land and water use. A period
of enhanced variance in the WNPM was identified in the lit-
erature, that matches the presented results. If these changes
are an oscillation in the climate system or a permanent
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feature is not known, and will not be understood by only ana-
lyzing instrumental records. Analyzing global climate model
outputs with regard to variability and links between both
monsoon components and precipitation over the Mekong
basin would also be useful for understanding this.
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