English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind

Authors

Häusler,  K.
External Organizations;

/persons/resource/hluehr

Lühr,  Hermann
2.3 Earth's Magnetic Field, 2.0 Physics of the Earth, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Hagan,  M. E.
External Organizations;

Maute,  A.
External Organizations;

Roble,  G.R.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

14946.pdf
(Any fulltext), 328KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Häusler, K., Lühr, H., Hagan, M. E., Maute, A., Roble, G. (2010): Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. - Journal of Geophysical Research, 115, D00I08.
https://doi.org/10.1029/2009JD012394


https://gfzpublic.gfz-potsdam.de/pubman/item/item_240634
Abstract
Four years (2002 - 2005) of continuous accelerometer measurements taken onboard the CHAMP satellite (orbit altitude ~ 400 km) offer a unique opportunity to investigate the thermospheric zonal wind on a global scale. Recently, we were able to relate the longitudinal wave-4 structure in the zonal wind at equatorial latitudes to the influence of nonmigrating tides and in particular to the eastward propagating diurnal tide with zonal wave number 3 (DE3). The DE3 tide is primarily excited by latent heat release in the tropical troposphere in deep convective clouds. In order to investigate the mechanisms that couple the tidal signals to the upper thermosphere we undertook a comparison with the thermosphere-ionosphere-mesosphere- electrodynamics general circulation model (TIME-GCM) developed at the National Center for Atmospheric Research (NCAR). We ran the model for a day in March, June, September, and December and applied the same processing steps to the model output as was done for the CHAMP tidal analysis. The main results of the comparison can be summarized as follows: (1) TIME-GCM simulations do not correctly reproduce the observed intra-annual variations of DE3 and the eastward propagating diurnal tide with zonal wave number 2 (DE2). (2) Simulations of DE3 for June are more successful. Both TIME-GCM and CHAMP show an increase in DE3 amplitudes with decreasing solar flux level. (3) The amplitudes of the simulated westward propagating diurnal tide with zonal wave number 2 (DW2) and the standing diurnal tide (D0) increase with increasing solar flux in June. The predicted dependence of DW2 and D0 on solar flux is also observed by CHAMP.