Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere

Urheber*innen
/persons/resource/dobslaw

Dobslaw,  Henryk
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dill

Dill,  Robert
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Grötzsch,  A.
External Organizations;

Brzezinski,  A.
External Organizations;

/persons/resource/mthomas

Thomas,  Maik
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

15342.pdf
(beliebiger Volltext), 879KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dobslaw, H., Dill, R., Grötzsch, A., Brzezinski, A., Thomas, M. (2010): Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. - Journal of Geophysical Research, 115, B10406.
https://doi.org/10.1029/2009JB007127


https://gfzpublic.gfz-potsdam.de/pubman/item/item_241056
Zusammenfassung
Effective angular momentum functions from atmosphere, oceans, and terrestrial water storage are obtained from ECMWF atmospheric data and corresponding simulations with the ocean model OMCT and the land surface model LSDM. Mass exchanges among the sub-systems are realized by means of freshwater fjuxes, causing the total ocean mass to vary predom- inantly annually. Variations in total ocean mass affect the oceanic excitations of the annual wobble by almost 1 mas for both pro- and retrograde compo- nents, whereas the motion term contributions of terrestrial water flow de- rived from LSDM are found to be three orders of magnitude smaller. Since differences to geodetic excitations are not substantially reduced, and regional de-compositions demonstrate the large spatial variability of contributions to seasonal polar motion excitation that compensate each other when integrated globally, it is concluded that the closure of the seasonal excitation budget is still inhibited by remaining model errors in all sub-systems.