Table of Contents

Oral Presentations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Keynotes</td>
<td>1</td>
</tr>
<tr>
<td>Engineering Keynotes</td>
<td>2</td>
</tr>
<tr>
<td>CS1: Seismic Input for Design (EC8 and Others)</td>
<td>2</td>
</tr>
<tr>
<td>CS2: Historical Investigations of Earthquake Effects, Damage and Vulnerability</td>
<td>6</td>
</tr>
<tr>
<td>CS3: Applications of the EMS-98 and Related Future Evolutions</td>
<td>8</td>
</tr>
<tr>
<td>CS4: Strong Motion: Use and Modelling</td>
<td>10</td>
</tr>
<tr>
<td>CS5: Site Response and Site Effects</td>
<td>16</td>
</tr>
<tr>
<td>CS6: Early Warning, Shaking and Loss Scenarios</td>
<td>23</td>
</tr>
<tr>
<td>CS7: Strategies in Earthquake Mitigation</td>
<td>27</td>
</tr>
<tr>
<td>CS8: Secondary Earthquake Hazards: Tsunami, Landslide, Rock Fall, Liquefaction</td>
<td>30</td>
</tr>
<tr>
<td>ES 1: Geotechnical Engineering</td>
<td>31</td>
</tr>
<tr>
<td>ES 2: Dam Engineering</td>
<td>37</td>
</tr>
<tr>
<td>ES 3a: Structural Engineering - Analysis</td>
<td>38</td>
</tr>
<tr>
<td>ES 3b: Structural Engineering - Bridges</td>
<td>46</td>
</tr>
<tr>
<td>ES 3c: Structural Engineering - Concrete</td>
<td>49</td>
</tr>
<tr>
<td>ES 3d: Structural Engineering - Control</td>
<td>52</td>
</tr>
<tr>
<td>ES 3e: Structural Engineering - Experimental</td>
<td>55</td>
</tr>
<tr>
<td>ES 3f: Structural Engineering - Masonry and Timber</td>
<td>61</td>
</tr>
<tr>
<td>ES 3g: Structural Engineering - Steel</td>
<td>64</td>
</tr>
<tr>
<td>ES 3h: Structural Engineering - Miscellaneous</td>
<td>66</td>
</tr>
<tr>
<td>ES 4: Design Criteria and Methods, Codes</td>
<td>68</td>
</tr>
<tr>
<td>ES 5: Existing Structures and Earthquake Risk Reduction</td>
<td>72</td>
</tr>
<tr>
<td>ES 6: Lifeline Systems</td>
<td>77</td>
</tr>
<tr>
<td>ES 8 & ES 7: Earthquake Engineering Practice (Recent Projects) and Architectural Aspects, Nonstructural Components and Contents (Joint Session)</td>
<td>79</td>
</tr>
<tr>
<td>ES 9 & SS 5: Lessons from Recent Earthquakes</td>
<td>81</td>
</tr>
<tr>
<td>STS E1 & SS 6: The Last Mile, Implementation of Risk Mitigation Measures in Europe</td>
<td>83</td>
</tr>
<tr>
<td>STS E2: Practice-oriented Nonlinear Approaches for Performance Assessment and Design</td>
<td>84</td>
</tr>
<tr>
<td>STS E3: Irregular Structures</td>
<td>85</td>
</tr>
<tr>
<td>STS E4: Displacement Based Design: Initial Versus Secant Stiffness</td>
<td>86</td>
</tr>
<tr>
<td>STS E5: Eurocode 8: How to Apply?</td>
<td>86</td>
</tr>
<tr>
<td>STS E6: Seismic Assessment and Retrofit of Bridges</td>
<td>87</td>
</tr>
<tr>
<td>STS E7: European Research on the Performance of Experimental Facilities</td>
<td>89</td>
</tr>
<tr>
<td>STS E8: Shaking Table Facilities and Testing for Advancement of Earthquake Engineering</td>
<td>91</td>
</tr>
<tr>
<td>STS E9: Analysis and Design of RC Frames with Masonry Infills</td>
<td>92</td>
</tr>
<tr>
<td>STS E10: By How Much Does the Natural Frequency of Structures Decrease During Seismic Response?</td>
<td>93</td>
</tr>
<tr>
<td>STS E11: Petrochemical Facilities and Large LNG Storage Tanks</td>
<td>93</td>
</tr>
</tbody>
</table>
STS E12: Joint IAEE-IASPEI Session on International Collaboration of Earth Science and Earthquake Engineering Professional Associations .. 95
STS E13: LESSLOSS Project: General Assembly ... 95
SC-A 1: Archaeological and Historical Studies on the Earthquakes of the Past Centuries 96
SC-A 2: Volcano Seismology and Applications to Hazard Evaluation 98
SC-B 1: Theory of Wave Propagation and New Techniques of Data Processing 100
SC-B 2: The 20th Century Strong Euro-Mediterranean Earthquakes from Historical Seismograms 103
SC-C 1: Earthquake Source Complexity: From Geology Through Kinematic and Dynamic Models to Realistic Ground Motion Simulations .. 106
SC-D 1: 2-D and 3-D Crustal Models of Europe ... 111
SC-E 1: Earthquake Forecasting and Society ... 113
SC-E 2: Deterministic and Probabilistic Prediction Methods: Theory, Applications and Case Studies ... 115
SC-E 3 & SC-F 2: Time-Dependant Earthquake Hazard Assessment 118
SC-E 5: Earthquakes: To Predict or not to Predict? (Controversial Debate) 121
SC-E 6: Earthquake Physics - Field and Laboratory Study .. 121
SC-F 1: Approaches to Model Seismic Scenarios .. 123
SC-F 3: Multiparametric Test Sites in Europe for the Evaluation of Ground Motion Amplification ... 125
SC-F 4: Geoinformation Technologies Oriented to Seismic Hazard and Seismic Risk Assessment ... 127
SC-F 5: Seismic Hazard and Risk due to Induced Seismicity .. 129
SC-F 6: Geophysical and Civil Engineering Aspects of Hazard, Risk, and Mitigation for Major European Cities ... 131
SC-F 7: Potential for Very Large Earthquake Disasters in the European Mediterranean Region ... 133
SC-F 8: Near Real-Time Damage and Loss Assessment due to Strong Earthquakes 134
SC-G 1 & SC-F WG: National Methodologies for Macroseismic Field Surveys (Joint Session with SC-F WG on Macroseismology) .. 138
SC-G 2: Recent Macroseismic Field Surveys ... 139
SS 1: Tsunamis in the European Mediterranean Region and the Sumatra Earthquake and Tsunami in the Indian Ocean ... 140
SS 2: Earthquake Loss Modelling: From Earth Sciences to Insurance Applications 142
SS 3: Education and Outreach for Risk Reduction ... 147
SS 4: ESC-UNESCO Workshop on Earthquake Hazard and Seismic Risk Reduction: Studies in the Southern Mediterranean Countries .. 150

Poster Presentations - From Monday to Wednesday ... 155
CS1: Seismic Input for Design (EC8 and Others) .. 155
CS2: Historical Investigations of Earthquake Effects, Damage and Vulnerability 162
CS3: Applications of the EMS-98 and Related Future Evolutions 162
CS4: Strong Motion: Use and Modelling ... 164
ES 3b: Structural Engineering - Bridges ... 180
ES 3c: Structural Engineering - Concrete ... 188
ES 3d: Structural Engineering - Control ... 198
ES 3e: Structural Engineering - Experimental .. 208
ES 3g: Structural Engineering - Steel ... 225
ES 5: Existing Structures and Earthquake Risk Reduction ... 232
ES 9 & SS 5: Lessons from Recent Earthquakes ... 248
ES 10: Other Issues .. 255
STS E2: Practice-oriented Nonlinear Approaches for Performance Assessment and Design ... 256
STS E3: Irregular Structures .. 260
STS E4: Displacement Based Design: Initial Versus Secant Stiffness ... 262
STS E6: Seismic Assessment and Retrofit of Bridges ... 263
SC-A 0: Seismicity of the European-Mediterranean Area (Open Session – Posters Only) 265
SC-A 2: Volcano Seismology and Applications to Hazard Evaluation ... 276
SC-B 0: Data Acquisition, Theory and Interpretation (Open Session – Posters Only) 277
SC-D 0: Crust and Upper Mantle Structures (Open Session – Posters Only) 287
SC-D 1: 2-D and 3-D Crustal Models of Europe ... 290
SC-E 0: Earthquake Prediction Research (Open Session – Posters Only) .. 291
SC-E 1: Earthquake Forecasting and Society .. 295
SC-E 2: Deterministic and Probabilistic Prediction Methods: Theory, Applications and Case Studies ... 296
SC-E 3 & SC-F 2: Time-Dependant Earthquake Hazard Assessment ... 298
SC-F 3: Multiparametric Test Sites in Europe for the Evaluation of Ground Motion Amplification 300
SC-F 4: Geoinformation Technologies Oriented to Seismic Hazard and Seismic Risk Assessment 302
SC-F 6: Geophysical and Civil Engineering Aspects of Hazard, Risk, and Mitigation for Major European Cities ... 302
SC-F 7: Potential for Very Large Earthquake Disasters in the European Mediterranean Region 304
SC-F 8: Near Real-Time Damage and Loss Assessment due to Strong Earthquakes 305
SS 1: Tsunamis in the European Mediterranean Region and the Sumatra Earthquake and Tsunami in the Indian Ocean .. 307
SS 2: Earthquake Loss Modelling: From Earth Sciences to Insurance Applications 308
SS 4: ESC-UNESCO Workshop on Earthquake Hazard and Seismic Risk Reduction: Studies in the Southern Mediterranean Countries .. 313

Poster Presentations - From Thursday to Friday .. 315
CS5: Site Response and Site Effects .. 315
CS6: Early Warning, Shaking and Loss Scenarios ... 335
CS7: Strategies in Earthquake Mitigation .. 341
CS8: Secondary Earthquake Hazards: Tsunami, Landslide, Rock Fall, Liquefaction 347
ES 1: Geotechnical Engineering ... 351
ES 2: Dam Engineering .. 365
ES 3a: Structural Engineering - Analysis .. 371
ES 3b: Structural Engineering - Masonry and Timber .. 398
ES 3h: Structural Engineering - Miscellaneous .. 408
ES 4: Design Criteria and Methods, Codes .. 413
ES 6: Lifeline Systems .. 426
ES 8 & ES 7: Earthquake Engineering Practice (Recent Projects) and Architectural Aspects, Nonstructural Components and Contents (Joint Session) .. 432
STS E1 & SS 6: The Last Mile, Implementation of Risk Mitigation Measures in Europe 435
STS E5: Eurocode 8 : How to Apply ? ... 436
STS E9: Analysis and Design of RC Frames with Masonry Infills .. 437
STS E10: By How Much Does the Natural Frequency of Structures Decrease During Seismic Response ? .. 439
STS E11: Petrochemical Facilities and Large LNG Storage Tanks ... 442
SC-A 1: Archaeological and Historical Studies on the Earthquakes of the Past Centuries 444
SC-C 0: Physics of the Earthquake Sources (Open Session – Posters Only) ... 448
SC-C 1: Earthquake Source Complexity: From Geology Through Kinematic and Dynamic Models to Realistic Ground Motion Simulations .. 452
of these events can help to define the present day kinematics of this complex plate boundary zone. Here, we combine the data from three accurate satellite geodetic systems (ENVISAT, GPS and SPOT) to study the Al-Hoceima event and its aftershocks. Two interferograms generated from descending and ascending ENVISAT satellite radar images record two components of the coseismic displacement field. In addition we measured co-seismic displacement vectors at several GPS sites. The correlation of two 2.5 meter resolution SPOT-5 images shows that the horizontal slip along the surface rupture due to this earthquake must be smaller than the measurement uncertainty, of the order of half a meter. Although some minor surface crackings were observed in the field, their small vertical throw (decimeter), lack of horizontal throw, short length (2 km) and valley-parallel strike suggest that they are secondary features. By combining these data with elastic dislocation models, we consider the two possible rupture planes that strike NNE-SSW and WNW-ESE. Our interpretation suggests that the collisional strains in the southern part of the boundary zone are mostly accommodated in the northern Rif Mountains and the Alboran microplate.

RUPTURE ANALYSIS OF DECEMBER 10, 2003
CHENGKUNG, TAIWAN EARTHQUAKE (MW 6.5)
BASED ON TELESEISMIC AND STRONG-MOTION DATA SETS – ID 1742

G. Orgul, Bogusłors University, Kandilli Observatory and E.R.I., Turkey
S. Yolal, Istanbul Technical University, Department of Geophysics, Turkey
T. Taymaz, Istanbul Technical University, Department of Geophysics, Turkey
M. Aktar, Bogusłors University, Kandilli Observatory and E.R.I., Turkey
B. S. Huang, Academia Sinica, Institute of Earth Sciences, Taiwan

With different data sets of teleseismic and strong-motion we analyze slip distribution of Chengkung earthquake (MW 6.5, BATS) that occurred on 10 December 2003 (01:38:13.5, UTC) near a coastal town of Chengkung in eastern Taiwan. The epicenter is located at 23.066 N and 121.398 E with a source depth of 18 km (CWB). The earthquake ruptured Chihshang fault which is a thrust fault trending in NNE direction and dipping to southeast. This information of the casual fault is inferred from field observations of numerous cracks or fissures near the surface trace of the Chihshang fault. This faulting draws attention of earthquake scientists due to its position as a part of plate boundary between the Philippine Sea and Eurasian plates and due to its seismotectonic behavior revealing with a creep. At the same time this event has another striking feature due to a fan-shaped pattern of co-seismic displacements since its focal mechanism solution indicates almost a pure thrust faulting. The fault plane that we envisaged for this event is defined with a strike of 23, a dip of 42 and an average rake of 75 based on focal mechanism solutions reported by different agencies (HIR, USGS and BATS). Preliminary slip models produced for teleseismic data consisting of 35 broadband stations indicate that the rupture mechanism for this event appears with two slip patches. Prevailing slip patch nucleated near the earthquake hypocenter and then propagated to the SSW part of the rupture plane. The second patch is also appearing at SSW part, but at a shallower depth relative to the first patch. This result may answer questions like “why maximum ground-motion displacements are observed at some strong-motion stations to the southwest of the earthquake epicenter?” Further findings of slip models and rupture mechanisms will also be discussed.

RUPTURE AT STRIKE-SLIP FAULTS - RESULTS OF NUMERICAL MODELLING AT PLANAR AND INCLINED FAULT SEGMENTS – ID 1769

B. Schelle, GeoForschungZentrum Potsdam, Germany
G. Grünthal, GeoForschungZentrum Potsdam, Germany

Strike-slip faults are commonly characterized by changes in strike and dip on a variety of scales. In particular faults with strike changes in a kilometre-scale can rupture in individual earthquakes with meters of offset. Models of strike slip faults without and with a bend were investigated numerically with the three-dimensional distinct element code 3DEC. Tectonic loading, stress accumulation, subsequent failure with stress transfer, and the possibility of these processes were investigated. A Mohr-Coulomb slip model with stick-slip behaviour was used for the loaded fault segments. Repeated failure processes are simulated since an instantaneous healing process was introduced. The loaded segments themselves were embedded in a sliding fault surrounding. The generated earthquake sequences possess the characteristic features of real earthquake catalogues, such as magnitude-frequency distributions according to the Gutenberg-Richter law, significantly varying temporal occurrence of main events, and foreshock-aftershock distributions. The spatio-temporal distribution of large events were especially analysed. The simulated earthquake sequences were used to calculate the long-term time-dependent probability of the next large earthquake on the distinct fault segments. The distribution of the inter-event times were fitted to several well-known statistical distributions. The differences of these fits are discussed with respect to the distinct distributions. Further, the possibility of cascading (i.e. the rupture of local segments immediately one after the other) is investigated.

THE SAORGE-TAGGIA LINE, WESTERN LIGURIA (ITALY): MULTIDISCIPLINARY ANALYSIS OF A COMPLEX FAULT SYSTEM – ID 1827

C. Turino, Università degli Studi di Genova, Italy
D. Seifidi, Università degli Studi di Genova, Italy
E. Eva, INGV, Italy
S. Solarino, INGV, Italy

In this contribution we show as studies based on combined seismological and geological investigations result in a better knowledge of a seismogenic structure and give hints on its mechanism of rupture. The Saorge – Taggia line, western Liguria, is a system of strike slip faults with NW – SE orientation. It extends from the coast up to a northern limit, the Breil-Sospel-Monaco fault, a NE-SW strike slip structure. The structure shows a remarkable geological complexity and a diffuse seismicity which confirms its active character. In the past, some significant earthquakes were later associated to the Saorge-Taggia system, causing a growing interest on the structure leading to a seismic monitoring performed on both sides of the French-Italian border. Such a concentration of seismic stations enables to reveal, record and localize earthquakes with very low magnitude threshold and with error in the determination of hypocentral parameters extremely contained. This enables the ideal conditions for the application of detailed historical invesigations. We present, in a preliminary form, the combined results of techniques to determine shape and deep extension of seismic lines (seismic tomography), the precise position of hypocenters and the fault mechanisms. They suggest that the strike slip nature of the structure is not equally spread but turns to a more transtensive component in the northern part of the system; the seismicity is less evident in the south termination of the fault, but it may be masked by anthropic activities and sedimentary thickness. Finally, a comparison between historical and current seismic activity seems to evidence that the fault alternates period of low magnitude, frequent events with medium to strong, isolated episodes. The likely interaction with the surrounding and cutting lineations makes hypothesis on the nature of this kind of energy release uncertain.

IMAGING OF SEISMIC RUPTURE PROCESS OF THE CYTHERA M6.7 EARTHQUAKE (JANUARY 8, 2006): INVERSION FROM THE RELATIVE SOURCE TIME FUNCTIONS. – ID 1877

V. Plika, Charles University in Prague, Faculty of Mathematics, Czech Republic

On January 8, 2006 at 11:34 UTC a strong earthquake of 6.7 magnitude occurred near the island of Kythira, about 200km south of Athens. The shocks have been felt in regions, far from