English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Dynamics of the Antarctic circumpolar current as seen by GRACE

Authors
/persons/resource/mthomas

Thomas,  Maik
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dobslaw

Dobslaw,  Henryk
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/ingab

Bergmann-Wolf [Bergmann],  Inga
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Thomas, M., Dobslaw, H., Bergmann-Wolf [Bergmann], I. (2010): Dynamics of the Antarctic circumpolar current as seen by GRACE, AGU 2010 Fall Meeting (San Francisco 2010).


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_242590
Abstract
The Antarctic Circumpolar Current, being the strongest and longest ocean current on Earth, connects the three great ocean basins and contributes substantially to the global re-distribution of water masses, with a significant impact on global climate. Observational coverage from in-situ measurements is sparse due to the harsh environmental conditions, and satellite altimetry does not capture the full extent of the current due to seasonal sea-ice coverage. Ocean bottom pressure variations as sensed with the satellite gravity mission GRACE provide a promising way to broaden our observational basis. Besides monthly mean gravity fields that provide ocean bottom pressure variations averaged over 30 days, several alternative GRACE products with higher temporal resolution have been developed during the most recent years. These include 10-day solutions from GRGS Toulouse, weekly solutions from the GFZ Potsdam as well as constrained daily solutions from the University of Bonn which have been obtained by means of a Kalman filtering approach. In this presentation, ocean bottom pressure derived from these alternative GRACE releases will be contrasted against both in-situ observations and output from a numerical ocean model, highlighting the additional information contained in these GRACE solutions with respect to the standard monthly fields. By means of statistical analyses of ocean bottom pressure variations and barotropic transports it will be demonstrated how these new GRACE releases are contributing to our understanding of this highly dynamic great ocean conveyor.