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S U M M A R Y
The study of glacial isostatic adjustment (GIA) is gaining an increasingly important role within
the geophysical community. Understanding the response of the Earth to loading is crucial in
various contexts, ranging from the interpretation of modern satellite geodetic measurements
(e.g. GRACE and GOCE) to the projections of future sea level trends in response to climate
change. Modern modelling approaches to GIA are based on various techniques that range
from purely analytical formulations to fully numerical methods. Despite various teams inde-
pendently investigating GIA, we do not have a suitably large set of agreed numerical results
through which the methods may be validated; a community benchmark data set would clearly
be valuable. Following the example of the mantle convection community, here we present, for
the first time, the results of a benchmark study of codes designed to model GIA. This has
taken place within a collaboration facilitated through European Cooperation in Science and
Technology (COST) Action ES0701. The approaches benchmarked are based on significantly
different codes and different techniques. The test computations are based on models with
spherical symmetry and Maxwell rheology and include inputs from different methods and
solution techniques: viscoelastic normal modes, spectral-finite elements and finite elements.
The tests involve the loading and tidal Love numbers and their relaxation spectra, the de-
formation and gravity variations driven by surface loads characterized by simple geometry
and time history and the rotational fluctuations in response to glacial unloading. In spite of
the significant differences in the numerical methods employed, the test computations show a
satisfactory agreement between the results provided by the participants.

Key words: Numerical solutions; Sea level change; Dynamics of lithosphere and mantle;
Dynamics: gravity and tectonics; Mechanics, theory and modelling; Rheology: mantle.

1 I N T RO D U C T I O N

Numerical simulations of glacial isostatic adjustment (GIA) have
an important historical role in global geodynamics since they are
a key to constrain the rheological profile of the mantle (Cathles
1975) and help in the interpretation of present-day sea level vari-
ations and geodetic observations (King et al. 2010). Although
various benchmark studies of mantle convection have been suc-
cessfully completed since the late 1980s (Busse et al. 1994;
Blankenbach et al. 1989; Muhlhaus & Regenauer-Lieb 2005;
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Zhong et al. 2008), to date no extensive GIA benchmark has been
published on an international journal of Geophysics, in spite of
two remarkable initiatives in the last two decades. In the mid-
1990s, a benchmark project for GIA codes was launched by Georg
Kaufmann and Paul Johnston. Some results were collated until 1997,
when the flow of contribution from the participants ceased (the
initial proposal and some results are still available from the web
page http://rses.anu.edu.au/geodynamics/GIA_benchmark/). Since
the importance of a GIA benchmark was further stated at the eighth
European Workshop on Numerical Modeling of Mantle Convec-
tion and Lithospheric Dynamics, held in Hruba Skala (Czech Re-
public) in 2003, another call for an international collaboration
was opened. This new initiative, leaded by Jan M. Hagedoorn,
was not limited to GIA only but also included the study of the
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sea level equation (SLE, Farrell & Clark 1976). While some
GIA results are still available from the dedicated web page
http://geo.mff.cuni.cz/gia-benchmark/, as far as we know the SLE
benchmark has never been initiated. Our aim here is to present
some results from a new benchmark initiative at a stage in which a
significant number of submission has been reached, addressing all
of the main aspects of GIA modelling. To strengthen our collabo-
ration (and to increase the probability of success) these activities
have been placed in the framework of the European COST Ac-
tion ES0701 ‘Improved constraints on models of Glacial Isostatic
Adjustment’ (see http://www.cost-es0701.gcparks.com/). Our aims
are (i) testing the codes currently in use by the various teams,
(ii) establish a sufficiently large set of agreed results, (iii) cor-
rect possible systematic errors embedded in the various physical
formulations or computer implementations and (iv) facilitate the
dissemination of numerical tools for surface loading studies to the
community and to early career scientists. Though the benchmark
activities described here have been initially limited to members
of the Action, they will be open to the whole GIA community
through the COST Action ES0701 web pages (see http://www.cost-
es0701.geoenvi.org/activities/publications). The collaboration will
continue with an SLE benchmark whose details are now under dis-
cussion.

There are several motivations for a benchmark study of GIA
codes. First, a number of methods and computer packages are now
in use from different groups, which include an increasingly sophis-
ticated description of the physics of GIA. Benchmarking the codes,
in this context, is useful to strengthen confidence in the results and
to validate the methods. A second motivation is the progressively
increasing role played by GIA in the framework of global climate
change. Fundamental issues such as future projections of vertical
crustal movements and sea level variations on a regional and global
scale critically rely upon correct modelling of GIA. Predictions of
the geophysical quantities involved in this process often depend on
several model assumptions and simplifications, whose impact may
be crucial for future projections, and that must be verified within
a benchmark programme including a significant number of investi-
gators. This would help to identify the most critical issues from a
numerical standpoint, and, possibly to determine upper and lower
bounds to the errors intrinsically associated with numerical mod-
elling. Third, improvements in modelling techniques are needed to
place tighter constraints on ongoing GIA in regions of current ice
mass fluctuation. In particular, a benchmark study may be useful for
the interpretation of future geodetic measurements in deglaciated
areas and for ongoing satellite missions focused on the study of GIA
gravity signatures such as GRACE (Paulson et al. 2007; Tamisiea
et al. 2007; Barletta & Bordoni 2009; Riva et al. 2009) and GOCE
(Schotman et al. 2009; Vermeersen & Schotman 2009). Last, since
no GIA benchmark of this extent has ever been accomplished to
date (see discussion earlier), it is our opinion that the community
could take advantage of the presentation of a number of agreed
results obtained from independent techniques which are the basis
for future model development. Since some of the scientists work-
ing on this benchmark agree to release their numerical codes (and
some are available already, see Table 1), we expect that scientists
approaching the topic of GIA for the first time could benefit from
this project.

Owing to space limitations, a complete review of the GIA the-
ory is not possible here. In the body of the manuscript a basic (but
certainly not exhaustive) outline is given to facilitate the reader. A
complete summary of state-of-the-art GIA theory is presented in
the recent report of Whitehouse (2009). The viscoelastic normal

mode (VNM) method for a spherical Earth, introduced in the semi-
nal work of Peltier (1974) and later refined by Wu & Peltier (1982),
Sabadini et al. (1982) and Peltier (1985), is at the basis of several
numerical contributions presented in this manuscript. An ancillary
presentation of mathematical details for the VNM is given by the
booklet of Spada (2003), while for a broad geophysical view of the
topic the reader is referred to the treatise of Sabadini & Vermeersen
(2004). Possible caveats of the VNM approach, particularly regard-
ing the implementation of compressibility and multilayered models
in GIA investigations, have been discussed by James (1991) and Han
& Wahr (1995), and later reconciled by Vermeersen et al. (1996a)
and Vermeersen & Sabadini (1997). In this study, some GIA results
obtained by the VNM method are compared to finite elements (FEs)
or spectral-finite element (SFE) computations. The applications of
these techniques to GIA are briefly summarized in Sections 3.3 and
3.6, respectively.

An important aspect of GIA concerns the rotational variations of
the Earth in response to the melting of the continental ice sheets,
which is in fact one of the topics of this benchmark. The prob-
lem has been stated by Nakiboglu & Lambeck (1980) and anal-
ysed in depth by Sabadini & Peltier (1981), who set the theoretical
framework which is used in our polar motion benchmark. Then, it
was further developed by Yuen et al. (1982), Wu & Peltier (1984)
and Yuen & Sabadini (1985). Since the observed secular drift of
the rotation axis is currently small (somewhat less than 1 degree
Myr−1, see, e.g. Lambeck 1980; Argus & Gross 2004) linearized
Euler equations (Ricard et al. 1993) can be employed on the GIA
timescales, as done here (for a review of the True Polar Wander
problem, which entails the fully non-linear Liouville equations, the
reader is referred to Sabadini & Vermeersen 2004, and references
therein). The study of polar motion excited by deglaciation has con-
tinued through the 1990s (Spada et al. 1992; Peltier & Jiang 1996;
Vermeersen & Sabadini 1996; Vermeersen et al. 1997), accom-
panied by a number of contributions addressing the more general
problem of rotational feedbacks, in which sea level fluctuations are
driven by the changing position of the Earth’s rotation axis respond-
ing to unloading (Han & Wahr 1989; Sabadini et al. 1990; Milne &
Mitrovica 1996; Sabadini & Vermeersen 1997; Milne & Mitrovica
1998; Peltier 2001; Mitrovica et al. 2005). A further aspect stud-
ied is the harmonic degree one displacement, which describes the
geocentre motion. Here, GIA contributes a significant secular trend
(Greff-Lefftz 2000; Klemann & Martinec 2009).

The paper is organized as follows: in Section 2 the two Test
Classes considered in this study are defined and described and their
background theory is presented; they pertain to the spectral (2.1)
and to the spatial domain (2.2), respectively; numerical methods
employed by the contributors are presented in Section 3; results
(Section 4) are presented separately for the spectral (4.1) and the
time domain analyses (4.2) and discussed in Section 5.

2 D E F I N I T I O N O F T H E B E N C H M A R K
C A S E S

This benchmark study is mainly focused on the response of a lay-
ered, spherically symmetric earth with Maxwell viscoelastic rheol-
ogy to surface and tidal loads. This section describes a number of
relatively simple benchmark cases which can be classified into two
tests suites, referred to as Test Class 1 and Test Class 2, illustrated
in Sections 2.1 and 2.2, respectively. Test Class 1 (also referred
to as ‘wavenumber domain test’) collects case studies that involve
the spectral response of the earth model, focusing on loading and
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Table 1. Top: participating WG4 COST Action ES0701 members and external contributors (starred), with notes about the independently developed codes
and methods. Bottom: contributions to the benchmark tests so far. (Here abbreviation TX/Y denotes test ‘X’ of Test Class ‘Y’.)

Acronym Code Author or user Short description of method and notes

Bl ABAQUS B. Lund Finite elements (FE) (Abaqus 2007); Flat-Earth approximation
Gs TABOO G. Spada Viscolastic Normal Modes (VNM). Fortran code and User Guide available from Gs or from the

Samizdat Press (http://samizdat.mines.edu/taboo/)
Gs PMTF G. Spada A Fortran program that computes the polar motion transfer function using the VNM method

(available from Gs)
Gsa ALMA G. Spada Post-Widder method (Spada & Boschi 2006; Spada 2008). Fortran code available from

http://www.fis.uniurb.it/spada/ALMA_minipage.html
Pg� ABAQUS P. Gasperini Finite elements (FE) (Abaqus 2007)
Rr FastLove-HiDeg R. E. M. Riva VNM (Riva & Vermeersen 2002)
Vb MHPLove V. R. Barletta A MathematicaTM Mathematica 4.1 2001 program for computing high precision Love numbers
Vk VILMA V. Klemann Spectral-finite elements (SFE) Martinec (2000)
Zm VEENT Z. Martinec VNM (Martinec & Wolf 1998), Fortran code available from Zm

Test Bl Gs Gsa Pg� Rr Vb Vk Zm Meaning of test

T1/1 x x x x Isostatic relaxation times
T2/1 x x x x Loading Love numbers
T3/1 x x x x Tidal Love numbers
T4/1 x x Polar motion transfer function
T5/1 x x x Time-domain Love numbers
T6/1 x x x x Love numbers of multistratified model
T7/1 x x x x x Degree-1 Love numbers
T1/2 x x x x x Geodetic quantities
T2/2 x x x x Rates of geodetic quantities
T3/2 x x Polar motion and LOD

tidal Love numbers and their spectra of characteristic times within
a range of harmonic degrees (hence the attribute ‘wavenumber’).
Love numbers are provided in the Laplace or in the time domain,
depending on the solution method employed. Test Class 1 also in-
cludes a study of the polar motion transfer function (PMTF), which
is pre-requisite to the solution of the Liouville equations. Regardless
of the solution method employed, all the Test Class 1 problems can
be solved studying the effects of an impulsive (i.e. delta-like) sur-
face or tidal loading to the external surface of the model. In the case
studies of Test Class 2 (‘spatial domain test’), we consider loading
problems that demand the computation of the surface deformations,
gravity and rotational variations in response to finite-size surface
loads.

The complexity of the tests proposed here varied from low to
moderate, since from our experience in this field and previous
benchmark attempts (see Introduction), we know that an agreement
on case studies of high complexity is often difficult to reach for
various reasons (these include misunderstandings about the theory,
unclear specification of problems and human errors). As a conse-
quence, we have made efforts to establish a set of agreed results
that can be extended in the future to include more complex case
studies. In this respect, the set of tasks proposed here will serve as a
basis for other benchmark efforts such as solving the GIA problem
by means of the SLE (e.g. Spada & Stocchi 2006). Since intercom-
parison of codes and techniques is useful to the community and to
future GIA investigations, no restrictions have been placed on the
solution methods listed in Table 1. However, investigators work-
ing with purely numerical methods (e.g. FEs) are mainly involved
in spatial case studies (Test Class 2) rather than in wavenumber
domain analyses that tend to be difficult (or time consuming) to
implement numerically. For this reason, FE investigators Pg and Bl
could not provide VNM results. Similarly, predictions based on spe-
cial Laplace inversion techniques as those employed by Gsa cannot
be employed to retrieve the Love numbers spectra in tests belonging
to Class 1. Contributors using the VNM theory are able, in principle,

to provide solutions to all case studies presented in the following.
However, not all available codes produce the necessary output to
fill all the entries of Table 1. Solutions obtained using different and
independent methods are of particular importance. Hence, the suite
of tests will be continued and the results published in a specifically
designed web page also open to GIA scientists not involved in this
COST Action.

Table 2 provides a list of conventional symbols used throughout
the manuscript and the numerical values of constants of interest
to the Test Classes to be used in all numerical implementations.
The reference model for all benchmark tests (M3–L70–V01) is
described in Table 3. Model M3–L70–V01 is characterized by a
spherical geometry, it is incompressible, and accounts for self-
gravitation of the solid Earth. Mantle layers and the lithosphere have
a Maxwell and a purely elastic rheology, respectively; the core is an
inviscid fluid and uniform. The viscosity profile of M3–L70–V01,
depicted in Fig. 1 by a thick line, corresponds to that of model
ICE-3G (Tushingham & Peltier 1991). A special test has been
designed for a multilayered viscosity profile, since the determi-
nation of Love numbers for finely stratified models has been the
subject of investigation during the last decade (see Vermeersen &
Sabadini 1997, and references therein). Thus, the benchmark con-
tributors were invited to provide Love numbers for model VSS96
(Vermeersen et al. 1996a) characterized by 28 mantle layers of vari-
able thickness as shown by a thin line in Fig. 1 (the geometry of
VSS96 density and shear modulus profiles is fully described in file
‘VSS96.dat’, available from the benchmark web page). Contribu-
tors have been also invited to provide results based on variants of
M3–L70–V01 according to the type of numerical implementation
preferred (e.g. some modellers interested in local investigations
may be more oriented to provide flat-Earth computations ignoring
self-gravitation at least in a first phase of the benchmark study).
Boundary conditions for tidal and loading forcing have been de-
scribed in a number of previous studies. While there is a consen-
sus about the boundary conditions appropriate for surface loading,
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Table 2. The top part of this table shows frequently used symbols throughout the manuscript. Numerical values of physical constants used as parameters and
common to all test suites are shown in the bottom part.

Symbol Explanation Range/value/units/notes/reference

n Harmonic degree nmin ≤ n ≤ nmax

t Time Units of yr or kyr
s Laplace variable Units of yr−1 or kyr−1

M Number of isostatic modes M ≥ 1 (M = 9 for M3–L70–V01)
M ′ Number of rotational modes M ′ = M − 1 or M ′ = M
H (t) Heaviside step function H (t) = 1 for t ≥ 0, H (t) = 0 otherwise
hL , l L , kL Loading Love numbers eqs (1) and (19)
hT , lT , kT Tidal Love numbers Same form of eqs (1) and (19)
sj, τ j Isostatic frequencies and times 1 ≤ j ≤ M
m, ṁ Polar motion and rate of polar motion eq. (3)
�R , �L Rotational and loading excitation functions eqs (5) and (21)
M(s) Polar motion transfer function (PMTF) eq. (12)
aj Rotational characteristic frequencies 1 ≤ j ≤ M ′ (see eq. 12)
As, Ae Secular and elastic rotational residues eq. (12)
Aj, A′

j, A′′
j Rotational residues 1 ≤ j ≤ M ′ (see eqs 12 and 22)

Sj Modal strength eq. (37)
Pn(cos θ ) Legendre polynomial of degree n θ = colatitude (0◦ ≤ θ ≤ 180◦)

Tn(α) 2nd kind Chebyshev polynomial Tn(α) = cos (nα)
U , V , N Vertical, horizontal and geoid displacements eq. (17)
U̇ , V̇ , Ṅ Rates of U , V , N Time derivative of eq. (17)

Seconds in one year 3.15576 × 107 s
G Newton constant 6.6732 × 10−11 m3 kg−1 s−2

a Earth radius 6.371 × 106 m
π Pi 3.14159265358979323840
i Imaginary unit

√−1
ρw, ρi Water and ice density 1000 and 931 kg m−3

C, A Polar and equatorial moments of inertia 8.0394 and 8.0131 × 1037 kg m2

� Earth angular velocity 7.292115 × 10−5 s−1

Table 3. Model parameters for M3–L70–V01, the reference model for
this benchmark study. The (unperturbed) gravity at the interfaces is com-
puted according to the reference density profile. These parameters are also
adopted in model M3–L70–V01f, the flat-Earth variant of M3–L70–V01
implemented in the FE scheme of Bl (see Section 4.2.3).

Radius Density Shear modulus Viscosity Gravity
(km) (kg m−3) (×1011 Pa) (×1021 Pa s) (m s−2)

6371 3037 0.50605 ∞ 9.815
6301 3438 0.70363 1 9.854
5951 3871 1.05490 1 9.978
5701 4978 2.28340 2 10.024
3480 10750 0 0 10.457

core–mantle boundary (CMB) conditions have been the subject of
considerable debate in the past (see, e.g. Spada 1995, and references
therein). We assume that contributors are using the CMB solid–fluid
boundary conditions described by, for example, Wu & Ni (1996),
which currently are agreed on within the GIA community.

2.1 Test Class 1: wavenumber domain

Wavenumber domain tests are designed to provide predictions of
loading and tidal Love numbers and to compute the PMTF. Within
the VNM method, these quantities computed in the Laplace trans-
form (LT) domain are a pre-requisite for the solution of isostatic
and rotational spatial domain problems. For ease of presentation,
we only discuss the basic mathematical background, referring to,
for example, Spada (2003) for a more in-depth account. The bench-
mark is presently concentrated on the spheroidal Love numbers and

associated field quantities; toroidal Love numbers (Martinec 2007)
will be the subject of future investigations.

According to the VNM theory (see, e.g. Spada 2003), the
Laplace-transformed loading Love numbers have the spectral form

⎧⎨
⎩

h
l
k

⎫⎬
⎭

L

(s) =
⎧⎨
⎩

he

le

ke

⎫⎬
⎭

L

+
M∑

j=1

1

s − s j

⎧⎨
⎩

h j

l j

k j

⎫⎬
⎭

L

, (1)

where symbols (h, l, k) refer to vertical displacement, horizontal
displacement and incremental gravity potential, L stands for ‘load-
ing’, subscript e denotes the elastic response, sj are characteristic
frequencies, (hj, lj, kj) are the viscoelastic residues associated with
each frequency and the dependence on the harmonic degree n is im-
plicit to simplify notation. For the tidal Love numbers (h, l, k)T (s),
which correspond the case of an externally applied potential that
does not load the surface of the Earth, a form similar to (1) holds,
with the sj’s unchanged since these only depend upon the model
structure. For a stably stratified incompressible earth (in which den-
sity is constant or increasing with depth), poles sj are found along
the real negative axis of the complex plane, which ensures asymp-
totically stable time-domain Love numbers. The number M of the
viscoelastic modes in eq. (1) scales linearly with the number of
layers with distinct viscoelastic properties and is the same for all
Love numbers for degrees n ≥ 2 (Wu & Ni 1996). In the special
case n = 1, the number of modes is smaller than M (Greff-Lefftz &
Legros 1997). Since we are dealing with an incompressible model,
Love numbers of degree n = 0 vanish.

Elastic Love numbers (he, le, ke) are unaffected by the viscosity
profile. The same holds true for the fluid loading (or tidal) Love
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Figure 1. Viscosity profile of models M3–L70–V01 (a three-layer viscosity profile, see Table 3) and VSS96 (a 28-layer profile from Vermeersen et al. 1996a).
VSS96 is used in Test 6/1.

numbers, having both the form⎧⎨
⎩

h f

l f

k f

⎫⎬
⎭ =
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⎩
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le
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⎫⎬
⎭ −
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1

s j
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⎩

h j

l j

k j

⎫⎬
⎭ , (2)

obtained by the zero-frequency limit (s 	→ 0) of eq. (1).
The VNM method also provides the framework for the description

of the rotational response of the Earth to surface loading. In the time
domain, the linearized Liouville equations for polar motion read

i
ṁ

σr
+ m = �(t), (3)

where σ r is the Chandler wobble (Cw) angular frequency for a rigid
earth, i = √−1, m(t) = mx + imy = (ωx + iωy)/� is the polar
motion vector, ω is the angular velocity vector, � is the average
angular velocity and

�(t) = �L (t) + �R(t) (4)

is the total polar motion excitation function, which accounts for
rotational and a loading deformation through �R(t) and �L(t), re-
spectively (Munk & MacDonald 1975). Eq. (3) is only valid for
small displacements of the pole relative to its initial position, an ap-
proximation that is appropriate in the context of GIA. The rotational
excitation function is

�R(t) = kT (t)

ks
∗ m(t), (5)

where kT (t) is the tidal Love number of degree n = 2, ks is the
degree 2 secular tidal Love number (Munk & MacDonald 1975)
and ∗ is time convolution. Substitution of (4) into (3) using (5)
gives the Liouville equations in the form

i
ṁ(t)

σr
+

[
δ(t) − kT (t)

ks

]
∗ m(t) = �L (t), (6)

where δ(t) is Dirac’s delta. Solving eq. (6) may be tackled in two
ways. The first way is simply to neglect the term i ṁ

σr
� 1, which

is physically justified considering that the timescale of GIA (a few
thousands of years) largely exceeds the Cw period for a rigid earth
(∼10 months). In this case, the LT of (6) is[

1 − kT (s)

ks

]
m(s) = �L (s), (7)

where �L(s) is the LT of �L(t). In the second way, the term i ṁ
σr

is
not neglected, which gives the ‘exact’ LT of Liouville equations(

i

σr
s + 1 − kT (s)

ks

)
m(s) = �L (s), (8)

where the initial condition

m(0+) = 0 (9)

has been explicitly assumed.
Eqs (7) and (8) can be transformed into a convenient spectral

form

m(s) = M(s)�L (s), (10)

where M(s) is the PMTF. Physically, M(s) represents the dis-
placement of the instantaneous pole of rotation for a unit loading
excitation in the frequency domain. Assuming

ks ≡ kT
f , (11)

the PMTF can be expanded as

M(s) = Ae + As

s
+

M ′∑
j=1

A j

s − a j
, (12)

where the aj, which are roots of a degree M ′ polynomial dispersion
equation, represent the (complex) rotational counterparts of the
isostatic frequencies sj in eq. (1). Terms Ae (elastic), As (secular)
and Aj are (complex) rotational residues. Their amplitude and the
value of M ′ in eq. (12) depend on the way the Cw is accounted for.
In particular

Ae �= 0 and M ′ = M − 1, (Cw neglected) , (13)

whereas

Ae = 0 and M ′ = M, (Cw not neglected) . (14)

We note that assumption (11) implies that the Earth is rotating in a
state of hydrostatic equilibrium before loading. This corresponds to
the usual assumption in GIA modelling where any non-hydrostatic
effect from mantle convection on the shape of the rotating Earth
is normally ignored, as discussed by Mitrovica et al. (2005). Fur-
thermore, since in our GIA modelling we employ a perfectly elastic
lithosphere, eq. (11) is not adequate for modelling of long-term
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polar motion because it implicitly accounts for a finite lithospheric
strength. Aware of those issues, we have decided to benchmark
results based on eq. (11) because it constitutes the starting point to-
wards more advanced forms of the Liouville equations, in which, for
example, ks ≡ kT

obs, where kT
obs is the currently observed tidal Love

number of degree 2 (Mitrovica et al. 2005). However, since eq. (11)
has been recently the source of considerable debate (Nakada 2002;
Mitrovica et al. 2005; Nakada 2009; Peltier & Luthcke 2009), this
issue will be addressed within our ensuing SLE benchmark tests.

2.1.1 Test 1/1. Isostatic relaxation times

This test consists in the computation of the (isostatic) relaxation
times τ j ≡ −1/sj( j = 1, . . . , M) for model M3–L70–V01 (see
Table 3) in the range of harmonic degrees 2 ≤ n ≤ 256.

2.1.2 Test 2/1. Loading Love numbers

In this test, the computation of the elastic (he, le, ke)L and fluid
(hf , lf , kf )L Love numbers is required (all these quantities are non-
dimensional). Residues (hj, lj, kj)L ( j = 1, . . . , M) are also required.
The earth model and range of harmonic degrees are the same as in
Test 1/1.

2.1.3 Test 3/1. Tidal Love numbers

This case is the same as Test 2/1, but devoted to the tidal Love
numbers.

2.1.4 Test 4/1. PMTF

This test applies to the rotational relaxation times aj( j = 1, . . . , M ′)
(kyr−1) and the rotational residues Ae (non-dimensional), As and
Aj( j = 1, . . . , M ′) (kyr−1), which define the normal mode expansion
of the PMTF in the Laplace domain for model M3–L70–V01.

2.1.5 Test 5/1. Time domain Love numbers

This test is suitable for all computation methods that are not based
on the VNM theory. For a significant number of degrees in the
range 2 ≤ n ≤ 256, it consists of the computation of the Heaviside
Love numbers for model M3–L70–V01 (and possibly its variants)
directly in the time domain. The suggested (logarithmically spaced)
time window is 10−2 ≤ t ≤ 106 kyr.

2.1.6 Test 6/1. Love numbers for multistratified models

For the multistratified model VSS96 (28 Maxwell mantle layers,
a uniform core, and a homogeneous elastic lithosphere), this test
requires the computation of Love numbers in spectral form (by the
VNM method) or by any time-domain technique, for a significant
number of degrees within the range 2 ≤ n ≤ 256. The suggested
time window is the same as in Test 5/1.

2.1.7 Test 7/1. Love numbers of degree 1

This test requires the computation of the degree n = 1 loading Love
numbers, which can be provided in the VNM or in the time domain
form. The Love numbers should be expressed in the centre of mass
(CM) reference frame (discussion can be found in Greff-Lefftz &
Legros 1997), based on model M3–L70–V01 or VSS96.

2.2 Test Class 2: spatial domain

The Class 2 tests concern the computation of surface deformation,
geoid height variations and rotational variations (polar motion and
length of day) in response to an axisymmetric surface load. If the
VNM method is employed, these quantities can be computed starting
from the results of the wavenumber tests (see Section 2.1), mainly
using convolution methods.

A simple loading episode is simulated employing the loading
history f (t) = H (t), where H(t) is the Heaviside function. The load
(mass per unit surface) is

L(θ, t) = σ (θ ) f (t), (15)

where θ is the colatitude relative to its axis of symmetry; and the
surface mass density σ (θ ) is conveniently expanded into a series of
Legendre polynomials.

σ (θ ) =
nmax∑

n=nmin

σn Pn(cos θ ). (16)

The coefficients σ n can be computed by simple analytical methods
(see Spada 2003, and references therein). They are given in Table 4
for three relevant surface loads: the (δ-like) point load, the disc
load (with rectangular cross-section) and the cap (parabolic cross-
section). Mass conservation is not accounted for in the expressions
of σ n.

The response to the load (eq. 15) can be expressed in terms of
geodetic variables, which include vertical displacement (U), hor-
izontal displacement (V ) and geoid displacement (N) computed

Table 4. Description of the geometry of the ice loads. For all loads, the ice density is ρi = 931 kg m−3. The reference value for Earth radius a and the
definition of Tn(x), the Chebyshev polynomials of the second kind, are given in Table 2. Here h and α denote the ice thickness and the load half-extension,
respectively, while mδ is the mass of the point load. The Legendre coefficients σ n are adopted from Spada (2003). Reference numerical values for h, α and
mδ suggested for the spatial domain tests are also given. For Test 2/3, the colatitude and longitude of the centroid of the load geometries are θ c = 25◦ and
λc = 75◦.

Shape Surface mass density of load, σ (θ ) Legendre coefficients, σ n(n ≥ 1) Numerical values

Cap σ c(θ ) = ρih

⎧⎪⎨
⎪⎩

√
cos θ − cos α

1 − cos α
, 0 ≤ θ ≤ α,

0, θ > α.

− ρih

4(1 − cos α)

[
Tn+1(α) − Tn+2(α)

n + 3/2
− Tn−1(α) − Tn(α)

n − 1/2

]
h = 1500 m

α = 10◦

Disc σ d (θ ) = ρih

{
1, 0 ≤ θ ≤ α,

0, θ > α.

ρih

2
[−Pn+1(cos α) + Pn−1(cos α)]

h = 1000 m

α = 10◦

Point σ δ(θ ) = mδ

2πa2
δ(1 − cos θ )

mδ

4πa2
(2n + 1) mδ = 1018 kg
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at the Earth’s surface (r = a). Using standard spectral methods
(e.g. Spada 2003), these scalar fields can be cast into the form⎧⎨
⎩

U
V
N

⎫⎬
⎭ (θ, t) = 3

ρ̄e

nmax∑
n=nmin

⎧⎨
⎩

h̄
l̄
k̄

⎫⎬
⎭

L

(t)
σn

2n + 1

⎧⎨
⎩

1
∂

∂θ

1

⎫⎬
⎭ Pn(cos θ ), (17)

where ρ̄e is the average density of the Earth, and⎧⎨
⎩

h̄
l̄
k̄

⎫⎬
⎭

L

(t) ≡
⎧⎨
⎩

hL (t)
l L (t)

δ(t) + kL (t)

⎫⎬
⎭ ∗ f (t), (18)

where δ(t) is the Dirac delta function and the n-dependence is im-
plicit. For f (t) = H (t), eq. (18) defines the Heaviside (time domain)
loading Love numbers. From the spectral form (1) recalling the ba-
sic properties of time convolutions, in this particularly important
case we obtain⎧⎨
⎩

h̄
l̄
k̄

⎫⎬
⎭

L

(t) =
⎧⎨
⎩

hL
e

l L
e

1 + kL
e

⎫⎬
⎭ −

M∑
j=1

⎧⎨
⎩

h j

l j

k j

⎫⎬
⎭ 1 − es j t

s j
, t ≥ 0. (19)

Rates of geodetic quantities at present time (i.e. vertical velocity U̇ ,
horizontal velocity V̇ and rate of geoid height variation Ṅ ), can be
obtained computing the time derivative of eq. (17) using eq. (19).

The solution of the Liouville equations in the time domain is ob-
tained starting from the definition of the PMTF (eq. 10). According
to Munk & MacDonald (1975), the loading excitation function can
be expressed as

�L (t) = �I(t)

C − A
, (20)

where �I = �Ixz + i �Iyz is the inertia tensor variation due to
surface loading. Dynamic compensation is accounted for writing
�I(t) = �Ir(t) ∗ [δ(t) + kL (t)], where kL (t) is the loading Love
number of degree 2 and �Ir(t) is the inertia variation assuming
a rigid earth. With �Ir(t) =Gσ f (t), where constant Gσ is solely
determined by the load geometry, the LT of (20) is

�L (s) = Gσ [1 + kL (s)] f (s), (21)

where f (s) = LT [ f (t)]. Substituting eq. (21) into (10) using (12)
and recalling the spectral form of Love numbers in the Laplace
domain (1), we obtain a further spectral form of polar motion,
which now includes loading effects.

m(s) = Gσ

(
A′

e + A′
s

s
+

M ′∑
j=1

A′
j

s − a j
+

M∑
j=1

A′′
j

s − s j

)
f (s), (22)

where the quantity in parentheses only depends on the numerical
coefficients that enter the PMTF (eq. 12) and on the loading Love
number of degree 2kL (s). After straightforward algebra one obtains

A′
e = (

1 + kL
e

)
Ae, (23)

A′
s = (

1 + kL
f

)
As, (24)

A′
j = (

1 + kL
e

)
A j +

M∑
k=1

C jk, j = 1, . . . , M ′, (25)

A′′
j = AekL

j + As

kL
j

s j
−

M ′∑
k=1

Ck j , j = 1, . . . , M, (26)

where

Cpq = ApkL
q

ap − sq
, p = 1, . . . , M ′, q = 1, . . . , M. (27)

For an Heaviside loading ( f (s) = 1/s), the inverse Laplace trans-
form of eq. (22) can be obtained by elementary methods. The result
is

m(t) = Gσ

⎡
⎣A′

e + A′
s t +

M ′∑
j=1

A′
j

a j

(
ea j t − 1

) +
M∑

j=1

A′′
j

s j

(
es j t − 1

)⎤⎦ ,

(28)

hence the rate of polar motion is

ṁ(t) = Gσ

⎛
⎝A′

s +
M ′∑
j=1

A′
j e

a j t +
M∑

j=1

A′′
j e

s j t

⎞
⎠ , (29)

where we note that, consistently with eq. (9), m(0+) = 0 if the Cw
is not neglected in the calculations, whereas m(0+) = Gσ Ae if the
Cw is neglected.

A rigorous analytical study of the spectral form of the Liouville
equation explicitly yields the condition

A′′
j ≡ 0, j = 1, . . . , M, (30)

which, as far as we know, has been first brought to light from
Sabadini & Vermeersen (2004) and verified by Vb within the bench-
mark activities (details available from Vb upon request). Hence, eqs
(28) and (29) can be further simplified and expressed in terms of
rotational residues A′

s, A′
e, A′

j and characteristic frequencies aj; iso-
static residues A′′

j and frequencies sj do not explicitly contribute to
the time domain polar motion.

The geometrical factor Gσ in eqs (28) and (29) can be made
explicit following the reasoning of, for example, Spada (2003) that
gives

Gσ = − 2πa4

5(C − A)
σ2 sin 2θceiλc , (31)

where θ c and λc are the colatitude and the longitude of the centroid
of the axisymmetric surface load, respectively, and σ 2 is the n = 2
harmonic component of σ (θ ) (see Table 4).

Following, for example, Munk & MacDonald (1975), the length-
of-day (LOD) variation is

�LOD

LOD
(t) = �Izz

C
, (32)

where LOD is a reference value of the length-of-day, �Izz is the
variation of the axial momentum of inertia in response to loading.
Using the expressions given by, for example, Spada (2003) for �Izz,
eq. (32) becomes

�LOD

LOD
(t) = 4πa4σ2

15C

(
3 cos2 θc − 1

) (
1 + kL (t)

)
, (33)

where kL (t) is the degree two loading Love number for gravity po-
tential. Apart from a scaling factor, �LOD/LOD is thus expressed
by 1 + kL (t), a quantity that is benchmarked within Test 5/1. Never-
theless, to facilitate the physical interpretation of the results, LOD
computations are explicitly included within Test 3/2 later.

2.2.1 Test 1/2. Geodetic quantities

This test pertains to the evaluation of vertical displacement U (θ ,
t), horizontal displacement V (θ , t) and geoid displacement N (θ , t).
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Within the VNM approach, these quantities can be computed using
eq. (17) for model M3–L70–V01 (and possibly variants of it) as a
function of colatitude θ on a regular angular grid for times t = 0,
1, 2, 5, 10, ‘∞’ kyr after the instantaneous loading. For VNM out-
puts, the range of harmonic degrees is defined by nmin = 2 and nmax

= 128. At least one out of the three load models described in Ta-
ble 4 should be employed. Two grids of different spacing should be
used. The first, suitable to visualize near-field results, has the range
0◦ ≤ θ ≤ 2.5α with a spacing of 0.25◦; the second one is global
(0◦ ≤ θ ≤ 180◦) with a spacing of 1◦.

2.2.2 Test 2/2. Rates of geodetic quantities

This test is identical to test 1/2 above, but ‘rates’ of geodetic quan-
tities [U̇ (θ, t), V̇ (θ, t) and Ṅ (θ, t)] are to be considered.

2.2.3 Test 3/2. Polar motion and LOD

In this test polar motion (eq. 28), rate of polar motion (29) and LOD
are considered (33). The surface load, with the same shape and time
history as in Tests 1/2 and 2/2, has its centroid at colatitude θ c =
25◦ and longitude λc = 75◦. Values of m, ṁ and LOD are required
at times t = 0, 1, 2, 5, 10, ‘∞’ kyr after loading.

3 M E T H O D S A N D C O D E S

For each contributor, here we briefly illustrate details of the methods
and codes employed.

3.1 Gs

Computations from Gs have been carried out using two different
methods. The first is the classical VNM method (Gs), implemented
within code TABOO, a Fortran post-glacial rebound calculator,
while the second (Gsa, see below) is based on a less traditional,
recently rediscovered numerical algorithm (code ALMA). TABOO
is now part of a more general code (SELEN), which solves the SLE
(Spada & Stocchi 2007). The theory behind TABOO is detailed
in Spada (2003) and Spada & Stocchi (2006), while the general
features of the code are illustrated in Spada et al. (2004). TABOO
comes with a user guide, available from http://samizdat.mines.edu.
To fit the benchmark requirements, the original structure of TABOO
has been modified in a number of points. The most significant mod-
ification consists in the implementation of the degree n = 1 loading
Love numbers, needed for Test 7/1. In addition, a special script
(PMTF, available from the author) has been written with the pur-
pose of computing the numerical coefficients that enter into the
PMTF (eq. 12) starting from the degree n = 2 loading and tidal
Love numbers obtained from TABOO (Test 4/1). These and other
improvements will soon be implemented in a new release of the
code (TABOO 2).

3.2 Gsa

Time domain Love numbers provided by ALMA (Gsa) result from
the implementation of the Post–Widder Laplace inversion formula
(Post 1930; Widder 1934, 1946). The theoretical background is
illustrated by Spada & Boschi (2006) while code ALMA is de-
scribed by Spada (2008). ALMA, which is released under the
GNU General Public License (GPL), is now available for down-
load from http://www.fis.uniurb.it/spada/ALMA_minipage.html. In

spite of the ill-posedness of the Post–Widder formula (it requires,
in principle, the computation of derivatives of order 	→ ∞ of
the Love numbers in the Laplace domain), it has been proven to
be especially effective in the case of multilayered models and in the
presence of complex transient theologies. For these problems, the
root finding algorithms required by the traditional VNM method
may fail because of the large number of roots of the secular equa-
tion that can be difficult to solve numerically (Spada 2008). Since
the Post–Widder formula samples the Laplace transform of Love
numbers along the real positive axis (hence the attribute of ‘real’
formula) and no root finding is necessary, in ALMA these problems
are overcome preserving, at the same time, the convenient and el-
egant formalism of the traditional viscoelastic propagators (Spada
& Boschi 2006). Major shortcomings of the Post–Widder method,
that is, the need of a multiprecision numerical environment and the
slow logarithmic convergence to the solution are overcome using
public domain packages (Smith 1989) and efficient convergence
accelerators (Valko & Abate 2004).

3.3 Pg and Bl

The computations by Pg and Bl were independently performed using
the commercial FE package Abaqus (Abaqus 2007). An FE imple-
mentation of the GIA equations provides easy access to models
with complicated geometry or material parameters varying rapidly
in three dimensions or non-linear rheologies (Gasperini et al. 1992;
Wu 1992). Wu (1992) described the first implementation of the
GIA equations using Abaqus for a flat, incompressible, non-self-
gravitating Earth. The Abaqus implementation was later expanded
by Wu (2004) to an incompressible spherical, self-gravitating
Earth with the SLE included. The Abaqus GIA implementation
has been used extensively for studies of lateral heterogeneities
(e.g. Kaufmann et al. 1997; Wu & van der Wal 2003; Wang &
Wu 2006), non-linear rheology (e.g. Wu 2002a,b), asthenospheric
low-viscosity zones (Schotman et al. 2008) optimal placement of
new GPS stations (Wu et al. 2010), glacially induced faulting (Lund
& Näslund 2009) and, at a smaller scale, current glacial rebound
in Iceland (Árnadottir et al. 2009). In the last few years, the FE
method has been complemented by the finite volume approach (see
e.g. Latychev et al. 2005), which however has not yet seen applica-
tion within this benchmark.

Commercial FE packages typically solve the Navier–Cauchy
equilibrium equations in the absence of body forces, which read

∇ · σ = 0, (34)

where σ is the stress tensor. For an incompressible earth, introducing
the body force associated with the gravity field yields to

∇ · σ − ρ0g0∇w = 0, (35)

where ρ0 is density, g0 is gravity acceleration and w is vertical
displacement. Since g0 is assumed to be constant, eq. (35) does
not account for self-gravitation of the solid Earth. To solve it with a
commercial FE package (Wu 1992, 2004) it is convenient to redefine
the stress tensor to

σ ′ = σ − ρ0g0wI, (36)

where I is the identity tensor, so that eq. (35) is transformed to
∇ · σ ′ = 0, which is formally identical to eq. (34) hence suitable
for the FE analyses. As a result of this transformation of the stress
tensor, the stress boundary conditions have to be redefined (for de-
tails of this see Wu 2004). These are implemented in Abaqus by
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supplying Winkler foundations (Williams & Richardson 1991) at
all boundaries where the ρ0 changes, including the free surface.
Although strictly defined for an incompressible earth, the Abaqus
implementation can be used with compressible materials. However,
since gravity is not modelled the compressibility does not produce
any buoyancy effect, a condition explored by, for example, Kle-
mann et al. (2003). Bangtsson & Lund (2008) showed that the
Abaqus GIA implementation with compressible materials deviates
slightly from the correct description, due to the implementation of
the GIA terms as surface forces. For a self-gravitating spherical
model, the redefined stress tensor has to include also the GIA mo-
mentum term relating to self-gravitation. Again, boundary condi-
tions have to be redefined, now also with the gravitational potential.
Wu (2004) solves the Laplace equation for the gravitational po-
tential separately, outside of Abaqus, for each iteration of the FE
scheme.

In this study, Bl provided benchmark results for the flat Earth
Abaqus implementation and Pg independently provided the spher-
ical, self-gravitating Abaqus results. More details on the latter im-
plementation can be found in Dal Forno et al. (2010).

3.4 Rr

The Fortran code FastLove-HiDeg was originally developed by Ver-
meersen and colleagues (Vermeersen et al. 1996a; Vermeersen &
Sabadini 1997) and later improved by Rr to allow the stable com-
putation of high-degree Love numbers (Riva & Vermeersen 2002).
FastLove-HiDeg is based on the VNM approach and allows us to
compute the response of a spherically layered Maxwell body to
different loads. By means of the matrix propagator technique, the
problem is solved analytically with the exception of the procedure
used to find the roots of the secular determinant (representing the
Earth’s eigenfrequencies, i.e. the sj of eq. 1 that is based on a bisec-
tion algorithm).

Green’s functions are available for both incompressible and com-
pressible rheologies, where the former are directly dependent on
powers of the distance from the Earth’s centre and the latter are
based on the (numerically challenging) spherical Bessel functions.
For the incompressible case, the inverse matrices required by the
propagator technique are also available in analytical form (Spada
et al. 1992; Vermeersen et al. 1996a), while for the compressible
case they are computed numerically by Gaussian elimination.

The calculation of the Earth’s eigenfrequencies exploits the fact
that they change slowly with increasing spherical harmonic degree:
after the first set of modes has been determined by finely sampling
a broad relaxation spectrum, each individual mode is followed to
the next spherical harmonic degree by limiting the search in its
immediate neighbourhood, which highly increases the efficiency of
the root-finding procedure. To ensure that no important relaxation
mode is missing, there is a check on the fluid limit of the Love
numbers (see eq. 2), which are also expected to change slowly
for increasing degree: when it fails, the root-searching procedure is
reinitialized. This last step is particularly important for finely layered
earth models, where the frequency of the dominating mode M0 often
becomes very close to that of several Maxwell modes. FastLove-
HiDeg uses quadruple precision to ensure maximum accuracy.

3.5 Vb

Contributions from Vb have been obtained by an implementation
in a symbolic manipulator (MathematicaTM4.1) of the algorithm for
the analytical evaluation of the Love numbers by means of the ma-

trix propagator technique, within the scheme of VNM theory, whose
fundamentals are described by Sabadini et al. (1982), Vermeersen
& Sabadini (1997) and Sabadini & Vermeersen (2004). Since the
fundamental matrix has elements proportional either to rn or r−n,
where r is the radius and n is the harmonic degree (Sabadini et al.
1982), numerical instability arises when the matrix elements ex-
ceed machine precision for large n values (see Riva & Vermeersen
2002). To circumvent the problem, all calculations are based on
arbitrary-length exact integer numbers of MathematicaTM to secure
the highest accuracy until the very end of the calculations, when
they are approximated by real numbers or when the roots of the sec-
ular determinant and residues are evaluated (Barletta & Sabadini
2006). More precisely, since MathematicaTM can deal with integers
(and rational numbers) with an arbitrary number of digits, in MH-
PLove any real number which is rational is written as a fraction,
and irrational numbers such as π have to be approximated by a
rational number (by using the Rationalize function). In particular,
any input parameter is provided as integer (or rational) number. In
this way, since the other internal variables are already in the rational
form, any computational operation between numbers gives an exact
integer (or rational) result. In detail, after the computation of the
determinant of the fundamental matrix as a function of the complex
variable s, that is, a polynomial ratio, the numerical evaluation of
the polynomial coefficients for s is performed. Then the Mathemat-
icaTM root finder is employed (function Solve), and the resulting
roots sj are stored. Each solution sj is rationalized and used in the
fundamental matrix to compute the j-th residue; at this point for the
second and last time the numerical evaluation is performed with
the n-digit precision (in the contributions presented here n = 100
is used). For this reason, possible ‘numerical’ instabilities (when
plotting results) may appear when variables are smaller than 10−100,
that is, the effect of the numerical evaluation with the 100-digit
precision. Note that, to avoid further numerical inaccuracies, the
analytical expression of the residues as a function of s could have
been found (leaving the numerical evaluation only after replacing
s with the numerical value of sj), but in this case the CPU (central
processing unit) time required by the algebraic manipulator would
be exceedingly long.

3.6 Vk

The code VILMA is based on the SFE approach to the forward
modelling of the viscoelastic response of a spherical earth with a
3-D viscosity structure loaded by a point mass originally developed
by Martinec (2000). For a fixed time, the problem is reformulated
in a weak sense and parametrized by tensor surface spherical har-
monics in the angular direction, whereas piecewise linear FEs span
the radial direction. The solution is obtained with the Galerkin
method, which leads to solving a system of linear algebraic equa-
tions. Time dependence is treated directly in the time domain as
an evolution problem with a homogeneous initial condition prior a
surface mass load is applied. The time derivative in the constitu-
tive equation for a Maxwell viscoelastic body is approximated by
the explicit Euler time-differencing scheme, which results in time
splitting of the stress tensor. Advantages of the method are (i) the
explicit time-differencing scheme allows an easy implementation
of the non-linear SLE (Hagedoorn 2005); (ii) the extension to lat-
eral variability in viscosity is straightforward and (iii) it allows, in
combination with the first aspect, to extend the code to non-linear
rheologies (in progress). A previous 1-D version of the code was suc-
cessfully applied to modelling GIA in several studies (e.g. Fleming
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et al. 2004; Hagedoorn et al. 2006; Wolf et al. 2006). The influence
of rotational deformations on the viscoelastic response was addi-
tionally considered in Martinec & Hagedoorn (2005). The code
was extended to a 2-D viscosity structure and applied to regional
problems (Jacoby et al. 2007; Klemann et al. 2007) and the fully
3-D version is considered in Klemann et al. (2008) and Tanaka
et al. (2009) for the problem of postseismic deformation. The com-
pressibility has recently been implemented by employing FEs with
a constant density and compressibility (Tanaka et al. 2010). The
code is written in FORTRAN; for the 3-D routines, an OPENMP
parallelization is applied (OpenMP 2005). For the benchmarks con-
sidered in this paper, the 3-D version of the code is used by applying
it to the respective 1-D structures.

3.7 Zm

Contributions from Zm have been obtained using code VEENT,
which implements the matrix propagator technique in the Laplace
transform domain for computing the response of a self-gravitating,
incompressible, layered linear viscoelastic sphere to a surface grav-
itating load. It is based on the analytical formulae for the layer
propagator matrix (Martinec & Wolf 1998). Its explicit dependence
on the Laplace-transform variable s allows us to determine the am-
plitudes of viscous (isostatic) modes analytically.

4 R E S U LT S

4.1 Results for the wavenumber domain

4.1.1 Results for Test 1/1 (isostatic relaxation times)

The spectrum of relaxation times τ j( j = 1, . . . , M) for model
M3–L70–V01, displayed by small circles, is shown in Fig. 2. The
nine branches of the spectrum, labelled according to the usual con-
ventions in VNM theory (Peltier 1985; Spada et al. 1992), include
four ‘transient modes’ (T1-T4), a ‘core’ mode (C0), a ‘lithospheric’
mode (L0) and three ‘mantle’ modes (M0, M1 and M2). For insight
into the physical origin of these modes and how their number de-
pends upon the complexity of the model, see, for example, Peltier
(1985) and Wu & Ni (1996).

In Fig. 2, data from Vb, Rr, Gs and Zm are superimposed and
show an excellent mutual agreement with each other. According to
Table 5, where numerical values of τ j are shown for some n values,
predictions based on these four independently written codes are in
agreement at least in the first six significant figures (this holds for
all harmonic degrees in the range of Test 1/1). Considering the dis-
tinct approaches followed by the contributors (see Section 3) and by
the different numerical implementations, the results of this first test
have a particular importance, and confirm that the computation of
the isostatic spectrum of incompressible earth models is a straight-
forward task (Vermeersen et al. 1996b). This is true in spite of some
complexity in Fig. 2, as the coalescence of the T modes in the lower
part of the spectrum and the crossing of L0, M0 and C0 branches
for n ≈ 8.

4.1.2 Results for Test 2/1 (loading Love numbers)

Elastic and fluid loading Love numbers, according to Test 2/1, are
displayed in Fig. 3, where predictions from Vb, Rr and Gs are super-
imposed and shown as a function of harmonic degree n. The fluid
Love numbers have been computed by all contributors (Vb, Rr and

Figure 2. Spectrum of the isostatic relaxation times τ j, ( j = 1, . . . , M),
expressed in years, for model M3–L70–V01 in the range of degrees 2 ≤ n
≤ 256, according to data sets provided by Vb, Rr, Gs and Zm (Test 1/1).
The number of modes is M = 9, branches are labelled according to usual
conventions.

Gs) using eq. (2), which entails the computation of the viscoelastic
residues. Alternatively, these could be evaluated via the propaga-
tion of the solution through a perfectly fluid mantle up to the elastic
lithosphere (Wu & Peltier 1982). This latter approach, which for
an incompressible earth merely represents a consistency test, would
certainly be extremely helpful in the case of a compressible model,
for which the number of normal modes is infinite and their nu-
merical determination is extremely challenging (Vermeersen et al.
1996b).

The offset between the elastic (labelled by ‘e’) and fluid (‘f’)
curves provide, at any given harmonic degree, the total amount of
viscoelastic relaxation that each loading Love number undergoes.
For small n values, the load is close to a state of perfect isostatic equi-
librium in the fluid limit (kL

f ≈ −1 in frame c). For sufficiently large
n values, elastic and fluid Love numbers reach the same asymptote
since loads of sufficiently short lateral extent are fully supported by
the elastic lithosphere, which prevents mantle relaxation. All load-
ing Love numbers are negative, with the exception of the horizontal
Love number (frame b), which may change its sign in the transition
from the elastic to the fluid regime. Interestingly, for degree n ≈
15 the horizontal Love number shows a negligible amount of total
relaxation (lL

e ≈ lL
f ) but varies substantially between these two states.

From the results of Fig. 3 it is clear that the agreement between
predictions of elastic and fluid Love numbers provided by Vb, Rr, Gs
and Zm is fully satisfactory. Inspection of some numerical values,
displayed in Table 6 for reference, shows that predictions from
Vb, Rr and Gs coincide in the first eight digits in the range of
harmonic degrees. Small discrepancies are shown for computations
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3 by Zm in the case of the horizontal Love number. Although it is not

possible to determine which set of Love numbers is ‘correct’ (it is
not the purpose of this study), it can be argued that the differences
shown in Table 6 reflect differences in the relaxation times (see
Table 5). However, it cannot be discounted that they may result from
numerical noise in the propagation of the fundamental matrix (see,
e.g. Spada 2008), which can affect the computation of the residues
and, consequently, the value of fluid Love numbers computed via
eq. (2).

Fig. 4 shows absolute values of residues of the loading Love
numbers (i.e. constants hL

j , lL
j and kL

j in eq. 1, respectively), com-
puted by Rr (circles) and Vb (crosses), as a function of degree n
in a log–log plot (residues provided by other contributors are not
shown for parsimony, but they are available from the benchmark
web page). Results from Rr and Vb show smooth, virtually iden-
tical branches down to values of ∼10−10 (the same plot would be
obtained using data provided by Gs). Since for an incompressible
mantle the propagator matrix elements are rational functions of n
(see Spada et al. 1990; Wu & Ni 1996; Vermeersen et al. 1996a), os-
cillating or ‘noisy’ branches should not be observed in the spectrum
of residues. A more detailed analysis would show that they may be
sometimes visible in the bottom parts of these spectra, for values
below ∼10−13, when the traditional VNM method is employed (Gs
and Rr). Since the Vb results remain stable below this threshold,
they can be used to test numerical stability of codes. Although these
features do not affect significantly the spatial domain results (at least
to within one part into 103), they provide a chance for tuning the
numerical methods to improve consistency with other contributors.

The loading Love number kL of degree 2 plays a special role,
since it defines the loading excitation function �L for polar motion
(see eq. 21). For this reason and to facilitate reproducibility of the
results, the spectral components of kL have been collected in Table 7
(left-hand side), according to contributions obtained from Vb, Rr
and Gs. Outputs from these three codes agree to within one part in
108, which is promising for the ensuing polar motion tests.

4.1.3 Results for Test 3/1 (tidal Love numbers)

Elastic and fluid components of tidal Love numbers hT , lT and kT

are shown Fig. 5 as a function of harmonic degree for contributors
Vb, Rr and Gs, according to requirements of Test 3/1. As tides only
excite the n = 2 harmonic (Munk & MacDonald 1975), the results
obtained for n > 2 do not have an immediate geophysical interest.
Since computing the tidal Love numbers involves a modification
of the surface boundary conditions relative to the loading case (see
e.g. Sabadini et al. 1982), the results of Fig. 5 should be regarded
as a further validation test of the GIA codes. Love numbers fol-
low smooth curves in the whole range of harmonic degrees, and
predictions from the contributors are overlapping. It is worthwhile
noting that tidal Love numbers are positive for all n values with the
exception of the horizontal ones (frame b), that is, they show a trend
opposite to that of loading Love numbers (see Fig. 3). As in the case
of loading, elastic and fluid branches of horizontal Love numbers
cross each other for n ≈ 15.

To facilitate reproducibility of our results, on the right-hand side
of Table 7 numerical values of the spectral components of Love
number kT at harmonic degree n = 2 are shown (results for the
whole set of tidal Love numbers are available from the benchmark
web page). Similarly to kL , Love number kT at degree 2 plays a
particularly important role within the theory of the rotation of the
Earth, since it defines �R, the excitation function associated with
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Figure 3. Elastic (e, circles) and fluid (f, squares) loading Love numbers for model M3–L70–V01 as a function of harmonic degree (Test 2/1), computed
according to contributors Vb, Rr and Gs. Vertical, horizontal and potential Love numbers are shown in frames (a), (b) and (c), respectively.

Table 6. Elastic and fluid loading Love numbers according to predictions from Vb, Rr, and Gs (VRG) for Test 2/1. Results provided by Zm differ from VRG
by less than one part in 105 for degrees in the range 2−128. Here yx and yx are abbreviations for y × 10x and y × 10−x, respectively.

n hL
e hL

f lL
e lL

f kL
e kL

f

2 −0.453915580 −0.264554941 −0.128221490 −0.772897350 −0.243983160 −0.984255420

3 −0.460598720 −0.370516261 −0.672379231 −0.507412800 −0.163798860 −0.984226120

4 −0.453094440 −0.476517131 −0.554990931 −0.374176400 −0.117385740 −0.983580140

5 −0.469288020 −0.582515681 −0.521188441 −0.291513090 −0.947296331 −0.982686580

6 −0.502508640 −0.688484401 −0.494002471 −0.233973640 −0.827989971 −0.981648130

15 −0.923949690 −0.163292832 −0.253387341 −0.224789401 −0.561682421 −0.966415380

30 −0.138473101 −0.296465442 −0.809246882 +0.105313120 −0.409208521 −0.878141480

64 −0.166800131 −0.257508002 −0.303560952 +0.109616690 −0.224640901 −0.350872510

128 −0.192106041 −0.686470601 −0.139764792 +0.182725631 −0.125577911 −0.453927221

256 −0.219042641 −0.264274851 −0.206125023 +0.103884572 −0.706846222 −0.854407542

centrifugal deformation (see eq. 5) and represents one of the basic
ingredients of the PMTFM(s). As for the loading case (see Table 7,
left-hand side), results from Vb, Rr and Gs agree to within one part
into 108.

4.1.4 Results for Test 4/1 (PMTF)

Benchmark results for the PMTF are shown in Table 8, where coef-
ficients As, aj and Aj provided by Vb and Gs are directly compared,
with real and imaginary components shown at the top and bottom
parts of the table, respectively. The PMTF, which has been com-
puted including the Cw term in the Liouville equations, shows M =
9 and M = 12 modes for Vb and for Gs, respectively (the three extra
modes contributed by Gs derive from keeping the three Maxwell
modes in the spectrum of isostatic modes). Results pertaining to the
case in which the Cw is neglected since the onset of computations,
will be employed in the spatial-domain test for polar motion (see
Section 4.2.4).

The agreement between Vb and Gs in Table 8 is good, but some
significant differences are clearly seen, especially in the imaginary
components of modes with small amplitude (see the first few en-
tries in the lower part of the table). These differences may come
as a surprise, given the excellent agreement between Gs and Vb

predictions for the isostatic relaxation times and residues (see Sec-
tions 4.1.1 and 4.1.2). However, computing the PMTF from these
quantities demands, in the Laplace domain, a number of operations
with polynomials (including complex root finding) that can cause
differences in the final results if not performed with comparable
precision of the codes (the algebraic complexity and the pitfalls of
the problem is well illustrated by e.g. Wu & Peltier 1984). We have
verified that codes employed by Gs and Vb are able to reproduce
results based on another three-layer model (Vermeersen & Sabadini
1996), qualitatively showing the same level of misfit demonstrated
in Table 8. To appreciate correctly the effective implications of the
discrepancies in Table 8, we have computed the strength Sj of the
j-th rotational mode, expressed as a percentage in the last column,
where strength is defined as

Sj = |A j/a j |
M ′∑

k=1

|Ak/ak |
× 100, ( j = 1, . . . , M ′). (37)

Since differences between the stronger modes do not exceed 1 per
cent (including the secular term As and the Cw term), it is clear
that Gs and Vb are effectively producing the same PMTF, in spite
of misfits between individual residues evidenced above. The phys-
ical equivalence between results from Vb and Gs is confirmed in
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Figure 4. Comparison between absolute values of residues of the loading Love numbers computed for model M3–L70–V01 by Rr and Vb (Test 2/1).
Smoothness of the nine branches with varying n may indicate that Love number formalism is correctly implemented.

Table 7. Spectral components of loading Love number kL (left, Test 2/1)
and of tidal Love number kT (right, 3/1) of harmonic degree n = 2 according
to predictions from Vb, Rr, Gs and Zm. All these codes agree to within one
part in 108.

Component of kL Numerical value Component of kT Numerical value

kL
e −0.243983160 kT

e 0.303464660

kL
f −0.984255420 kT

f 0.966723890

kL
1 −0.129425126 kT

1 0.579714618

kL
2 −0.727222614 kT

2 0.796882955

kL
3 +0.280521703 kT

3 0.178763813

kL
4 −0.758335281 kT

4 0.427943121

kL
5 −0.465094130 kT

5 0.607367630

kL
6 −0.117656891 kT

6 0.138148121

kL
7 −0.727296342 kT

7 0.129399041

kL
8 −0.228408013 kT

8 0.271328703

kL
9 −0.671350284 kT

9 0.158942583

Section 4.2.4 later, where M(s) is employed to compute polar mo-
tion in the time domain.

4.1.5 Results for Test 5/1 (time-domain Love numbers)

In Fig. 6 we present results pertaining to loading Love numbers (h, l,
k)L (t) computed in the time domain, in the case of a Heaviside load-
ing, for model M3–L70–V01 (no contributor has provided solutions
for tidal Heaviside Love numbers). Three solutions are compared
in a time window ranging between 1 and 108 yr, far in excess of
the GIA timescales. The first solution (Gs, solid lines, obtained by
TABOO) is based on the VNM method. In this case, Heaviside Love
numbers are obtained by time-convolution applying eq. (18) in 201
logarithmically spaced points within the time interval considered,
with results connected by segments. The second, provided by Vk
(open squares), is obtained by an SFE approach using code VILMA,
while the third (Gsa, crosses) is based on code ALMA (see Section 3
for details of the codes). For the sake of clarity of presentation, in

the case of Gsa the time grid is coarser than the one employed by
Vk. Loading Love numbers are computed in three different ranges
of harmonic degrees as shown in caption of Fig. 6.

The match between the three solutions in Fig. 6 is remarkable
across the whole time window considered. This result is particularly
important since these solutions have been obtained with methods
(and codes) actually independent one from another. Numerical val-
ues of Love numbers, which are provided as accompanying material,
will allow the reader to quantitatively appreciate misfits between the
results. By visual inspection of Fig. 6, Vk has noted a slight, system-
atic offset between VILMA and the two competing codes TABOO
and ALMA. This can be barely appreciated in frame (i) of Fig. 6,
where kL (t) is computed in the range 128 ≤ n ≤ 256. Due to the
mismatch for large n, Vk, in a second run reduced the step size
of the radial FEs in the elastic lithosphere from 5 to 2.5 km. This
refinement decreased the deviation from the other two solutions rea-
sonably and confirms the importance of employing semi-analytical
tools (e.g. TABOO) to validate numerical codes (and vice versa),
especially in the case of computation of short-wavelength (or long-
time) limits. The challenging issue of the computation of very large
degree Love numbers is not addressed in this study, but would
deserve an in-depth analysis due to its relevance in regional investi-
gations of glacio-isostasy (Barletta et al. 2006; Spada et al. 2009).
Recently, Spada et al. (2010) have shown that ALMA provides reli-
able results up to n = O(104), which however are still awaiting for a
validation by means of a code based on the VNM method (TABOO
fails for very large n values, see Spada 2008) or on FE.

4.1.6 Results for Test 6/1 (Love numbers for multistratified models)

The computation of Love numbers for multistratified models is
a challenging problem that has been discussed in length during
the past (see, e.g. Vermeersen & Sabadini 1997, and references
therein). Using model VSS96, whose viscosity profile is shown in
Fig. 1, in Fig. 7 we compare contributions from Vk (SFE method),
Gsa (Post–Widder Laplace inversion formula) and Rr (VNM). The
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Figure 5. Elastic (e) and fluid (f) tidal Love numbers for model M3–L70–V01 as a function of harmonic degree n (Test 3/1), computed according to codes Vb,
Rr and Gs (results are indistinguishable in this figure). Vertical, horizontal and potential Love numbers are considered in frames (a), (b) and (c), respectively.
In frames (b) and (c), low-degree Love numbers are out of range of figure.

Table 8. Test 4/1 comparison between real (top) and imaginary parts (bottom) of the coefficients that enter the PMTF M(s) contributed by Vb and Gs (M(s)
defined by eq. 12). As is non-dimensional, all other quantities have units of kyr−1. For both solutions, the Chandler wobble term is included in M(s) (the
rotational mode carrying the Chandler wobble is marked by Cw). For Gs, M = 12 since the Maxwell modes (of vanishing strength) are included in the Love
numbers. Only modal strengths Si ≥ 0.1 per cent are shown.

Re (As) Re (As) Re (aj) Re (aj) Re (Aj) Re (Aj) Sj

Vb Gs Vb Gs Vb Gs per cent

+0.943836211 +0.943836211 −0.335792701 −0.335792781 +0.148910923 +0.148093383

−0.333622371 −0.333622091 +0.262412063 +0.265612963

−0.237223511 −0.237223511 +0.635294242 +0.635294732

−0.225226071 −0.225226081 +0.848847952 +0.848845772

Cw −0.102152171 −0.102152171 −0.148890411 −0.148890411 0.1
−0.555584840 −0.555584840 +0.684758330 +0.684758330 0.1
−0.504764901 −0.504764901 +0.433317031 +0.433317031

−0.615971402 −0.615971402 +0.584858890 +0.584858890 8.2
−0.626674484 −0.626674484 +0.663188491 +0.663188491 91.5

−0.222048741 +0.144088947

−0.332901331 −0.240272905

−0.360293121 +0.523268598

Im (As) Im (As) Im (aj) Im (aj) Im (Aj) Im (Aj) Sj

Vb Gs Vb Gs Vb Gs per cent

−0.118607555 −0.117945295 +0.665760007 −0.350458675 +0.126693006 −0.331460145

+0.116562006 +0.141076934 +0.225359006 +0.141027964

+0.200655805 +0.202876875 +0.271022005 +0.272051395

+0.254546805 +0.242881595 +0.383841805 +0.372040425

Cw +0.515301934 +0.518195344 −0.751070874 −0.755288124 0.1
+0.506531874 +0.503703584 −0.597311484 −0.593976314 0.1
+0.291215176 +0.289589136 −0.814929875 −0.810379595

+0.479656936 +0.476978706 −0.671387714 −0.667638924 8.2
+0.553347659 +0.550257969 −0.214229075 −0.213032895 91.5

+0.725864627 +0.725301497

−0.104411024 −0.104526014

+0.165505297 +0.165593647

complexities shown by VSS96, that is, a low-viscosity sublitho-
spheric region, a relatively large number of layers (28), tiny mantle
layers and a low-viscosity core–mantle boundary region, are suffi-
cient to make the computation of Love numbers by the traditional

VNM method a difficult task, as illustrated by Spada & Boschi
(2006). In particular, as noted by Rr, the complex layering of VSS96
makes it difficult to isolate the fundamental M0 VNM from the re-
laxation spectrum, where modes are tightly interlaced. For these
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Figure 6. Time-domain loading Love numbers for Test 5/1 in the ranges of harmonic degrees 2 ≤ n ≤ 9 (top panels), 12 ≤ n ≤ 96 (middle panels), 128 ≤
n ≤ 254 (bottom panels). Love numbers have been contributed by Gs (solid lines), Vk (squares) and Gsa (crosses) based on three independent solution methods
(see text).

reasons, Test 6/1 has a particular importance in this study. The di-
rect comparison between contributions from Vk (open squares), Gsa
(solid lines) and Rr (dots) in Fig. 7, shows a satisfactory agreement
between time domain (Gsa and Vk) and VNM (Rr) Love numbers
in the time window 10−1 ≤ t ≤ 103 kyr. Outside this range, Rr
and Gsa match very closely. Similarly to the case of M3–L70–V01
(see Fig. 6), discrepancies between Gsa and Vk are visible in the
case of Love numbers of large degree (see three bottom frames).
Further numerical experiments, whose results are not reported here,
have shown that these differences can be mitigated by increasing
the spatial resolution of VILMA and/or tuning the number of digits
in the multiprecision environment on which ALMA depends.

4.1.7 Results for Test 7/1 (degree one Love numbers)

Results for degree n = 1 loading Love numbers are shown in Table 9
and Fig. 8. The table shows numerical values of the inverse relax-
ation times sj and spectral components of hL and l L provided by
Vb using the VNM method, expressed in the reference frame with
the origin in the centre of mass (CM) of the system (Earth + Load)
(see Greff-Lefftz & Legros 1997; Greff-Lefftz 2000). As for the
other VNM contributors, the approach to these special Love num-
bers follows the recipe proposed by Greff-Lefftz & Legros (1997).
Note that the kL Love number is equal to −1; this is true for any
possible earth model since this corresponds to the boundary condi-
tion of vanishing total incremental potential on the surface of the

Earth (Greff-Lefftz & Legros 1997). The elastic solutions are quite
close to those pertaining to the homogeneous incompressible sphere
(namely hE = l E = −1, independently from the physical parameters
of the sphere), but the fluid values depart significantly from these
values. The VNM solution by Gs and Rr are not reported in Table 9
(but are available from the benchmark web page). Rather, along
with solutions by Vb, they are transformed into the time domain
by convolution with the Heaviside function, shown Fig. 8 (as far
as we know, this is the first time that degree n = 1 Love numbers
are shown in this form and benchmarked). The time evolution is
complex, but a close agreement between the solutions is apparent.
The same holds for Love numbers that are directly computed in the
time domain (Gsa, 201 time points in the interval considered) and
(Vk, open squares).

4.2 Results for the spatial domain

4.2.1 Results for Test 1/2 (geodetic quantities)

In Fig. 9, we directly compare the geodetic quantities U , V and
N according to Gs (solid lines, obtained by VNM code TABOO)
and Vk (crosses, by the SFE implementation used in VILMA).
According to Test 1/2 description, these quantities are shown for
different times after loading, as a function of colatitude θ measured
with respect to the load centre. For a better visualization of the
results, Gs predictions are shown with a spacing of δθ = 0.5◦ in
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Figure 7. Time-domain loading Love numbers for Test 6/1 (multistratified model VSS96) in the ranges of harmonic degrees 2 ≤ n ≤ 9 (top panels), 12 ≤
n ≤ 96 (middle panels), 128 ≤ n ≤ 254 (bottom panels). Love numbers have been contributed by Vk (squares), Gsa (solid lines, 201 points in the whole time
range) and Rr (dots, 144 points) based on codes VILMA, ALMA and FastLove-HiDeg, respectively. Note that the y-axes range is not the same as in Fig. 6.

Figure 8. Time-domain loading Love numbers of degree n = 1 for Test
7/1 obtained by contributors Rr, Vb, Gs (by VNM), Gsa (by Post–Widder
formula) and Vk (by SFE, squares). Note that kL (t) = −1 (dashed line).

the range of colatitudes, while for Vk this grid is used only for 0 <

θ ≤ α = 15◦; a coarser resolution (δθ = 1◦) is employed outside
this range. Results for the parabolic and for the disc load are shown
in the left and right frames, respectively; in both cases a Heaviside
time history is used and mass conservation is not imposed (the load
parameters are detailed in Table 4).

The results of Fig. 9 pertaining to U (frames a and b) and N
(e and d) have an elementary physical interpretation in view of
the simple loading time history employed. After the instantaneous
elastic response, these fields monotonously evolve to final values
in which the load is isostatically compensated. In this state, marked
by ‘∞’ in the Gs results (this corresponds to t = 103 kyr), verti-
cal displacement attains its maximum amplitude, while the geoid
undulations are ≈0. Horizontal displacements, shown in frames (c)
and (d), vanish for θ = 0◦ by virtue of the load symmetry and show
a more complex pattern with varying θ compared to U and N , with
local minima that develop in the proximity of the load margin (θ ≈
α = 10◦). Furthermore, they do not show a monotonous time evolu-
tion towards equilibrium; rather, maximum amplitudes are reached
at time t � 10 kyr, and they decay by a factor of ∼2 before a full
compensation is reached. In the range of colatitudes considered,
all horizontal displacements are positive (i.e. along the direction of
increasing θ , away from the load centre); for large θ values, they
change sign (see Table 11).

The overall agreement between Gs and Vk is qualitatively ap-
parent from the results of Fig. 9. To provide the reader with a
more precise comparison that may be useful for benchmarking their
codes, in Tables 10, 11 and 12 we report, in the case of the cap, nu-
merical values of U , V and N for some points of the spatio-temporal
grid, also including colatitudes outside the near-field range of Fig. 9
(full arrays of values available from the benchmark web page). The
tables compare three solutions, where those of Vk and Zm apply
the SFE method and Gs applies the VNM method. In most of the
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Table 9. Spectral form of loading Love numbers of degree n = 1 in the CM provided by Vb for Test 7/1. Others have contributed a different number of modes
(M = 9 for Gs and M = 12 for Rr), but the agreement between VNM and time-domain solutions shown in Fig. 8 clearly demonstrates that all the strength is
contained in the M = 6 modes reported here.

Elastic Fluid sj hj lj

he = −0.101748431 hf = −0.160729851 −0.334162961 −0.150842464 −0.771714184

le = −0.108122251 lf = −0.173711711 −0.228140911 −0.491730503 −0.276189062

ke = −1 kf = −1 −0.233528230 −0.567878651 −0.245945310

−0.153403881 −0.284819023 −0.134539301

−0.449056713 −0.125679953 +0.540822193

−0.122565824 −0.588054346 +0.872494606

Figure 9. Vertical, horizontal and geoid displacements at the Earth’s surface (Test 1/2) according to Gs (VNM method, solid lines) and Vk (SFE, dots) for a
cap ice-sheet model (left-hand side) and a disc (right-hand side) imposed at time t = 0. Symbol ‘∞’ stands for t = 103 kyr for Gs and corresponds to isostatic
equilibrium, this datum is not available for Vk.
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Table 10. Comparison between vertical displacements U (θ , t) independently computed by Vk, Gs and Zm for Test 1/2 (cap load model). Numbers in
parentheses following the contributor abbreviation is time in units of kyr. Units for U , V and N are metres throughout. The figures are obtained by truncating
the outputs of codes at the centimetre level. Superscripts a and b indicate that the corresponding quantities are computed by Vk at θ = 0.01◦ and θ = 179.99◦,
respectively. Symbol ‘∞’ stands for t = 103 kyr for Gs. The corresponding values are not available for Vk and Zm, since the computations would require an
exceedingly long CPU time.

θ t Vk, U Gs, U Zm, U θ t Vk, U Gs, U Zm, U
(deg) (kyr) (m) (m) (m) (deg) (kyr) (m) (m) (m)

0◦ 0 −27.81a −27.77 −27.77 45◦ 0 0.60 0.61 0.60
1 −94.49a −94.40 −94.42 1 2.28 2.27 2.27
5 −237.58a −237.49 −237.50 5 4.37 4.35 4.35

10 −303.03a −303.01 −302.99 10 4.63 4.61 4.62
∞ . . . −388.11 . . . ∞ . . . 6.20 . . .

5◦ 0 −23.65 −23.64 −23.65 90◦ 0 0.51 0.51 0.51
1 −79.59 −79.53 −79.55 1 1.01 1.00 1.01
5 −199.62 −199.59 −199.60 5 1.28 1.27 1.28
10 −256.98 −257.05 −257.03 10 1.46 1.45 1.46
∞ . . . −338.30 . . . ∞ . . . 1.70 . . .

10◦ 0 −7.49 −7.33 −7.38 120◦ 0 −0.14 −0.14 −0.14
1 −25.25 −24.80 −24.92 1 −0.42 −0.42 −0.42
5 −48.88 −47.73 −48.04 5 −0.64 −0.63 −0.63

10 −50.94 −49.35 −49.77 10 −0.72 −0.71 −0.71
∞ . . . −59.24 . . . ∞ . . . −0.95 . . .

20◦ 0 −1.20 −1.20 −1.20 180◦ 0 −0.85b −0.85 −0.85
1 −1.72 −1.72 −1.72 1 −1.82b −1.82 −1.82
5 3.87 3.85 3.85 5 −2.67b −2.66 −2.66

10 7.07 7.03 7.04 10 −2.97b −2.97 −2.97
∞ . . . 8.55 . . . ∞ . . . −3.58 . . .

Table 11. As in Table 10, but for horizontal displacement V (θ , t) in Test 1/2.

θ t Vk, V Gs, V Zm, V θ t Vk, V Gs, V Zm, V
(deg) (kyr) (m) (m) (m) (deg) (kyr) (m) (m) (m)

0◦ 0 0.01a 0.00 0.00 45◦ 0 0.68 0.67 0.68
1 0.02a 0.00 0.00 1 2.29 2.28 2.28
5 0.05a 0.00 0.00 5 5.40 5.38 5.38
10 0.06a 0.00 0.00 10 7.05 7.01 7.02
∞ . . . 0.00 . . . ∞ . . . 6.23 . . .

5◦ 0 5.63 5.63 5.63 90◦ 0 −0.20 −0.20 −0.20
1 13.05 13.04 13.05 1 −0.75 −0.75 −0.75
5 25.70 25.66 25.68 5 −1.95 −1.94 −1.94

10 28.53 28.49 28.50 10 −2.51 −2.52 −2.50
∞ . . . 20.03 . . . ∞ . . . −1.92 . . .

10◦ 0 7.34 7.32 7.32 120◦ 0 −0.48 −0.48 −0.48
1 16.67 16.63 16.64 1 −1.40 −1.40 −1.40
5 31.88 31.82 31.85 5 −2.92 −2.91 −2.91

10 34.08 34.02 34.05 10 −3.65 −3.63 −3.64
∞ . . . 17.56 . . . ∞ . . . −3.38 . . .

20◦ 0 2.65 2.64 2.64 180◦ 0 −0.00b 0.00 0.00
1 8.94 8.90 8.91 1 −0.00b 0.00 0.00
5 22.39 22.29 22.32 5 −0.00b 0.00 0.00
10 27.80 27.68 27.72 10 −0.00b 0.00 0.00
∞ . . . 19.28 . . . ∞ . . . 0.00 . . .

cases presented, differences between predictions are of the order
of a few decimetres at most. However at the load margin (θ = α

= 10◦), discrepancies between Vk and the other two solutions are
significantly larger (for vertical displacements, these amount to 1–2
m for times t ≥ 1 kyr). The principle difference between the two
methods is the handling of the load spectrum. Whereas Gs took the
analytical representation of Table 4, Vk and Zm transformed the
given shapes numerically into the spectral domain. The results of
Zm, which coincides much better with those of Gs, were achieved
with a very fine spatial discretization of the load (16 nmax gridpoints)
to determine the load spectrum, whereas Vk considered only a grid

of 4 nmax points. Vk could show in a further run applying the an-
alytical representation of the spectral load that the discrepancies
vanish.

4.2.2 Results for Test 2/2 (rates of geodetic quantities)

Fig. 10 shows the time derivatives of geodetic quantities (Test 2/2),
independently computed by Gs (solid lines, VNM) and Vk (dots,
SFE) using model M03-L70-V01. Quantities U̇ , V̇ and Ṅ are com-
puted at times t = 0, 1, 2, 5, 10, ∞ (i.e. 103) kyr after loading
(units are mm yr−1), using the same settings and ice models as in
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Table 12. As in Table 10, but for the variation of geoid height N (θ , t) in Test 1/2.

θ t Vk, N Gs, N Zm, N θ t Vk, N Gs, N Zm, N
(deg) (kyr) (m) (m) (m) (deg) (kyr) (m) (m) (m)

0◦ 0 40.22a 40.15 40.17 45◦ 0 −1.39 −1.39 −1.39
1 30.89a 30.85 30.86 1 −0.96 −0.96 −0.96
5 14.24a 14.22 14.22 5 −0.28 −0.28 −0.28
10 7.47a 7.45 7.46 10 −0.17 −0.17 −0.17
∞ . . . 1.23 . . . ∞ . . . −0.02 . . .

5◦ 0 34.14 34.08 34.10 90◦ 0 −0.76 −0.76 −0.76
1 25.98 25.94 25.95 1 −0.37 −0.37 −0.37
5 11.94 11.93 11.94 5 −0.18 −0.18 −0.18

10 6.38 6.38 6.38 10 −0.10 −0.10 −0.10
∞ . . . 1.03 . . . ∞ . . . −0.04 . . .

10◦ 0 16.12 15.97 16.01 120◦ 0 0.24 0.24 0.24
1 10.95 10.83 10.86 1 0.14 0.14 0.14
5 3.88 3.81 3.83 5 0.05 0.05 0.05
10 1.91 1.86 1.87 10 0.03 0.03 0.03
∞ . . . 0.11 . . . ∞ . . . 0.00 . . .

20◦ 0 2.80 2.78 2.79 180◦ 0 1.36b 1.35 1.35
1 1.04 1.03 1.03 1 0.72b 0.72 0.72
5 0.12 0.12 0.12 5 0.31b 0.31 0.31
10 0.20 0.20 0.20 10 0.19b 0.19 0.19
∞ . . . 0.11 . . . ∞ . . . 0.08 . . .

Section 4.2.1. The rates attain their largest amplitude immediately
after loading (t = 0) because of the large isostatic disequilibrium
and subsequently decrease until the load is fully compensated for
sufficiently large times. In the near-field region considered (0◦ ≤
θ ≤ 20◦), vertical displacement is clearly the dominating signal; as
a rule of thumb U̇ exceed V̇ and Ṅ (which have a comparable mag-
nitude) by a factor of ∼ 10. The agreement between Gs and Vk is
satisfactory in all the frames; inspection of numerical values reveals
that the misfit between VNM and SFE results are of the order of
0.1 mm yr−1 at most (this misfit level can possibly be reduced
acting on the grid spacing in the SFE approach in Vk or refining
in the VNM algorithm in Gs). The level of disagreement between
the results of Gs and Vk shown in Fig. 10 appears to be signif-
icantly smaller than the error bars commonly characterizing GPS
(BIFROST 2006) or VLBI (Spada 2001) observations in deglaciated
areas (see King et al. 2010, for a full review in the context of GIA).

4.2.3 More results for Tests 1/2 and 2/2

Within the spatial domain tests, we have also provided insight into
two further problems: (i) the effective role of harmonic degree one
signals in GIA modelling and (ii) the relationship between FEs
results and VNM predictions. The outcomes of these analyses are
summarized in this section.

To assess the contribution of the harmonic degree n = 1 of the
load to the displacement fields, we consider the results in Fig. 11,
where vertical (left frames) and horizontal components of displace-
ments and velocities (right frames) are computed, for the cap load, in
the reference frame of the CM of the system (Earth + Load). Solid
and dashed lines show results obtained including and neglecting
the degree n = 1 load component in eq. (17), respectively (dashed
lines reproduce the results in Figs 9 and 10). All quantities are pre-
sented for times 0, 1 and 2 kyr after loading. SFE results by Vk are
shown by crosses. Geoid displacements are not shown since in CM
reference frame their harmonic degree 1 component vanishes. This
follows from MacCullagh formula (Greff-Lefftz & Legros 1997),
which imposes kL = −1 (see Fig. 8). Including the degree 1 of the
surface load produces the maximum effects beneath the load for U ,

whereas for V the offset between solid and dashed curves increases
with colatitude. This pattern is explained by the colatitude depen-
dence of the degree 1 Legendre polynomial and its derivative in the
series (17), which varies as cos θ and sin θ , respectively, and can
physically be understood as the geocentre motion described by the
degree 1 components of the displacement (Klemann & Martinec
2009). The overall effect of degree 1 is to increase U up to
∼10 per cent beneath the load, while the effect upon horizontal
displacement is, at the load margins, of comparable amplitude.
These estimates are associated with viscosity model employed here
(M3–L70–V01) and on the timescales considered. In view of the
time dependence of degree 1 Heaviside Love numbers shown in
Fig. 8, larger effects are expected for longer timescales, especially
for component V , which shows their maximum amplitude for t ∼
100 kyr.

Fig. 12 shows a comparison between VNM computations (Gs)
and FE results (Pg and Bl) based on model M03-L70-V01. At this
stage of the benchmark activities, we can only provide a study of
vertical displacements (U , top) and rates of displacement (U̇ , bot-
tom) pertaining to a cap model with a Heaviside time history. Gs
computations, shown by solid lines, are truncated at harmonic de-
gree nmax = 72 and do not include the load component of harmonic
degree 1. Using a spherical FE realization of M03-L70-V01 which
includes the effects of self-gravitation (the approach is detailed in
Dal Forno et al. 2010), Pg has provided predictions (shown by
crosses) that reproduce the general features of VNM results but
slightly underestimate them especially in the early stages of load-
ing. A possible cause is the coarse FE grid spacing in the region
beneath the load, which can be improved in further computations.
According to previous experience, after tuning these geometrical
features of the FE model, an excellent agreement with VNM results
is expected, both for non-self-gravitating (Giunchi & Spada 2000)
and self-gravitating models (Wu 2004). The FE results provided by
Bl (circles) are not expected to match the VNM ones by Gs ex-
actly, since they are based on model M3–L70–V01f (the flat-earth
realization of M03-L70-V01), in which self-gravitation is not im-
plemented. Bl results for vertical displacement (a) exceed the ones
by Gs beneath the load, and clearly show a lateral fore-bulge of
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Figure 10. Rates of vertical, horizontal and geoid displacements at the Earth’s surface (Test 2/2) according to Gs (VNM method, solid lines) and Vk (SFE,
dots) for a cap ice-sheet model (left-hand side) and a disc (right-hand side) imposed at time t = 0. Symbol ‘∞’ marking the horizontal lines in each plot stands
for t = 103 kyr.

considerably smaller amplitude in the region θ ≥ 10◦. These re-
sults are in agreement with Amelung & Wolf (1994) who compared
analytical flat-earth models to spherical models and observed a
similar difference in magnitude and sense of the displacements.
Schotman et al. (2008) recently compared flat-earth FE models
with spherical models and concluded that the difference between
the two are larger during loading than during unloading. In the
range of times t ≥ 1 kyr (b), the three models considered in this test
provide comparable results for U̇ .

4.2.4 Results for Test 3/2 (polar motion and LOD)

The coefficients A′
s and A′

j that enter the polar motion solution in
the time domain (see eqs 28 and 29) are shown in Table 13 accord-

ing to results provided by Vb and Gs. Results for polar motion in
the time domain (Test 3/2) are presented in Table 14. Rather than
individual Cartesian components, we provide numerical values of
|m| and |ṁ| for various values of t and for the three load models
of Table 4. The corresponding geometrical factors Gσ are provided
in the table header. Results by Gs include the contributions of the
small numerically determined A

′′
j coefficients in eqs (28) and (29),

whereas in computations from Vb the exact algebraic result (eq. 30)
is applied. Left- and right-hand parts of Table 14 show results ob-
tained including (Cw �= 0) and excluding (Cw = 0) the Cw term
from eqs (28) and (29). Since the real parts of A′

s and (A′
j) exceed

their imaginary parts by several orders of magnitude (see Table 13),
Arg(m) and Arg(ṁ) essentially coincide with Arg(Gσ ) = 105◦W;
if Cw �= 0, this condition is met after a transient determined by
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Figure 11. Vertical (a) and horizontal displacements (b) computed for model M3–L70–V01 in the CM frame. VNM predictions by Gs are shown for the case
where the degree n = 1 component of the surface load (cap) is included (solid lines) or excluded (dashed). Crosses denote solutions of Vk (SFE method). In
the two bottom frames the test is repeated for vertical (frame c) and horizontal velocities (d).

the real part of the rotational mode carrying the Cw (the rotational
mode M0, see Table 8 and Vermeersen & Sabadini 1996).

The two time domain solutions of Table 14 differ in several as-
pects. The one with Cw �= 0 (left) obeys the initial condition m(0+)
= 0 (see eq. 9), whereas the one with Cw = 0 (right) contains, at
t = 0, an elastic contribution determined by Ae (see eq. 28). Fur-
thermore, because of the high frequency of the Cw, for Cw �= 0,
we observe large rates of excursion of the pole of rotation, which
approaches the Cw = 0 results only after a few kyr (the decay time
of the Cw is, for model considered here, of the order of ∼1 kyr
according to Table 8). These marked differences between the two
solutions are not in contradiction with the argument of Section 2.1,
where Cw effects are argued to be negligible in GIA studies. In
fact, the solutions of Table 14 pertain to a Heaviside loading, whose
‘characteristic period’ is vanishingly small compared with both the
GIA and the Cw timescales. Using a smooth load history, with a
characteristic timescale of a few thousands of years (typical of GIA),
would prevent this abrupt excitation of the Cw. The agreement be-
tween the contributions of Vb and Gs in Table 14 is satisfactory.
However, some mismatch is observed for small times in the case
Cw �= 0 (see left part of the table). One reason may reside in the
small differences in the A′

j coefficients determined by the two con-
tributors and particularly in the terms corresponding to the Cw (see
Table 8). Another possible source of error is the numerical noise
introduced by the A

′′
j residues, which are computed and included in

the expressions (28) and (29) by Gs, while Vb uses the analytical
result (eq. 30).

In frames (a) and (b) of Fig. 13, the two solutions considered in
Table 14 are compared to gain more insight into the time evolution of
m (expressed in degrees) and ṁ (degrees per Ma). Only solutions
corresponding to the ice cap model are shown. The solid curves
have been obtained by Gs using code PMTF while points along the
curves correspond to benchmark calculations by Vb also based on
the results of Table 14. From frame (a) it is apparent that solutions
with Cw = 0 physically correspond to the time average of those with
Cw �= 0 and match when the Cw has been completely damped (this
occurs after ∼4 kyr in this case study). The rate of polar motion,
shown in frame (b) in the case Cw = 0, attains its largest amplitude
at the time of loading and decays exponentially to values close to
1◦ Ma−1 after ∼5 kyr. According to eq. (29), the asymptotic limit
is ṁ = As , which is consistent with the linear trend of ṁ visible in
frame (a) after the initial transient.

In Fig. 13(c), the variation of LOD, �LOD, is shown as a function
of time. Solutions for 1 + kL (t) provided by Gs, Vk and Gsa in the
time domain for Test 5/1 (see Section 4.1.5) have been rescaled by
Gs using eq. (33). The results for �LOD are shown in units of ms
(milliseconds) assuming LOD = 86 400 s. The positive values of
�LOD indicate that the total inertia variation �Izz driven by the
load is producing an increase of the LOD relative to the reference
value. In the fluid limit (t 	→ ∞), these perturbations will not vanish
since at harmonic degree 2 the isostatic condition 1 + kL (t) = 0
is not attained because of the presence of the elastic lithosphere
(for a discussion see e.g. Ricard et al. 1993). The three solutions
shown Fig. 13(c) are matching to within ±2 ms, a small discrepancy
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Figure 12. Vertical displacement (a) and rate of vertical displacement (b)
computed for Tests 1/2 and 2/2 using two FE implementations of model
M3–L70–V01. The first provided by Pg (crosses) is based on an FE spherical
model and includes self-gravitation. The second, provided by Bl (dots) is for
a flat Earth (M3–L70–V01f). The FE results are compared with the VNM
results obtained by Gs. A cap ice model is used.

that can be attributed to the approximations imposed by the spatial
discretization (Vk) or to the number of significant digits employed
in modelling (Gs and Gsa).

5 D I S C U S S I O N A N D C O N C LU S I O N S

The analysis of spectral quantities in Tests 1/1 to 3/1 has shown a
general agreement between the results obtained. Though the deter-
mination of the isostatic spectrum of relaxation is not a straight-
forward exercise and the numerical implementation of the VNM
method differs between contributors, the results for loading and
tidal Love numbers agree to a very high precision (at least to within
one part in 103) up to degree 128. Differences in the outputs between
‘competing’ VNM codes (namely Gs and Vb) are more significant
in the case of the rotational response (see Test 4/1). The reason
ultimately resides in the wide range of timescales involved, rang-
ing from the ‘fast’ Chandler oscillation (period of ∼1 yr), to those
associated with the rotational M-modes (∼106 yr). The resulting
stiffness and possibly the propagation of errors in the handling of
large-degree polynomials makes the model outputs quite sensitive
to the settings of the algorithms employed (e.g. complex polyno-
mial root finding) and to the precision allowed in computation. As
shown explicitly for model M3–L70–V01, these factors may pro-
duce sensible differences in the PMTF coefficients, which however
only affect the rotational modes with small strength. Since we could
not extend the rotational analyses to more complex models, the

Figure 13. Polar motion (a), rate of polar motion (b) and LOD variation
(c) computed for model M3–L70–V01 (Test 3/2). In all computations, a cap
surface load is assumed.

general validity of these observations is difficult to establish. From
the work done, however, we confirm that the determination of the
rotational spectrum is indeed a challenging problem, but it can be
significantly alleviated by cross checking and collaboration.

Results from Tests 5/1 to 7/1 are particularly valuable, since
these tests have been tackled by at least three contributors, who
provided computations based on a wide spectrum of independently
developed methods. In the relatively straightforward case of model
M3–L70–V01, characterized by a limited number of layers hence
by a relatively simple spectrum of relaxation, it has been possible
to find a satisfactory agreement between time-domain Love num-
bers computed by VNM, Post–Widder inversion formula and SFE.
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Table 13. Real (top) and imaginary parts (bottom) of constants As and A′
j

(in units of kyr−1) provided by contributors Vb and Gs. In the numerical com-
putations by Gs, upper bounds on the moduli of coefficients are |Re(A′′

j )| ≤
10−6 kyr−1 and |Im(A′′

j )| ≤ 10−5 kyr−1 for all rotational modes, while
according to Vb the algebraically exact result Re(A′′

j ) = Im(A′′
j ) = 0 holds.

Re (A′
s) Re (A′

s) Re (A′
j) Re (A′

j)
Vb Gs Vb Gs

0.148603052 0.148603052 +0.908211254 +0.900230224

+0.489875064 +0.518937244

+0.357796622 +0.357797272

+0.155018002 +0.155015852

−0.309337730 −0.309337730

+0.260330560 +0.260330560

−0.573553232 −0.573553232

+0.465721611 +0.465721611

+0.141655602 +0.141655602

+0.143971037

−0.240204125

+0.522934468

Im (A′
s) Im (A′

s) Im (A′
j) Im (A′

j)
Vb Gs Vb Gs

−0.186742627 −0.185699927 +0.104458636 +0.141369234

+0.136924346 −0.345165675

+0.262257315 +0.267343495

+0.279076145 +0.264050535

−0.567822244 −0.571010554

+0.287597564 +0.285991724

+0.704741016 +0.700805996

−0.401875115 −0.399631185

−0.372208907 −0.370130637

+0.724709977

−0.104474584

+0.165487907

Remarkably, after tuning of the numerical codes involved, the same
level of agreement between the numerical outputs has been verified
also using a complex multistratified model with a non-monotonous
viscosity profile (VSS96), in spite of the rich spectrum of relax-
ation timescales that can make it difficult to ‘follow’ the interlacing
branches of the relaxation diagram (i.e. to resolve individual modes)
with increasing harmonic degree. The computation of harmonic de-
gree 1 Love numbers is necessary to refer unambiguously geodetic
quantities to the CM frame (Blewitt 2003). Through Test 7/1, five
contributors have provided an agreed set of loading Love numbers
for this degree, on a broad time range and a set of viscoelastic
residues determined by VNM. Although the physics of degree 1
Love numbers was established long ago (Farrell 1972), some of
the workers contributing to this test (e.g. Gs) have been forced to
update their own codes in view of the special boundary conditions
demanded by degree n = 1 Love numbers (Greff-Lefftz & Legros
1997). The achieved agreement between the various predictions is
the pre-requisite to the SLE benchmark that the COST ES0701 com-
munity is undertaking and for a correct interpretation of geodetic
observations (e.g. GPS data) in terms of GIA.

Spatial domain Tests 1/2 and 2/2 have tackled by VNM, SFE and
FE techniques. Although the agreement between VNM and SFE
has been clearly established in both tests, FE solutions still diverge
slightly though they clearly provide a pattern of deformations that
reproduces those obtained by VNM. We do not have any evidence
that this mismatch is due to some fundamental problem with the
FE method; rather, on the basis of previous experience (Giunchi

& Spada 2000; Wu 2004), we consider that these problems may
be overcome by an improvement of the geometrical features of
the integration domain. At this stage, from the results displayed
in Fig. 12, we can conclude that (incompressible) FE and VNM
(SFE) implementations available within the WG4 community are
in agreement to within ∼ ± 10 per cent if we are concerned with ver-
tical motion, where this error bar cumulatively reflects grid effects
and the lack of important physical ingredients in modelling (Earth
sphericity and self-gravitation of the solid Earth). The success of
the third spatial domain test (Test 3/2) has demonstrated that the
polar motion problem can be successfully approached numerically
once the general features of the theory are clearly stated and agreed.
Though the traditional VNM method used by Gs and the analytical
implementation of Vb differ in some aspects, as discussed in the
body of the manuscript, the results illustrated in Fig. 13 show a
complete physical equivalence both in terms of polar motion and
LOD variations.

From above, we can draw the main conclusion that the analyti-
cal, semi-analytical and numerical codes employed here to model
the GIA problem provide results that are largely consistent and that
the differences are sufficiently small such that they can be ignored
both in the spectral and in the time domain. Achieving this result
has required a considerable amount of work from all the contribu-
tors. In some cases, the available codes were oriented to complex
applications and not immediately suitable for elementary tasks as
those proposed here. In some other cases, individual workers have
developed new numerical tools from scratch, which have been val-
idated by others. The outcome of this activity has been a general
improvement of the methods, which is a fundamental requisite for
our collaboration and for the geophysical community.

The results obtained by various contributors have been compared
and discussed, but by no means we have identified ‘preferred’ or
‘reference’ results. Rather, the purpose of intercomparisons was to
define an interval that could contain, with some degree of confi-
dence, the ‘true’ solutions to the test problems. Indeed, this could
be possible in some important cases (see, e.g. the time-domain Love
numbers considered in Tests 4/1 to 7/1), where at least three solu-
tions have been contributed, based on fully independent methods.
When only two solutions have been proposed (see, e.g. Test 4/1),
it is our opinion that some more tests should be performed before
full confidence in the results can be achieved, even if their match
appear satisfactory at a first glance. In the future, further tests will
be made available to the community via the web by this COST
collaboration or, hopefully, can be submitted by other investiga-
tors. In this respect, one major field of investigation will be the
response of layered viscoelastic compressible earth models, whose
theoretical aspects have been a subject of debate in the past (Han &
Wahr 1995). Though some contributors (Rr and Vk) have submitted
outputs for compressible models, the results are still significantly
divergent and demand a thorough reanalysis, also in view of recent
results (Cambiotti et al. 2008; Cambiotti & Sabadini 2009).

We believe that the results presented in this study will be of some
benefit for the GIA community and, specifically, for scientists ap-
proaching the study of GIA for the first time. This is coherent with
the rationale of all previous benchmark studies on the same topic
that, unfortunately, did not reach the final stage of reporting results.
Beside these important pedagogical aspects, this work has already
provided a number of tangible benefits for the scientists involved.
In fact, during the various stages of the benchmark activities, the
contributors have had the opportunity of (i) addressing previous
misunderstandings about the GIA theory, (ii) correcting subtle mis-
takes in the numerical implementation of the theory, (iii) improving
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Table 14. Solutions of Liouville equations for polar motion and the rate of polar motion for Test 3/2. Three ice load models are employed, with corresponding
geometrical factors Gcap = −(0.5414 + i 0.2023), Gdisc = −(0.5394 + i 0.2013) and Gpoint = −(0.1524 + i 0.5704). The cases Cw �= 0 and Cw = 0 are
separately considered. Numerical values are obtained by truncating the outputs provided from Gs and Vb to three significant digits. Some of these solutions
are displayed in Fig. 13.

Chandler wobble ‘included’ (Cw �= 0) Chandler wobble ‘excluded’ (Cw = 0)

|m| (◦) |ṁ| (◦/Ma) |m| (◦) |ṁ| (◦/Ma)

Source t (kyr) Vb Gs Vb Gs Vb Gs Vb Gs

Cap 0 0 0 0.6815 0.6845 0.1321 0.1321 0.3711 0.3711

1 0.1331 0.1731 0.2455 0.2465 0.1611 0.1611 0.2321 0.2321

2 0.1821 0.1971 0.8834 0.8874 0.1801 0.1801 0.1551 0.1551

5 0.2111 0.2111 0.4113 0.4133 0.2111 0.2111 0.7170 0.7170

10 0.2401 0.2401 0.2991 0.2971 0.2401 0.2401 0.5300 0.5300

20 0.2921 0.2921 0.4860 0.5030 0.2921 0.2921 0.5030 0.5030

Disc 0 0 0 0.6775 0.6815 0.1311 0.1311 0.3691 0.3691

1 0.1321 0.1721 0.2445 0.2455 0.1601 0.1601 0.2311 0.2311

2 0.1811 0.1961 0.8794 0.8834 0.1791 0.1791 0.1541 0.1541

5 0.2101 0.2101 0.4093 0.4113 0.2101 0.2101 0.7130 0.7131

10 0.2391 0.2391 0.2981 0.2961 0.2391 0.2391 0.5280 0.5281

20 0.2901 0.2901 0.4840 0.5010 0.2901 0.2901 0.5010 0.5010

Point 0 0 0 0.1925 0.1935 0.3732 0.3732 0.1041 0.1041

1 0.3762 0.4882 0.6924 0.6964 0.4562 0.4562 0.6550 0.6550

2 0.5142 0.5572 0.2494 0.2504 0.5102 0.5102 0.4380 0.4380

5 0.5982 0.5972 0.1163 0.1163 0.5962 0.5962 0.2020 0.2020

10 0.6792 0.6792 0.8460 0.8400 0.6792 0.6792 0.1490 0.1490

20 0.8242 0.8242 0.1370 0.1420 0.8242 0.8242 0.1420 0.1420

existing numerical algorithms and (iv) developing original ana-
lytical and numerical techniques. Since some of the participants
make their codes publicly available (though the documentation
is sometimes missing or poor), we believe that these signifi-
cant improvements of theoretical and numerical aspects of the
GIA research may also have a significant impact on the scientific
community.
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