Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Processes and timescales of magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy)

Urheber*innen

Arienzo,  I.
External Organizations;

/persons/resource/heumann

Heumann,  Arnd
Staff Scientific Executive Board, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Wörner,  G.
External Organizations;

Civetta,  L.
External Organizations;

Orsi,  G.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Arienzo, I., Heumann, A., Wörner, G., Civetta, L., Orsi, G. (2011): Processes and timescales of magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy). - Earth and Planetary Science Letters, 306, 3-4, 217-228.
https://doi.org/10.1016/j.epsl.2011.04.002


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_244048
Zusammenfassung
Abstract The Campi Flegrei caldera collapsed 39 ka in the Neapolitan area (southern Italy) after the Campanian Ignimbrite eruption. This eruption, recognized as the largest and the most cataclysmic volcanic event in the Mediterranean area over the past 200 ka, extruded not less than 300 km3 of trachytic magma. Controversy exists over the timescales required to assemble such large volume of silicic melt and thus whether large magmatic reservoirs can actually persist below active volcanic systems over prolonged periods of time. Uranium-series analyses have been performed on Campanian Ignimbrite whole-rocks, glass matrixes and separated minerals, and the obtained results have been interpreted in combination with data on Sr, Nd, and Pb isotopes from literature. The compositionally most evolved sample which is most radiogenic with respect to Sr isotopes records a reference age of 71 ka. By contrast, U–Th internal isochrones of the three compositionally least evolved samples give identical initial Th isotope ratios and yield consistent ages predating the eruption by up to 6.4 ka. The highest Pb and Nd isotopic ratios and 230Th/232Th activity ratios together with the oldest reference age of the most evolved samples suggest the existence of a resident magma body possibly related to a magmatic system that is known to have fed earlier magmatic activity in the Campi Flegrei area. Conversely, the younger age of the least evolved and least radiogenic magma dates the crystallization/differentiation event of a chemically and isotopically new magma batch entering the reservoir of the resident magma some few thousand years before the cataclysmic eruption. Therefore, the time preceding this large caldera-forming eruption during which the large volume of Campanian Ignimbrite magma assembled and mixed is 6.4 ± 2.1 ka.