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Abstract 

One of the most important tasks in seismology and applied geophysics is the 

identification of the different kinds of waves that form a seismic record by means of 

polarization analysis. In particular, this involves the extraction of body waves (linear 

polarization) or surface waves (mostly elliptical polarization) from a set of seismic 

data and which forms a key point in several studies. 

In this work, a new method of time-frequency polarization analysis based on the 

stationary wavelet packet transform is developed. The proposed approach identifies 

and extracts automatically the different waves included in the signal, dependent upon 

the reciprocal ellipticity.  Moreover, the algorithm provides enough information to 

the user to allow them to also manually select the reciprocal ellipticity intervals, and 

then extract the corresponding waves of interest contained in the signals. 

The proposed polarization estimation method and the automatic features extraction 

algorithm have been evaluated first using synthetic signals, and then applied to real 

seismic records. Based on the results obtained from both synthetic and real signals, 

we can conclude that the proposed method correctly identifies and extracts 

automatically the linearly and ellipticaly polarized waves from the signal, discerning 

clearly both types of polarization. Moreover, the proposed method is able to identify 

and extract signals with different kinds of elliptical polarization, allowing us to 

understand better the characteristics of Rayleigh waves. 

 

Index Terms – Polarization analysis, wave identification, seismic signal 

processing, stationary wavelet packet transform (SWPT). 
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Introduction 

One of the most important tasks in seismology and applied geophysics is the 

identification and extraction of the different types of waves that form a seismic 

record by means of polarization analysis. This involves the extraction of body waves 

(linear polarization) or surface waves (mostly elliptical polarization) from a set of 

seismic data.  

Rayleigh waves are dispersive when they propagate along a vertically 

heterogeneous medium. Due to the subsoil structure, their velocity and polarization 

properties have a high dependence on the frequency and mode of propagation (Shieh 

and Herrmann, 1990). The estimation of the frequency-dependent velocities 

(dispersion curves) is therefore a crucial point when conducting site effect 

assessments by ambient vibrations (Scherbaum et al., 2003; Ohrnberger et al., 2003; 

Parolai et al., 2006; Richwalski et al., 2007). 

Vidale (1986), René et al. (1986) and Li and Crampin (1991) proposed 

different time-domain methods based on complex trace analysis (CTA) and defined 

the instantaneous polarization attributes for the Rayleigh and shear-wave 

identification. These methods analyze only the vertical and radial components. 

Morozov and Smithson (1996) proposed a variational method, which allows the 

generalization to any number of components and therefore the identification of Love 

waves. 

The CTA method analyzes seismic data as analytic signals, which enables the 

local characteristics of the signal to be maintained, providing the instantaneous 
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amplitude and phase. The concept of the complex analytic signal was first introduced 

by Gabor (1946) for the study of the minimum bandwidth needed for the 

transmission of radio and television signals. In seismology, Farnbach (1975) applied 

CTA analysis to estimating the enveloped and the instantaneous phase of the seismic 

records and subsequently the arrival time of the different seismic waves. Taner and 

Sheriff (1977) and Taner et al. (1979) also applied CTA analysis to single-

component seismic data and defined the concepts of reflection strength and reflection 

polarity as the instantaneous amplitude and the sign of the instantaneous phase, 

respectively. René et al. (1986) defined the complex multicomponent signal, with the 

real orthogonal components, that correspond to the registered components, and the 

imaginary components, obtained by applying the Hilbert transform to the real 

components. They characterized the polarization of the seismic waves through 

instantaneous and mean polarization attributes, such as the phase difference, the 

reciprocal ellipticity and the tilt angle. 

In all of the above mentioned studies, the CTA analysis is applied in the time 

domain and therefore, no frequency information is provided. In this way, the 

instantaneous polarization attributes represent mean values for the complete 

frequency range of the signal. 

When the different types of waves contained in one signal do not interfere 

over the same interval times, the CTA analysis provides good results and is able to 

identify the different waves. However, this is not the case for the most of the 

observed seismograms, where the Rayleigh waves (elliptically polarized) appear 

together with some others, for example, reflection modes of the body waves (linearly 
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polarized). This is the reason why a time-frequency polarization analysis seems to be 

a more appropriate alternative in order to separate the different phases in the 

wavefield. A similar aim guided the studies of Diallo et al. (2005, 2006) and Kulesh 

et al. (2007, 2008), where the time-frequency polarization analysis is carried out 

using the Continuous Wavelet Transform (CWT). 

Considering that geophysicists are always nowadays working with discrete 

time signals, the use of a continuous transform such as the CWT might not always be 

the most appropriate tool for such analysis. The CWT application requires a 

transform discretization, where the discrete signal is analyzed in a finite set of scales 

and for some finite numbers of translations. This is not a serious drawback if the only 

purpose of the time-frequency analysis involves estimating some characteristics of 

the signal, for example the P-wave onset. However, for some applications, such as 

those of interest in this study where the aim is to identify and separate the different 

kind of waves contained in the seismic signal, the use of the inverse transform for 

recovering the waves in the time domain might be limited. In fact, although the 

definition of the inverse transform is well established, with its expression and its 

applicability conditions, it is not possible to recover the original signal when only a 

discrete set of scales and translation values has been applied for obtaining the CWT 

coefficients. In this situation, some approximated inversion methods can be applied 

for returning to the time-domain, as explained in Diallo et al. (2006). 

Considering the discrete data used in geophysics and the necessity of 

performing the final analysis in the time domain, it seems more appropriate to use 

other kind of time-frequency transforms, i.e., discrete transforms such as the Discrete 
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Wavelet Transform (DWT) or the Discrete Wavelet Packet Transform (DWPT). 

Previous studies have used the DWT to perform polarization analysis with different 

aims (e.g., Anant and Dowla, 1997; Galiana-Merino et al., 2007; D’Auria et al., 

2010). However, among these discrete transforms, the DWPT provides the greater 

flexibility for the analysis of the different frequency bands in which the signal can be 

decomposed. DWPT allows us to analyze the signal at different frequency bands, 

without being forced to assign more relevance to any of them, as required when 

using DWT. 

The above mentioned wavelet based transforms (CWT, DWT or DWPT) are 

time-shift transforms. This implies that the corresponding wavelet coefficients could 

suffer from some distortion or time shift, depending on the initial sample. In the 

present study, we aim at estimating the instantaneous polarization parameters in the 

time-frequency domain, and thus any phase variation of the wavelet coefficients 

would lead to erroneous results. Diallo et al. (2006) used a complex wavelet as the 

mother wavelet, which has the advantage, compared with the real ones, that it does 

not introduce any phase distortion. Specifically, they used the complex Morlet 

wavelet. 

In order to avoid this restriction, in this work we have developed a new 

method for the polarization analysis in the time-frequency domain based on the 

Discrete Stationary Wavelet Packet Transform (DSWPT). DSWPT does not 

introduce any phase distortion, independent of the mother wavelet, complex or real, 

used. In this way, we can apply other kinds of real wavelets, with shapes similar to 

the studied seismic waves. This approach , which has several advantages with respect 
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to the CWT based methods and obviously, with respect to methods based on time 

domain analysis only. In particular, in contrast to methods based on CWT, the 

proposed method provides a perfect reconstruction from the time-frequency domain 

to the time domain. This allows us to decompose the original signal in different 

waves, depending on their polarization, without any loss of information. Moreover, it 

provides flexibility in the mother wavelet selection, as it does not require any 

restriction on using any real or complex wavelet. 

In addition to the development and implementation of the proposed method, 

we have also developed an algorithm for the automatic identification and extraction 

of the different waves included in the signal, depending on the reciprocal ellipticity. 

The proposed algorithm also provides enough information to the users so that they 

can extract manually the waves associated with any range of reciprocal ellipticity. 

The proposed method and the automatic extraction of the waves have been 

first tested on synthetic signals. Due to the excellent results obtained for all the 

analyzed synthetic cases, they have been applied to real seismic data. The results are 

discussed in terms of the linearly and elliptically polarized waves automatically 

estimated from the analyzed signals.  

 

2. Mathematical background 

2.1. The Wavelet Packet and Stationary Wavelet Packet Transform 

For the case of non-stationary signals, a time-frequency analysis is more appropriate 

than separate analyses in the time or frequency domains alone (Steeghs, 1997). Some 

examples of time-frequency analysis are the DWT (Daubechies, 1992; Wickerhauser, 
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1994) and the DWPT (Wickerhauser, 1994). 

The DWT analysis supposes intrinsically that the spectral information is 

contained at lower frequencies, where the time-frequency decomposition follows a 

fixed scheme with a logarithmic tree structure. This is not necessarily appropriate for 

all the signals, as it is the case of the seismic data. The DWPT generalizes the 

wavelet analysis and allows the decomposition of the time-frequency plane in such a 

way that it conveniently suits the signals under study. 

The DWPT is implemented using a sub-band coding scheme based on H and 

G filters that represent low-pass and high-pass filters, respectively, and on a 

downsampling operator D, that simply chooses every even sample of a sequence 

(Figure 1). 

The original signal 

€ 

s n( ) is represented by 

€ 

λ0 , 0 n( ) . At each scale, j, of the 

DWPT, there are 2j independent signals (nodes or wavelet packet coefficients) and 

every one of them provides two outputs: 

€ 

λ j+1, 2 r (n) = DH λ j , r(n)  
 

€ 

λ j+1, 2 r+1(n) = DGλ j , r(n)  (1) 

€ 

j = 0,....,L −1  

where n is the sample index, j is the scale parameter, L is the maximum 

decomposition level and r represents the frequency index for a given scale and varies 

from 0 to 2j-1. In this way, at a given scale L, we obtain a set of signals 

€ 

λL , 0(n),λL ,1(n),...,λL , 2L −1(n){ } which is an alternative representation of 

€ 

λ0 , 0 n( )  and 
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from which the original signal can be reconstructed perfectly (Wickerhauser, 1994). 

More details about the DWPT can also be found in Galiana-Merino et al. (2003). 

The DWT and DWPT are shift-variant transforms due to the downsampling 

operation. This means that the DWT (or DWPT) of a translated version of a signal 

€ 

s n( ) is not, in general, the translated version of the DWT (or DWPT) of 

€ 

s n( ). For 

some applications, like filtering processes, this may not be an important issue as the 

signal is exactly recovered after applying the inverse transform. For other 

applications, however, such as the present one, where the polarization study is 

carried out in the wavelet packet domain, shift-variant is a serious drawback.  

To overcome this problem, the basic DWPT algorithm can be modified to 

provide a version of DSWPT that no longer depends on translations of the signal. 

The modification is similar to the Discrete Stationary Wavelet Transform (Nason and 

Silverman, 1995; Galiana-Merino et al., 2008).  

The DSWPT is implemented using the same sub-band coding scheme. In this 

case, the appropriate low and high pass filters are applied to the data at each scale, 

but no downsampling is performed. Instead, the filters are modified at each scale by 

applying an operator I, which inserts a zero between every adjacent pair of elements, 

as follows: 

€ 

H j+1 = I H j ⇒
h j+1 2k( ) = h j k( )
h j+1 2k +1( ) = 0
⎧ 
⎨ 
⎩ 

 (2) 

€ 

j = 0,....,L − 2  

where k is the sample index of the filter.  

The stationary wavelet packet coefficients can be calculated recursively in the 
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following way: 

€ 

λ j+1,2r
sta n( ) = H j λ j,2r

sta n( )  
 

€ 

λ j+1,2r+1
sta n( ) =Gj λ j,2r+1

sta n( )  (3) 

€ 

j = 0,....,L −1  

where n is the sample index, j is the scale parameter, L is the maximum 

decomposition level and r is the frequency index for a given scale. 

Supposing that the wavelet packet basis (set of different nodes or signals 

covering the full frequency band) is composed of the stationary wavelet packet 

coefficients associated with the maximum scale, L, as is the case of the proposed 

method, the original signal, 

€ 

λ0,0 n( ) can be represented as 

€ 

λL.0
sta n( ),λL,1

sta n( ),λL ,2
sta n( ),...,λL ,2L −1

sta n( ){ }, where all coefficients have the same length as 

the original signal, rather than becoming shorter as the scale increases, as is the case 

in standard DWPT. 

Moreover, the original signal can be exactly recovered by only adding all the 

stationary wavelet packet coefficients of the maximum scale. 

€ 

λ0,0 n( ) = λL .0
sta n( ) +λL,1

sta n( ) + λL,2
sta n( ) + ...+ λL ,2L −1

sta n( )  (4) 

 

2.2. Polarization analysis in the time-frequency domain 

In this section, the methodology used for estimating the instantaneous polarization 

parameters in the time-frequency domain is explained in detail. 

Let s

€ 

n( ) be a three-component seismic signal, which can be represented as 
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s

€ 

n( ) = si n( ){ } i = x,y,z  (5) 

For each component, the associated analytic complex signals can be obtained 

by 

€ 

ci n( ) = si n( ) + i⋅ H si n( ){ }  (6) 

where 

€ 

H si n( ){ } is the Hilbert transform of the real signal 

€ 

si n( ). 

The analytic complex signal can be calculated through the following steps: 1) 

completing with zeros the signal until the number of samples is equal to a power of 

two equals or higher than twice the length of the original signal, 2) applying the Fast 

Fourier Transform (FFT), 3) the values corresponding to the negative frequencies are 

set to zero and the values corresponding to the positive frequencies are doubled, 4) 

finally, the inverse FFT is applied. 

The application of the DSWPT on the 

€ 

ci n( ) signals results in a set of 

coefficients, 

€ 

λ j ,r
sta n( )

ci
, that are associated with the different nodes of the wavelet 

packet basis.  

In our case, the selected wavelet packet basis is composed of the coefficients 

associated with the maximum scale 

€ 

λL.0
sta n( )

ci
, λL ,1

sta n( )
ci
, λL ,2

sta n( )
ci
,...,λL,2L −1

sta n( )
ci

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

Due to the linear property of the DSWPT, the coefficients 

€ 

λL ,r
sta n( )

ci
 can be 

divided in two groups, corresponding to the real and imaginary parts of the analytic 

complex signal. In this way, the coefficients obtained from the DSWPT can be 

expressed as  
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€ 

λL ,r
sta n( )

ci
= λL,r

sta n( )
si

+ λL,r
sta n( )

H si{ }
 (7) 

where 

€ 

λL ,r
sta n( )

ci
 is the set of coefficients associated with the analytic complex signal, 

€ 

λL ,r
sta n( )

si
 is the set of coefficients associated with the recorded signal (real part of 

€ 

ci n( )), and 

€ 

λL ,r
sta n( )

H si{ }
 is the set of coefficients associated with the Hilbert transform 

of the recorded signal (imaginary part of 

€ 

ci n( )). 

The analysis of these sets of coefficients as analytic complex signals allows 

us to maintain the local properties of the signal and then, estimate the instantaneous 

amplitude and phase for all the points (n, r) in the time-frequency domain. 

€ 

Ai n,r( ) = λL,r
sta n( )

si( )
2

+ λL ,r
sta n( )

H si{ }
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

 (8) 

 

€ 

θ i n,r( ) = arctan
λL ,r
sta n( )

H si{ }

λL,r
sta n( )

si

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 (9) 

For the subsequent polarization analysis, any combination of two orthogonal 

components could be selected. However, for the characterization of the Rayleigh 

waves, the most appropriate is to select the set of coefficients associated with the 

vertical component, 

€ 

λL ,r
sta n( )

cz
 and the set of coefficients associated with the 

horizontal component aligned with the incoming direction of the seismic wave, 

(

€ 

λL ,r
sta n( )

cx
or 

€ 

λL ,r
sta n( )

cy
). From now on, we denote both horizontal components using 

the subscript h (e.g., 

€ 

λL ,r
sta n( )

ch
). 
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The time-frequency polarization attributes of the seismic signal can now be 

obtained by an extension of the analysis shown by Taner et al. (1979) for the time 

domain. In this way, the four geometric parameters that characterize the attributes of 

the elliptical polarization can be defined in the time-frequency domain as (Figure 2): 

1)   

€ 

a n,r( ) → semi-major axis  

2)   

€ 

b n,r( )  → semi-minor axis 

3) 

€ 

φ n,r( )  → phase difference between the vertical component, 

€ 

λL ,r
sta n( )

cz
, and 

the horizontal component, 

€ 

λL ,r
sta n( )

ch
. 

4)  

€ 

τ n,r( ) → tilt angle of the polarization ellipse with respect to the vertical 

Therefore, the instantaneous phase difference between the set of coefficients 

of both components is expressed as: 

€ 

φ n,r( ) = arctan
λL,r
sta n( )

sh
⋅ λL ,r

sta n( )
H sz{ }

− λL,r
sta n( )

sz
⋅ λL ,r

sta n( )
H sh{ }

λL,r
sta n( )

sz
⋅ λL ,r

sta n( )
sh

+ λL ,r
sta n( )

H sz{ }
⋅ λL ,r

sta n( )
H sh{ }

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 (10) 

With respect to the instantaneous values of the semi-major and semi-minor 

axes, these can be estimated by the following equations 

€ 

a n,r( ) =
S0 n,r( ) + S1

2 n,r( ) + S2
2 n,r( )( )

1
2

2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1
2

 (11) 

 

€ 

b n,r( ) =
S0 n,r( ) − S1

2 n,r( ) + S2
2 n,r( )( )

1
2

2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1
2

 (12) 
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where 

€ 

S0 , 

€ 

S1 y 

€ 

S2  are the three Stoke parameters (René et al., 1986), which can be 

obtained by: 

€ 

S0 n,r( ) = Az
2 n,r( ) + Ah

2 n,r( )  (13) 

 

€ 

S1 n,r( ) = Az
2 n,r( ) − Ah

2 n,r( )  (14) 

 

€ 

S2 n,r( ) = 2⋅ Az n,r( )⋅ Ah n,r( )⋅ cos φ n,r( )( )  (15) 

Finally, the tilt angle, 

€ 

τ , can be also calculated by using the Stoke 

parameters, as:  

€ 

τ n,r( ) =
1
2
⋅ arctan S2 n,r( )

S1 n,r( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (16) 

From the obtained semi-major and semi-minor axes values, the instantaneous 

reciprocal ellipticity and the signed instantaneous reciprocal ellipticity are defined, 

respectively, as:  

€ 

ϕ n,r( ) =
b n,r( )
a n,r( )

 (17) 

 

€ 

σ n,r( ) = sign φ n,r( )( )⋅ ϕ n,r( )  (18) 

Theoretically, for linear polarization, the reciprocal ellipticity is zero, i.e., 

€ 

ϕ n,r( ) = 0 , while for circular polarization 

€ 

ϕ n,r( ) =1. Considering 

€ 

σ n,r( ) , it is 

positive or negative, depending on the movement counter-clockwise or clockwise of 

the ellipse, respectively. 
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As we work with instantaneous values, artifacts or instabilities could appear 

at some points of the reciprocal ellipticity plane. In the time domain, René et al. 

(1986) averaged the instantaneous parameters in order to smooth the results and 

avoid possible artifacts. Following a similar scheme, in this work we propose to 

apply a 2D median filter to reduce the instantaneous instabilities or artifacts in the 

reciprocal ellipticity plane. 

 

2.3. Design of polarization filters 

Once we have the different polarization attributes in the time-frequency domain, it is 

possible to design filters that allow different phases to be identified based on selected 

attributes of the parameters considered. The reciprocal ellipticity is one of the most 

significant when discerning the different waves contained in a seismic signal. 

Depending on its value, the wave polarization can be classified as linear, elliptical or 

circular. The DSWPT coefficients can therefore be selected and the desired 

polarization characteristics extracted. 

In this work, we use a filter based on the ‘hard thresholding’ method (Donoho 

and Johnstone, 1994) where the threshold is estimated as a function of the reciprocal 

ellipticity instead of as a function of the noise level. The most important difference 

when compared to the common application of the ‘hard thresholding’ method is that 

the selection criterion is based on the distribution in the time-frequency plane of the 

reciprocal ellipticity. Furthermore, the modified coefficients correspond to the time-

frequency plane representation of the analytic complex signal. Mathematically, the 

proposed filtering can be expressed as: 
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€ 

ˆ λ L ,r
sta n[ ]

ci
=

0 if ϕ n,r( ) <ϕmin or ϕ n,r( ) >ϕmax

λL ,r
sta n( )

ci
if ϕmin ≤ϕ n,r( ) ≤ϕmax

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (19) 

Following this criterion, the coefficients corresponding to the vertical and 

horizontal components of the signal, 

€ 

ˆ λ L ,r
sta n( )

ci
, should be modified.  

 

3. Proposed method 

3.1. Polarization attributes in the time-frequency domain 

In this section, we explain the implementation of the proposed polarization analysis, 

involving an algorithm developed for the extraction, automatic and manual, of the 

different waves contained in the signal, according to the reciprocal ellipticity. Figure 

3 shows the general scheme of the proposed method.  

The first six steps are basically the implementation of the equations presented 

in section 2.2. For the DSWPT analysis, we used the Daubechies 12 as the mother 

wavelet, which is appropriate for the analysis of seismic signals (Galiana-Merino et 

al., 2003). The maximum level of decomposition is fixed to 8. Since no selection has 

been done with respect to the best basis of the wavelet packet transform, the number 

of nodes corresponds to the number of nodes of the maximum level (28=256). In this 

way, the frequency band of the signal is divided in 256 bands of the same width. 

The recorded signal is a matrix of size n x 3, which contains n samples in the 

time domain for the three components: vertical, radial and transversal. After the 

DSWPT, the signal is transformed in a matrix of size n x 256 x 3, where each 

component is represented by n x 256 points in the time-frequency plane. In Figure 4, 
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an example of the vertical component of a real signal and its corresponding DSWPT 

coefficients is shown. 

Once the signal is converted to the time-frequency domain, the polarization 

attributes are calculated at every point of this plane, following the equations of 

section 2.2. Then the instantaneous amplitude and phase, the geometric parameters of 

the polarization ellipse and the instantaneous reciprocal ellipticity are then calculated 

(e.g. Figure 4c). 

Finally, a 2D median filter is applied to the reciprocal ellipticity matrix to 

smooth the obtained values and reduce possible instantaneous instabilities and 

artifacts. In the present work, the time-frequency dimension of the applied median 

filter has been set at 50 samples x 3 frequency bands, as a compromise between 

smoothing and artifacts, but this is user configurable.  

 

3.2. Automatic extraction of seismic waves 

The last two steps of the procedure, 7 and 8, focus on the analysis of the reciprocal 

ellipticity that characterizes the signal, and the subsequent extraction of the different 

waves contained in the signal. 

In step 7, a filter bank of reciprocal ellipticity has been applied to the set of 

coefficients, 

€ 

λL ,r
sta n( )

ci
. The bandwidth of the filters, following equation 19, is 

determined by the 

€ 

ϕmin  and 

€ 

ϕmax  values. In such a filter, 

€ 

ϕmin  is set to 0, while 

€ 

ϕmax  is 

increased progressively in steps of 

€ 

Δϕ  until the maximum value of reciprocal 
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ellipticity is reached, i.e., 1. In Figure 5, the scheme of the filter bank of reciprocal 

ellipticity is shown.  

€ 

Δϕ  is a parameter that can be adjusted by the user in order to modify the 

resolution of the analysis. For the synthetic and real signals analyzed in this work, we 

have chosen 

€ 

Δϕ = 0.025 , which in our experience has provided very good results in 

the separation of the synthetic waves (see section 4).  

After filtering, the inverse transform is used for retrieving the sub-signals 

corresponding to each reciprocal ellipticity band in the time domain. The differences 

between sub-signals corresponding to contiguous reciprocal ellipticity bands are also 

plotted in order to better identify the changes. 

The automatic selection of the waves contained in the original signal is 

carried out based on the correlation analysis of the sub-signals representing 

consecutive reciprocal ellipticity bands. If these consecutive sub-signals do not 

present significant differences, the correlation will be close to 1. In contrast, if some 

change occurs between consecutive sub-signals, the correlation will be less than 1, 

indicating the presence of some new wave of the signal, with different reciprocal 

ellipticity.  

Based on this criterion, the algorithm automatically detects the local minima 

of the correlation results and then selects the reciprocal ellipticity ranges comprised 

between two local minima. These reciprocal ellipticity ranges correspond to the 

different waves contained in the original signal. The results obtained by the 

correlation analysis are shown graphically and in a table in order to assist with the 

manual inspection.  
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4. Results and discussion 

4.1. Evaluation of synthetic signals 

The proposed method was tested first using synthetic signals composed of waves 

with different reciprocal ellipticity. One representative example of this analysis and 

the results obtained is shown and commented in detail in this section. 

In this example, we use a synthetic signal composed of three waves with 

different reciprocal ellipticity. One of them is linearly polarized, meanwhile the other 

two have elliptical polarization. The sub-signals used are sinusoids smoothed with a 

hanning window. For the linearly polarized wave, the wave has a frequency of 5Hz 

and the linear polarization is obtained by not introducing any delay between the 

vertical and radial components. For the first elliptical wave, the frequency is fixed to 

1Hz and the delay between the vertical and the radial components is 0.9 rad. This 

delay ensures that the wave is elliptically polarized, with reciprocal ellipticity equals 

to 

€ 

ϕ n,r( ) = 0.484 . Finally, the second elliptical wave is characterized by a frequency 

of 2Hz and a delay of 1.0 rad., which implies 

€ 

ϕ n,r( ) = 0.543. The sampling rate used 

for generating the different waves is 100 samples per second.  

In Figure 6, the vertical and radial components of the three waves, as well as 

the vertical and radial components of the composed synthetic signal are shown. 

In Figure 7, the signal decomposition at different reciprocal ellipticity 

intervals (see Figure 5) and the respective differences between these intervals are 

shown. For the clarity of this figure, we only show the results at 

€ 

Δϕ = 0.1, although 

the analysis was carried out using 

€ 

Δϕ = 0.025 , as it was pointed out in section 3.2. 
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The experimental tests we carried out varying the 

€ 

Δϕ  value demonstrated that this 

step is small enough to assure a good discrimination among the different waves 

contained in the signal.  

Next, the correlation coefficients between the different consecutive sub-

signals obtained from the filtering process are calculated. The graphic results are 

plotted (

€ 

Δϕ = 0.025 ) in Figure 8 and the results at intervals of 

€ 

Δϕ = 0.1 are shown in 

Table 1.  

The reciprocal ellipticity of the linearly polarized wave is close to 0. We can 

see that the correlation coefficient (Figure 8) is constant and close to 1 for values of 

the reciprocal ellipticity between 0 and 0.475. At 0.475, a local minimum of the 

correlation coefficient is observed, which may be indicative of the presence of a new 

wave in the signal that is different to the previous one. In the analyzed case, this 

change is due to the presence of the first elliptically polarized wave, 

€ 

ϕ n,r( ) = 0.484 . 

After reaching a minimum value, the correlation coefficient increases again to 1 (at 

0.500). If it was the only elliptically polarized wave, the correlation coefficient 

would reach 1 and would remain constant for higher values of the reciprocal 

ellipticity. However, we can observe a new decrease in the correlation coefficient 

with the reciprocal ellipticity assuming a value of 0.525. This indicates that a new 

elliptically polarized wave was found in the signal, corresponding to the second 

elliptically polarized wave with 

€ 

ϕ n,r( ) = 0.543. After reaching a minimum value, the 

correlation coefficient increases again to 1 and remains constant until the end of the 

process, indicating that no other waves are observed. 
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Therefore, the automatic analysis of the correlation coefficients identifies the 

following three different reciprocal ellipticity intervals: 0-0.475; 0.475-0.525 and 

0.525-1. After filtering the time-frequency signal according to these reciprocal 

ellipticity ranges (see section 3.2), the three waves of the synthetic signal are 

retrieved accurately (Figure 9). 

It is important to note that this wave identification process is carried out in an 

automatic mode, without any intervention from the user. However, the developed 

tool provides all the intermediate results (Figures 7 and 8; and Table 1), which allows 

the user a visual (and sometimes more accurate) inspection of the obtained results 

and a manual selection of the reciprocal ellipticity intervals. 

In the case at hand, it is possible to compare the obtained waves with the 

synthetic ones, in order to evaluate the accuracy of the wave identification and 

separation process. In Figure 9, we can see that the graphical comparison between 

the estimated and synthetic waves appears very satisfactory. Moreover, in Table 2, 

the correlation coefficients between the estimated and the synthetic waves are also 

shown, with all of the waves included in the signal being accurately retrieved, with a 

correlation coefficient of around 0.99. 

We now repeat the same example, but after adding white noise to the 

synthetic signal. In this case, the automatic analysis of the correlation coefficients 

identifies the following four different ranges of reciprocal ellipticity: 0-0.100; 0.100-

0.475; 0.475-0.525 and 0.525-1 (see Figure 10). The local minimum obtained at 

€ 

ϕ = 0.100 corresponds to the presence of the first wave of the signal contaminated 

with noise. Below this value, there is only a small part of the linearly polarized wave 
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and/or only noise and spurious signals. Theoretically, the linearly polarized wave 

should have a reciprocal ellipticity equal to 0.000. However, in the case of signals 

contaminated with noise, such as the present example, the reciprocal ellipticity 

associated with the linearly polarized waves covers a small range of values slightly 

higher than zero and then, a first local minimum, which has not to be considered, use 

to appear. Taking this into account, the reciprocal ellipticity intervals are reduced to 

0-0.475, 0.475-0.525, and 0.525-1, which are the same intervals obtained for the 

signal without noise. 

In Figure 11, we can see the graphical comparison between the estimated and 

the pure synthetic waves, where the estimated waves are also contaminated with 

some of the noise. In Table 3, the correlation coefficients between the estimated and 

the synthetic waves are also shown. In this case, all the waves included in the signal 

have been also retrieved accurately, with a correlation coefficient around 0.99. 

 

4.3. Application to real seismograms 

The proposed method has also been applied on real seismograms recorded by a linear 

array of geophones, which were deployed in the city of Bonn (Germany) in October 

2003 (Richwalski et al., 2007). An active experiment was carried out with a 

controlled source. The survey was conducted by deploying sixteen 4.5 Hz three-

component geophones in a linear array of 96 m with non-regular inter spacing 

(Figure 12). The source was offset at 15 m from the first geophone. A sledgehammer 

of 40 kg was dropped from a height of 3.5 m, hitting a thick metal plate placed at one 
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end of the geophone line. The sampling frequency was fixed to 1000 s.p.s, with a 

total recording time of 2 s for each record. 

The method proposed in this study has been applied to this data set, where the 

signals contained surface waves (elliptical polarization) as well as body waves (linear 

polarization) recorded by the sixteen geophones. As an example, we show the results 

obtained for the signal recorded by geophone 9 (Figure 13), located at 48.5 m, which 

is approximately in the middle of the array. 

As mentioned in section 2, only the vertical and the radial components are 

needed for the subsequent polarization analysis since we focus on P and Rayleigh 

waves. The reciprocal ellipticity has been analyzed in the time-frequency plane using 

a step of 

€ 

Δϕ = 0.025 . A lower value of 

€ 

Δϕ  may falsely estimate waves due to small 

instabilities or fluctuations between the consecutive values of the reciprocal 

ellipticity. In the case of choosing higher values, e.g., 

€ 

Δϕ = 0.100 , the process would 

be more robust to these fluctuations, in exchange of a low reciprocal ellipticity 

resolution. 

In Figure 14, the correlation coefficients between the different consecutive 

sub-signals obtained from the filtering process are shown. From the correlation 

coefficient information, and after detecting the local minima on the curve, the 

proposed method automatically provides the reciprocal ellipticity limits associated 

with the different possible waves contained the signal.  

In this case, these limits are the following: 

€ 

Δϕ1 = [0.000 – 0.050]; 

€ 

Δϕ2 =  

[0.050 – 0.175]; 

€ 

Δϕ3 =  [0.175 – 0.350]; 

€ 

Δϕ4 = [0.350 – 0.400]; 

€ 

Δϕ5 =  [0.400 – 

0.475]; 

€ 

Δϕ6 =  [0.475 – 0.525]; and 

€ 

Δϕ7 =  [0.525 – 1.000].  
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Considering the first two intervals, 

€ 

Δϕ1 and 

€ 

Δϕ2, they should form only one, 

€ 

Δϕ1−2=[0.000 – 0.175]. The minimum obtained at 

€ 

ϕ = 0.050 corresponds to the 

presence of the first wave of the signal. In fact, below this value, there is no 

significant wave in the signal. Theoretically, the body waves (linearly polarized) 

should have a reciprocal ellipticity equal to 0.000. However, in the case of real 

seismograms, the signal is contaminated with noise and therefore the reciprocal 

ellipticity associated with body waves will not be exactly equal to zero. In fact, the 

reciprocal ellipticity will be slight higher than zero and its value will depend on the 

signal to noise ratio of the recorded seismograms. In conclusion, with this 

modifications, the first two intervals are 

€ 

Δϕ1−2=[0.000 – 0.175] and 

€ 

Δϕ3 =  [0.175 – 

0.350]. 

After checking the results provided by the automatic process (not shown here 

for simplicity), it seems that the waves obtained for the intervals 

€ 

Δϕ6 and 

€ 

Δϕ7 may 

also be joined in one interval 

€ 

Δϕ6−7=[0.4750 – 1.000]. As the reciprocal ellipticity 

increment is small, in some cases, the obtained correlation coefficient curve may 

present some slight local minima, which split a reciprocal ellipticity interval into two 

and therefore extract two waves from the signal where there should be only one. This 

is the situation that occurs at 0.525, where there is a very slight decrease in the 

correlation coefficient and then the automatic process selects two reciprocal 

ellipticity intervals at  

€ 

Δϕ6 =  [0.450 – 0.525]; and 

€ 

Δϕ7 =  [0.525 – 1.000]. 

In Figure 15, the estimated waves are shown. The first interval, 

€ 

Δϕ1−2=[0.000 

– 0.175], may correspond to body waves (linearly polarized), meanwhile the rest of 



25 

the estimated waves may be associated with surface waves with different elliptical 

polarizations. In this case, although the body waves present a very low amplitude 

with respect to the amplitudes of the Rayleigh waves, they can still be identified and 

extracted from the original seismogram. 

As we can see, the automatic process provides an initial and rough selection 

of the different kinds of waves contained in the signal, based on the reciprocal 

ellipticity of these waves. The procedure can, of course, be refined by adjusting the 

reciprocal ellipticity intervals, if necessary. 

 

5. Conclusions 

In this work, a new method for polarization analysis in the time-frequency domain 

based on SDWPT has been developed. 

The proposed method presents some advantages relative to other methods 

based on the CWT (Diallo et al. 2005; Diallo et al., 2006; Kulesh et al., 2007). The 

signal can be very accurately recovered from the time-frequency domain to the time 

domain, while any real mother wavelet can be used. 

With respect to other methods based on time domain only analysis, such as 

CTA, the proposed method identifies and separates different waves of the signal, 

even when they occur simultaneously in time, under the condition that they have 

different polarization characteristics. 

The proposed algorithm identifies and extracts automatically the different 

waves of a signal, depending on the reciprocal ellipticity. Moreover, the algorithm is 

flexible and provides sufficient information to the user, who may also manually 
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select the reciprocal ellipticity intervals to extract the corresponding waves in the 

signals. 

The proposed method and the automatic extraction algorithm have been 

evaluated on synthetic signals. For all the analyzed cases, the algorithm identified 

and extracted properly all the different waves of the signal, according to the 

respective reciprocal ellipticity values. Comparing the estimated waves of the signal 

with the synthetics ones, correlation coefficients above 0.98 were obtained. 

The proposed method has also been applied to real signals. In this case, it is 

not possible to evaluate in an objective way the quality of the obtained results, but 

based on experience, it is possible to qualitatively evaluate which phases are isolated 

correctly. 

For the analyzed cases, the proposed method provides automatically a set of 

reciprocal ellipticity intervals that might, with large degree of confidence, be 

assigned to phases existing in the signal. From the results returned by analyzing both 

synthetic and real signals, we can conclude that the proposed method identifies and 

extracts automatically the linearly and elliptically polarized waves of a signal, 

discerning clearly both types of polarization. This is very important in seismological 

applications (reflection/refraction experiments and microzonation studies), as it 

allows, to a first order, the separation of the body waves (linearly polarized) from the 

Rayleigh waves (elliptically polarized). Moreover, the proposed method can identify 

and extract also waves with different elliptical polarizations, allowing us to better 

understand the time-frequency polarization of Rayleigh waves. 

For the analyzed cases, the polarization analysis has been carried out using 
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the vertical and radial components. However, generalizing the use of this method to 

other orthogonal components should be also possible. 
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Table 1 

Correlation coefficients between the different consecutive signals (Figure 7a) 

obtained from the filtering process 

 

Reciprocal ellipticity 

intervals 
Correlation coefficient 

[0.0 , 0.1] – [0.0 , 0.2] 1.0000 

[0.0 , 0.2] – [0.0 , 0.3] 0.9998 

[0.0 , 0.3] – [0.0 , 0.4] 1.0000 

[0.0 , 0.4] – [0.0 , 0.5] 0.7009 

[0.0 , 0.5] – [0.0 , 0.6] 0.8232 

[0.0 , 0.6] – [0.0 , 0.7] 1.0000 

[0.0 , 0.7] – [0.0 , 0.8] 1.0000 

[0.0 , 0.8] – [0.0 , 0.9] 1.0000 

[0.0 , 0.9] – [0.0 , 1.0] 1.0000 
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Table 2 

Correlation coefficients between the estimated waves and the synthetic signal 

 

Wave polarization Correlation coefficient 
(Vertical component) 

Correlation coefficient 
(Radial component) 

Linear polarization 0.9987 0.9987 

Elliptical polarization 1 0.9894 0.9892 

Elliptical polarization 2 0.9876 0.9885 
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Table 3 

Correlation coefficients between the estimated waves and the synthetic signal 

with noise 

 

Wave polarization Correlation coefficient 
(Vertical component) 

Correlation coefficient 
(Radial component) 

Linear polarization 0.9984 0.9984 

Elliptical polarization 1 0.9892 0.9889 

Elliptical polarization 2 0.9872 0.9881 
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Figure captions: 

Fig. 1. Tree structure of the wavelet packet analysis, where H and G are low-pass and 

high-pass filters, respectively, and D is a downsampling operator.  are the 

different signals associated with every node of the decomposition. In this nomenclature, 

each node is characterized by a pair of numbers (j,r), where j is the scale index and r is 

the index associated with the frequency or the position within a scale. 

 

Fig. 2. Polarization ellipse showing the geometric parameters: semi-major axis (a), 

semi-minor axis (b), and tilt angle with respect to the vertical (

€ 

τ ). 

 

Fig. 3. General scheme of the proposed method. 

 

Fig. 4. Example of the vertical component of a real signal (a) and the corresponding 

DSWPT coefficients (b). The associated reciprocal ellipticity values obtained with the 

vertical and radial components are also shown (c). 

 

Fig. 5. Scheme of the filter bank of reciprocal ellipticity, with 

€ 

Δϕ = 0.1. 

 

Fig. 6. Vertical and radial components of the linearly polarized wave (a), the elliptically 

polarized waves (b, c) and the synthetic signal formed by the union of the three waves 

(d). On the right-hand side, the polarization ellipsoids for the vertical and radial 

components are also presented. 

 

Fig. 7. (a) Signal decomposition at different reciprocal ellipticity intervals, between 0 

and the reciprocal ellipticity value (0.1, 0,2, …, 1), and (b) the respective differences 
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between these intervals. For the clarity of this figure, we show only the results at 

€ 

Δϕ = 0.1. 

 

Fig. 8. Correlation coefficients between the different consecutive sub-signals obtained 

from the filtering process (synthetic signal). 

 

Fig. 9. Comparison between the estimated waves of the signal (black color) and the 

initial synthetic waves (gray color). (a) Linearly polarized wave, (b) elliptically 

polarized wave 1, and (c) elliptically polarized wave 2. On the right-hand side, the 

polarization ellipsoids for the vertical and radial components are also presented. 

 

Fig. 10. Correlation coefficients between the different consecutive sub-signals obtained 

from the filtering process (synthetic signal contaminated with noise). 

 

Fig. 11. Comparison between the estimated waves of the signal (black color) and the 

initial synthetic waves (gray color). (a) Linearly polarized wave, (b) elliptically 

polarized wave 1, and (c) elliptically polarized wave 2. On the right-hand side, the 

polarization ellipsoids for the vertical and radial components are also represented. 

 

Fig. 12. Deployment of the source and the linear array of geophones for the experiment 

carried out in Bonn (Germany). 

 

Fig. 13.   Real three-component signal recorded by geophone 9 for the experiment 

carried out in Bonn (Germany).  
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Fig. 14. Correlation coefficients between the different consecutive sub-signals obtained 

from the filtering process (real signal). 

 

Fig. 15. Vertical and radial components of the recorded signal and the estimated waves 

obtained from the different estimated reciprocal ellipticity intervals. On the right-hand 

side, the polarization ellipsoids for the vertical and radial components are also 

represented. 
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Fig. 1. Tree structure of the wavelet packet analysis, where H and G are low-pass and 

high-pass filters, respectively, and D is a downsampling operator.  are the 

different signals associated with every node of the decomposition. In this nomenclature, 

each node is characterized by a pair of numbers (j,r), where j is the scale index and r is 

the index associated with the frequency or the position within a scale. 
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Fig. 2. Polarization ellipse showing the geometric parameters: semi-major axis (a), 

semi-minor axis (b), and tilt angle with respect to the vertical (

€ 

τ ). 
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Fig. 3. General scheme of the proposed method. 
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Fig. 4. Example of the vertical component of a real signal (a) and the corresponding 

DSWPT coefficients (b). The associated reciprocal ellipticity values obtained with the 

vertical and radial components are also shown (c). 

 



42 

 

 

 

 

 

Fig. 5. Scheme of the filter bank of reciprocal ellipticity, with 

€ 

Δϕ = 0.1. 
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Fig. 6. Vertical and radial components of the linearly polarized wave (a), the elliptically 

polarized waves (b, c) and the synthetic signal formed by the union of the three waves 

(d). On the right-hand side, the polarization ellipsoids for the vertical and radial 

components are also presented.  
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Fig. 7. (a) Signal decomposition at different reciprocal ellipticity intervals, between 0 

and the reciprocal ellipticity value (0.1, 0,2, …, 1), and (b) the respective differences 

between these intervals. For the clarity of this figure, we show only the results at 

€ 

Δϕ = 0.1. 
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Fig. 8. Correlation coefficients between the different consecutive sub-signals obtained 

from the filtering process (synthetic signal). 
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Fig. 9. Comparison between the estimated waves of the signal (black color) and the 

initial synthetic waves (gray color). (a) Linearly polarized wave, (b) elliptically 

polarized wave 1, and (c) elliptically polarized wave 2. On the right-hand side, the 

polarization ellipsoids for the vertical and radial components are also presented. 
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Fig. 10. Correlation coefficients between the different consecutive sub-signals obtained 

from the filtering process (synthetic signal contaminated with noise). 
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Fig. 11. Comparison between the estimated waves of the signal (black color) and the 

initial synthetic waves (gray color). (a) Linearly polarized wave, (b) elliptically 

polarized wave 1, and (c) elliptically polarized wave 2. On the right-hand side, the 

polarization ellipsoids for the vertical and radial components are also represented. 
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Fig. 12. Deployment of the source and the linear array of geophones for the experiment 

carried out in Bonn (Germany). 



50 

 

 

Fig. 13.   Real three-component signal recorded by geophone 9 for the experiment 

carried out in Bonn (Germany).  
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Fig. 14. Correlation coefficients between the different consecutive sub-signals obtained 

from the filtering process (real signal). 
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Fig. 15. Vertical and radial components of the recorded signal and the estimated waves 

obtained from the different estimated reciprocal ellipticity intervals. On the right-hand 

side, the polarization ellipsoids for the vertical and radial components are also 

represented. 

 


