

Originally published as:

Adjaoud, O., Steinle-Neumann, G., Jahn, S. (2011): Transport properties of Mg2SiO4 liquid at high pressure: Physical state of a magma ocean. - Earth and Planetary Science Letters, 312, 3-4, 463-470

DOI: 10.1016/j.epsl.2011.10.025

Transport properties of Mg_2SiO_4 liquid at high pressure: Physical state of a magma ocean

O. Adjaoud^{a,b}, G. Steinle-Neumann^{a,∗}, S. Jahn^b

 a Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany b GFZ German Research Centre for Geosciences, Section 3.3, Telegrafenberg, 14473 Potsdam, Germany

Abstract

We use a flexible potential model to perform large-scale molecular dynamics simulations on self-diffusivity and viscosity of Mg_2SiO_4 melt up to pressures of 32 GPa and over a temperature range of 2600 to 3200 K. We find that self-diffusivity decreases and viscosity increases uniformly with pressure, the latter from values of 10^{-2} Pa s at 0 GPa to 10^{-1} Pa s at 32 GPa (2600 K). Both transport properties can be readily fit with a closed Arrhenius expression over the whole pressure and temperature range considered. Independent estimates of self-diffusivities and viscosity allow us to examine their relation through the Stokes-Einstein and the Eyring equations. While at low pressures the $SiO₄$ tetrahedron seems to be the viscous flow unit, bare ion diffusion becomes more dominant at high pressure. Combining previous simulation results on thermodynamic properties with the current viscosity simulations we compute a magma ocean adiabat and the associated viscosity profile. We find that viscosity in the magma ocean is $\sim 2 \cdot 10^{-2}$ Pa s near the surface, and that

Preprint submitted to Earth and Planetary Science Letters October 12, 2011

[∗]Corresponding author

Email address: g.steinle-neumann@uni-bayreuth.de (G. Steinle-Neumann)

it increases by less than 0.5 log-unit up to 35 GPa. Combining scenarios for magma ocean dimensions in the young Earth with thermodynamic properties and viscosity of Mg_2SiO_4 melt we compute a magma ocean Rayleigh number Ra in the range of 10^{28} and 10^{29} , putting the magma ocean in the dynamic regime of hard turbulence. Using scaling relations for the Nusselt number Nu at very high Ra we estimate the heat flux of the magma ocean to be in the range of 10^{18} to 10^{19} W.

Keywords: Magma Ocean, Mg2SiO⁴ Liquid, High Pressure Diffusivity, Melt Viscosity

October 12, 2011

¹ 1. Introduction

 Viscosity of silicate melts is of central importance in many geological settings as it determines how magmas bodies cool, flow and erupt. Knowing 4 the dependence of viscosity on temperature (T) (e.g. Urbain *et al.*, 1982; Lacks *et al.*, 2007; Martin *et al.*, 2009; Nevins *et al.*, 2009), pressure P (e.g. Reid et al., 2003; Liebske et al., 2005; Lacks et al., 2007; Martin et al., $7\quad 2009$, composition (Urbain *et al.*, 1982; Lacks *et al.*, 2007) and water content 8 (Lange, 1994; Hui and Zhang, 2007; Mookherjee $et al., 2008$) is hence of great importance in geochemistry and geophysics. In the young Earth the thermal and chemical evolution of our planet was governed by physical properties ¹¹ of melt that made up the magma ocean (Rubie *et al.*, 2003; Solomatov, 2007). Viscosity of the silicate magma ocean is central to the understanding of convective dynamics (Abe, 1997) and its thermal evolution (Abe, 1997; Solomatov, 2007), and has a strong influence on crystal growth and settling ¹⁵ (Solomatov and Stevenson, 1993a,b) as well as equilibration between the ¹⁶ core-forming metal liquid and the proto-mantle (Rubie *et al.*, 2003, 2011).

 17 With the upper mantle and transition zone dominated by olivine, Mg_2SiO_4 ¹⁸ liquid properties are of fundamental interest in understanding deep melts, in ¹⁹ particular magma ocean stages of the young Earth. Despite this impor-20 tance the knowledge of thermodynamic and transport properties of Mg_2SiO_4 ²¹ melt from experiments is limited. This is partly caused by the high melt-²² ing point of Mg_2SiO_4 (2163 \pm 25 K) (Bowen and Anderson, 1914) that has 23 lead to extrapolations of properties from supercooled liquids to high T (e.g. ²⁴ Tangemann *et al.*, 2001) or extrapolation from other compositions (e.g. Lange ²⁵ and Carmichael, 1987; Rigden *et al.*, 1989). As the melting temperature in-²⁶ creases rapidly with pressure (Ohtani and Kumazawa, 1981; Presnall and ²⁷ Walter, 1993) high P experiments on Mg_2SiO_4 melts are even more difficult 28 and scarce. Viscosity measurements for Mg_2SiO_4 are restricted to ambient 29 P and a limited T range $(2300 \text{ K}-2500 \text{ K})$ (Urbain et al., 1982).

³⁰ At high pressure, direct measurements of viscosity are based on the *falling* 31 *sphere* method, in which the viscosity of a liquid can be computed from the ³² sinking velocity of a solid sphere through a liquid by Stokes' law, monitored γ ₃₃ by X-ray radiography (Kushiro, 1978; Reid *et al.*, 2003; Liebske *et al.*, 2005). ³⁴ Due to the low viscosity (high velocity) the falling sphere method is extremely 35 challenging for depolymerized melt compositions, including Mg_2SiO_4 with a ³⁶ nominal ratio of non-briding oxygens per tetrahedrally coordinated cation $37 \text{ (NBO/T) of } 4.$

³⁸ Molecular dynamics (MD) simulations provide a complementary route to 39 explore the high P and T behavior of silicate melts, including Mg_2SiO_4 (de Koker et al., 2008; Adjaoud et al., 2008; Martin et al., 2009; Lacks et al., 2007; Ghosh and Karki, 2011).

42 Ab-initio computations based on density functional theory (DFT) are ac- curate and transferable, but they are computationally demanding, and cell sizes for simulations of silicate liquids have been restricted up to a few hun-⁴⁵ dred atoms (Stixrude and Karki, 2005; de Koker *et al.*, 2008; Sun, 2008; Sun et al., 2011; Karki and Stixrude, 2010; de Koker, 2010a; Ghosh and Karki, 2011). Also, until the recent work of Ghosh and Karki (2011) run durations have been limited to a few tens of ps. This allows for accurate determi- nation of structural and thermodynamic properties, but in order to obtain good statistics - and hence geophysically relevant precision - for the fluctu- ation formula that define transport properties long run durations (hundreds of ps) and large simulation cells (more than 1000 atoms) are required. Con- sequently, significant uncertainties are reported in self-diffusivity (de Koker $_{54}$ et al., 2008; Sun, 2008; de Koker, 2010a) and viscosity (Karki and Stixrude, 2010; Karki et al., 2011) for DFT-based MD simulations.

 Empirical potentials (Gale et al., 1992; Matsui, 1994; Guillot and Sator, 2007a,b; Lacks et al., 2007; Martin et al., 2009; Nevins et al., 2009; Zhang $58 \text{ et } al., 2010$ are often used to efficiently explore physical properties of melts; large system sizes and long run durations, and hence transport properties, are readily accessible. However, such potentials suffer from the fact that they are typically fit to a set of experimental data and their transferability to different compositions or different thermodynamic conditions is not guaranteed.

 As pointed out in the previous paragraphs these simulation approaches have limitations for a comprehensive study of transport properties at high ϵ ₆₅ P and T, and here we attempt to bridge the gap between them. We apply ⁶⁶ the Aspherical Ion Model (AIM) (Aguado *et al.*, 2003; Madden *et al.*, 2006) that explicitly considers ionic polarization and shape deformation, and that is derived from electronic structure calculations. With the AIM method we have successfully studied crystalline magnesiosilicate materials over a wide π ⁰ range of P and T (Jahn and Madden, 2007; Jahn, 2008a; Jahn and Martonak, 2008, 2009; Jahn, 2010) and Mg₂SiO₄ liquid (Adjaoud *et al.*, 2008). Overall, the AIM results for Mg_2SiO_4 melts show good agreement with the *ab-initio* τ_3 thermodynamic results (de Koker *et al.*, 2008) and experimental zero pressure γ ⁴ viscosity (Urbain *et al.*, 1982).

 Here we expand our previous work on thermodynamic and transport prop-⁷⁶ erties of Mg₂SiO₄ melt (Adjaoud *et al.*, 2008) and compute the P and T dependence of self-diffusivity and viscosity between 0-32 GPa and 2600-3000 K on a dense P and T grid, thightly sampling the proposed conditions for the magma ocean (e.g. Righter, 2003; Solomatov, 2007). Such a dense mesh allows us to understand and fit in detail the functional dependence of viscos- ity and self-diffusivity, and use the results to explore the dynamic regime of the magma ocean in the young Earth.

83 2. Method

⁸⁴ The AIM model takes into account the Coulomb interaction between charged particles, short-ranged repulsion due to the overlap of the charge densities, dispersion, ionic polarization effects and ion shape deformations, σ and is described in detail elsewhere (Aguado *et al.*, 2003; Madden *et al.*, 2006). The set of AIM potentials used here was parameterized for the Ca Mg-Al-Si-O system by reference to electronic structure calculations. We use the same set of potentials that was constructed for crystalline magnesiosili- cate (Jahn and Madden, 2007) and that we applied in our previous work on ⁹² thermodymanic properties of Mg_2SiO_4 melt (Adjaoud *et al.*, 2008).

 Molecular dynamics simulations were performed using a cubic simulation box with 2016 ions (288 formula units), similar to the simulation cell by ϵ_{95} Lacks *et al.* (2007), with a time step of 1 fs for the numerical integration of the equations of motion. Simulations are performed at constant P and σ T until equilibrium is achieved, then the volume (V) is held constant. T ⁹⁸ is controlled by a Nosé-Hoover thermostat (Nosé and Klein, 1983). The 99 equilibration is performed with an isotropic barostat (Martyna *et al.*, 1994) coupled to the thermostat for 50 ps before the production run of 150 ps length is started. We explore pressures from 0 to 32 GPa, with a step of 4 GPa, and temperatures of 2600, 2800, 3000 and 3200 K. The current work extends our previous study (Adjaoud *et al.*, 2008), where we had computed the thermodynamic properties of forsterite melt in the same temperature 105 range up to a pressure of 24 GPa, and D and η along an isotherm of 2800 K. Longer run durations allow for better statistics in computing the transport properties, including the 2800 K points. Thermodynamic parameters were found to be consistent with the previously published results, and we rely on the formulation of thermodynamic properties presented there.

 Due to large system size and long trajectories we can reliably compute 111 the self-diffusion coefficients D_{α} of the individual atomic species ($\alpha = 0$, Mg, Si) from the molecular dynamics runs via the Einstein relation (Allen and ¹¹³ Tildesley, 1987):

$$
D_{\alpha} = \lim_{t \to t_{max}} \frac{1}{N_{\alpha}} \sum_{i=1}^{N_{\alpha}} \frac{\langle (\boldsymbol{r}_i(t+t_0) - \boldsymbol{r}_i(t_0))^2 \rangle}{6t}, \tag{1}
$$

¹¹⁴ where r_i is the position of i^{th} ion of species α at time t, and ensemble averages ¹¹⁵ (denoted by angular brackets) of the mean square displacements are taken 116 for a specific species with a total number of ions N_{α} . Origin time t_0 is varied ¹¹⁷ to obtain better sampling.

118 Shear viscosity η is computed by the Green-Kubo relation (Allen and ¹¹⁹ Tildesley, 1987), integrating the autocorrelation function for the stress tensor 120 (σ_{ij}) over time:

$$
\eta = \frac{V}{k_B \cdot T} \int_0^{t_{max}} dt \langle \sigma_{ij}(t+t_0) \cdot \sigma_{ij}(t_0) \rangle.
$$
 (2)

 121 k_B is the Boltzmann constant. Five independent shear components of the 122 stress tensor $(\sigma_{12}, \sigma_{13}, \sigma_{23}, \sigma_{11} - \sigma_{22}, 2\sigma_{33} - \sigma_{11} - \sigma_{22})$ are averaged to obtain 123 η (Allen and Tildesley, 1987).

¹²⁴ In contrast to simulations with smaller cells our computations do not 125 suffer from finite size effects and both D and η are well converged. We have ¹²⁶ looked at finite cell size effects in details and find well converged results for $_{127}$ ~ 1000 atoms. Similarly, both self-diffusivity and viscosity (eqs. 1 and 2) 128 are well converged after \sim 100 ps. These constraints are beyond the current ¹²⁹ reach of ab-initio MD simulations.

¹³⁰ 3. Results

 131 The self-diffusion coefficients in our simulations increase slightly with T 132 and decrease uniformly with P (Fig. 1). At 0 GPa, the self-diffusion coeffi-¹³³ cients for O and Si are similar $(D_{\text{O}} \approx D_{\text{Si}})$ and smaller than for Mg. At 32 ¹³⁴ GPa, the self-diffusion coefficients for O and Mg are similar $(D_{\rm O} \approx D_{\rm Mg})$ ¹³⁵ and greater than for Si. Diffusivity results for all three species are well rep-¹³⁶ resented by a closed Arrhenius relation

$$
D = D_0 \cdot exp\left[-\frac{E_a^D + P \cdot V_a^D}{R \cdot T}\right],\tag{3}
$$

137 where E_a and V_a are the activation energy and volume, respectively. R is 138 the gas constant and D_0 the pre-exponential factor (Table 1 and Fig. 1). 139 Due to the limited $P-T$ field of the current MD simulations the Arrhenius ¹⁴⁰ relations fits the simulation results well, while ab-initio simulations with a $_{141}$ larger P-T range have to be fit by a modified Arrhenius relation (Ghosh and ¹⁴² Karki, 2011).

¹⁴³ The computed pressure dependence of D is similar to results by de Koker ¹⁴⁴ et al. (2008) and Ghosh and Karki (2011), although our D values are lower ¹⁴⁵ by ∼ 0.3 log-units for O and Mg, and ∼ 0.1 log-units for Si (Fig. 1). Classical $_{146}$ MD simulations by Lacks *et al.* (2007) are in good agreement with the *ab*- 147 *initio* simulations, while results by Martin *et al.* (2009) show considerably ¹⁴⁸ higher diffusivity.

¹⁴⁹ We find a small activation energy for Si in the Arrhenius fit (128 kJ/mol) Table 1), consistent with the trend of activation energies to decrease with the degree of polymerization (Lesher, 2010). In addition, the activation en- ergies for Si and O are similar (Table 1), in agreement with experimental measurements in depolymerized melts (Lesher, 2010).

¹⁵⁴ Inversely proportional to self-diffusivity, viscosity η decreases with T and 155 increases with P (Fig. 2). As for D the computed viscosities can readily be 156 fit with an Arrhenius fit, with η_0 as a prefactor (Table 1 and Fig. 2):

$$
\eta = \eta_0 \cdot exp\left[\frac{E_a^{\eta} + P \cdot V_a^{\eta}}{R \cdot T}\right].
$$
\n(4)

 At zero pressure viscosity computed here is slightly lower than the extrap- olation of the experimental measurements of Urbain et al. (1982) to 2800 K based on a Vogel-Fulcher-Tammann fit (Fig. 2). Simulations at lower tem- peratures can not be compared to experimental measurements directly: As the melting temperature is approached locally heterogeneous structure leads $_{162}$ to altered dynamics of the melt with non-Arrhenian behavior (Angell *et al.*, 2000) that can not readily be captured by MD simulations due to size and time restrictions. A similar deviation between ab-initio MD results and mea-¹⁶⁵ surements has recently been described and discussed by Karki *et al.* (2011) 166 for $CaAl₂Si₂O₈$ anorthite liquid.

 Viscosities computed here are slightly larger than results from the ab- initio computations (∼ 0.2 log-units) (Ghosh and Karki, 2011) and those from 169 the classical MD, which fall below our results by \sim 0.3 log-units (Lacks *et al.*, 2007) and \sim 0.5 log-units (Martin *et al.*, 2009), respectively. This discrepancy is consistent with their larger values of diffusion constants. Viscosities from these studies follow a similar pressure trend as ours.

 In comparison to viscosity estimates on MgSiO₃ we find our results to be within error bounds of the *ab-initio* simulations by Karki and Stixrude (2010) for much of the pressure range covered (Fig. 2), confirming the similarity ¹⁷⁶ between thermodynamic and transport properties of Mg_2SiO_4 and $MgSiO_3$ melts. For MgSiO₃ the results from classical MD by Lacks *et al.* (2007) 178 and Nevins et al. (2009) yield values on η that are similar to the ab-initio simulations.

180 As for D the limited P -T range of simulations allows us to represent η ¹⁸¹ with a classical Arrhenius fit (eq. 4), while the *ab-initio* simulations over a 182 wide P-T range require a modified Arrhenius equation for Mg_2SiO_4 (Ghosh ¹⁸³ and Karki, 2011) or a modified Vogel-Fulcher-Tammann equation for $MgSiO₃$ (Karki and Stixrude, 2010).

4. Discussion

186 Measurements on O self-diffusivity for $\text{CaMgSi}_2\text{O}_6$ diopside (NBO/T=2) $_{187}$ show an initial decrease of D with P, with a minimum in the range of 9-10 GPa and a subsequent increase up to the P limit of the experiment (Reid *et* al., 2001, 2003), contrary to the behavior of polymerized melts for which an 190 initial increase in D with P is followed by a decrease, e.g. for $\text{NaAlSi}_3\text{O}_8$ al-¹⁹¹ bite (NBO/T=0) and Na₃AlSi₇O₁₇ sodium aluminosilicates (NBO/T=0.25) (Poe and Rubie, 2000). Ab-initio molecular dynamics simulations on diopside (Sun, 2008; Sun *et al.*, 2011) have attributed the local minimum in oxygen self-diffusivity to the presence of five-fold coordinated Mg and the maximum by the dominance of five-fold coordinated Si. Both of these environments can be understood as transitional states in which bonds break and form readily (Lesher, 2010). A similar behavior has been predicted for the viscosity of 198 MgSiO₃ enstatite liquid (NBO/T=2), with a minimum in η near 5 GPa at 3000 K (Karki and Stixrude, 2010).

 Despite five-fold coordinated Si playing a major role in the structure of liquid Mg_2SiO_4 based on *ab-initio* molecular dynamics simulations (de Koker et al., 2008), no maximum in D was predicted in their study, in Ghosh and Karki (2011), here, or in MD simulations using other classical potentials ²⁰⁴ (Lacks et al., 2007; Martin et al., 2009).

 205 Transport properties D and η of silicate melts have often been related via ²⁰⁶ the Eyring equation (Eyring, 1936):

$$
D = \frac{k_B \cdot T}{\lambda \cdot \eta},\tag{5}
$$

207 where k_B is the Boltzmann constant and λ is a parameter with the dimension ²⁰⁸ of length. Using the viscosity and self-diffusion coefficients of O, Si and Mg 209 at 0 GPa, we compute λ to be equal 25 Å, 30 Å and 9 Å, respectively (Fig. 210 3). With pressure, λ remains almost constant for Mg (increasing to 11 Å 211 at 32 GPa) and decreases for O and Si, reaching values of 11 \AA and 19 \AA ²¹² at 32 GPa, respectively. This is broadly consistent with the recent ab-inito 213 simulations by Ghosh and Karki (2011) that also show a decrease in λ for Si ²¹⁴ and O, and an almost constant value for Mg. However, the absolute values of $_{215}$ λ at low pressure for O and Si in our study are somewhat larger than those 216 by Ghosh and Karki (2011), and λ for O decreases faster in their study (Fig. $217 \quad 3).$

 $_{218}$ The nature and value of the proportionality factor λ has been the subject ²¹⁹ of much debate in the experimental and computational literature. Tradi- 220 tionally, λ has been interpreted as the jump distance of the diffusing species that acts as the viscous flow unit (usually assumed to be O^{2-}). From ex-222 periments it was found that $\lambda = 2R_O$, with $R_O = 1.4$ Å the ionic radius of ²²³ oxygen (Shannon and Prewitt, 1969), yields good correlation between oxy- $_{224}$ gen self-diffusivity and η in polymerized melts (Shimizu and Kushiro, 1984; 225 Poe et al., 1997), while more depolymerized melts require a larger λ . For 226 diopside (NBO/T=2) Reid *et al.* (2003) reported λ =4.5 Å and Dunn (1982) 227 estimated an even larger value of ~ 18 Å for 40% diopside - 60% anorthite 228 melt (NBO/T=0.98). For Mg_2SiO_4 melt (NBO/T=4), experimental data are ²²⁹ not available, but the MD simulations suggest a similar or even larger value 230 of λ : 17 Å from Ghosh and Karki (2011), 18 Å from Martin *et al.* (2009), $_{231}$ 22 Å from (Lacks *et al.*, 2007) and 25 Å from our study. Clearly, such large $_{232}$ values of λ do not correspond to any realistic jump distance in the melt.

²³³ In the original work by Eyring (1936), the proportionality constant of ²³⁴ equation 5 is not a single jump distance, λ, but rather a combination $(λ₂λ₃/λ₁)$ 235 of three distances λ_1 , λ_2 and λ_3 , which are the distance of two neighboring ²³⁶ layers of molecules sliding past each other, the intermolecular distance in $_{237}$ the direction of motion, and an intermolecular distance perpendicular to λ_1 238 and λ_2 , respectively. The effective volume of the diffusing species can then 239 be assumed to correspond to $\lambda_1 \lambda_2 \lambda_3 = V/N$, where V is the volume of the $_{240}$ simulation cell and N is the number of those particles that determine viscous ²⁴¹ flow.

²⁴² Here we consider O^{2-} or Si O_4^{4-} as diffusing species. Using the values of λ ²⁴³ from Fig. 3, the calculated values for λ_1 and $(\lambda_2\lambda_3)^{1/2}$ are given in Table 2. ²⁴⁴ At 0 GPa, the value of λ_1 (0.94 Å) determined for the self-diffusion of O^{2−} species is considerably smaller than the ionic radius of O^{2-} (1.4 Å). The value ²⁴⁶ of λ_1 (1.72 Å) determined for SiO^{4–} seems more realistic, as it is similar to ²⁴⁷ the average Si-O bond length (1.62 Å) . This is still somewhat smaller than ²⁴⁸ the radius of an SiO^{4−} unit, which is approximated by subtracting the radius ²⁴⁹ of the Mg²⁺ ion from the first neighbor Si-Mg distance (2.16 Å). Also, the ²⁵⁰ corresponding value $(\lambda_2 \lambda_3)^{1/2}$ of 7.35 Å appears to be a rather large jump ²⁵¹ distance in the melt, although it is much smaller than $\lambda = 25 \text{ Å}$ discussed ²⁵² above.

²⁵³ An alternative to the Eyring equation, which was derived for diffusion of ²⁵⁴ particles of the same size, is the Stokes-Einstein relation

$$
D = \frac{k_B \cdot T}{\xi \cdot \pi \cdot R_d \cdot \eta},\tag{6}
$$

²⁵⁵ which describes the motion of large particles in a solvent. In this case, R_d is ²⁵⁶ the hydrodynamic radius of the diffusing species and ξ is a constant ranging between 4 and 6 depending on the boundary conditions. Assuming SiO_4^{4-} 257 ²⁵⁸ as spheres with a radius of 2.16 Å moving in a solvent of Mg^{2+} cations and ²⁵⁹ applying free slip boundary conditions ($\xi = 4$), the Stokes-Einstein relation ²⁶⁰ yields results that correspond to the Si self-diffusion coefficient within error ²⁶¹ bars (see Fig. 3).

 T_{262} The latter is representative for the diffusion of $SiO₄⁴$ units. These results ²⁶³ suggest that at low pressure the diffusing species determining the viscous be-²⁶⁴ havior of the melt are SiO_4^{4-} tetrahedra and that the Stokes-Einstein relation $_{265}$ is more appropriate than the Eyring equation for Mg_2SiO_4 melt.

266 At high pressure, SiO_4^{4-} tetrahedra become dynamically less stable and $_{267}$ Si coordinations higher than four are predicted for Mg_2SiO_4 (Adjaoud *et al.*, ²⁶⁸ 2008; de Koker et al., 2008). Frequent formation and breaking of oxygen-²⁶⁹ cation bonds appear to change the nature of the diffusing species that control ²⁷⁰ viscosity. At 32 GPa and assuming O^{2-} as the diffusing species, λ_1 of the 271 Eyring model is similar to the ionic radius of O^{2-} and $(\lambda_2\lambda_3)^{1/2}$ yields a $_{272}$ realistic jump distance of ~ 2.5 R_O (see Table 2). Reasonable distances are also obtained assuming diffusing SiO_4^{4-} units (Table 2), but $(\lambda_2\lambda_3)^{1/2}$ 273 $_{274}$ of 5.64 Å is still relatively large as a jump distance. Such a transition in $_{275}$ diffusion characteristics is also consistent with the results from the *ab-initio* ²⁷⁶ simulations (Ghosh and Karki, 2011), although there the transition would be predcited at lower pressures, consistent with the decrease in λ for oxygen (Fig. 3)

 Interestingly, the Stokes-Einstein relation provides correct diffusion co-²⁸⁰ efficients over the whole pressure range if Mg^{2+} with a radius of 0.86 Å is considered as the diffusing species (Fig. 3). Further systematic studies on different melts over a wide temperature range are needed to assess the rele-vance of this observation, but this is beyond the scope of this paper.

5. Implication for Magma Ocean Structure

 Energy released by impacts during accretion of the Earth (Chambers $_{286}$ and Wetherill, 1998) and radiogenic heating of short lived isotopes like 26 Al (Walter and Tronnes, 2004) in its early history has almost invariably resulted in melting of large parts of the Earth, leading to a magma ocean of uniform depth (Tonks and Melosh, 1993). The depth of the magma ocean is subject of current debate, but if differentiation of the core is assumed to have happened essentially in one stage, equilibration of elements between the dense iron melt ponding at the base of the silicate liquid can be used as a geochemical signature of equilibration pressure at the magma ocean solidus and hence magma ocean depth (Wood et al., 2006; Corgne et al., 2009). Using high pressure partition coefficients for siderophile elements, its depth has been 296 established in the range of 25-45 GPa (Wood *et al.*, 2006; Corgne *et al.*, 2009), although other elements suggest that a uniform equilibration pressure 298 between metal and silicate melt is unlikely (Mann *et al.*, 2009; Rubie *et al.*, 2011), and scenarios have been considered with the whole mantle molten (e.g. 300 Lee *et al.*, 2010).

 With a magma ocean depth of ∼ 25-40 GPa, and thermodynamic and transport properties of Mg_2SiO_4 and $MgSiO_3$ liquids being very similar (Lacks et al., 2007; Adjaoud et al., 2008; de Koker and Stixrude, 2009; Karki et al., 2009; Stixrude *et al.*, 2009; Karki and Stixrude, 2010; Ghosh and Karki, 2011), it is possible to explore the structure of the magma ocean by consid-306 ering the thermodynamic and viscosity results of Mg_2SiO_4 melt computed ³⁰⁷ here.

 $\frac{308}{100}$ In a rapidly convecting magma ocean the Grüneisen parameter γ governs 309 the thermal structure of the magma ocean $(\partial T/\partial P)_S$ through

$$
\left(\frac{\partial T}{\partial P}\right)_S = \frac{\gamma \cdot T}{K_S},\tag{7}
$$

310 with K_S the adiabatic bulk modulus. The isothermal bulk modulus $K_T =$ 311 $\rho \cdot (\partial P/\partial \rho)$ must be converted to $K_S = K_T \cdot (1 + \alpha \cdot \gamma \cdot T)$, where α is the 312 thermal expansion coefficient and ρ the density of the liquid. Both α and ρ 313 as a function of P and T are computed self-consistently from the previously 314 published thermodynamic results for Mg_2SiO_4 (Adjaoud *et al.*, 2008).

³¹⁵ We have calculated adiabats with potential temperatures of $T_0 = 2163$ 316 K, the melting point of forsterite (Bowen and Anderson, 1914), and $T_0 =$ ³¹⁷ 2500 K as an envelope for the thermal profile in the magma ocean (Fig. 318 4). The colder adiabat would intersect the mantle liquidus at $P \sim 25 \text{ GPa}$ 319 and the solidus at $P \sim 30$ GPa, consistent with adiabats by Stixrude *et al.* ³²⁰ (2009) and de Koker and Stixrude (2009) (Fig. 4). This would not lead to a 321 magma ocean depth in agreement with the geochemical evidence (Wood et 322 al., 2006; Corgne et al., 2009). The hotter adiabat $(T_0 = 2500 \text{ K})$ remains 323 superliquidus to pressures of \sim 35 GPa and the solidus would be reached 324 at \sim 45 GPa, leading to a deep magma ocean. With $T = 3200$ K at 35 325 GPa this adiabat is lower by ∼150-300 K compared to recent assessments ³²⁶ of MD simulations (Stixrude et al., 2009; de Koker and Stixrude, 2009). 327 The extrapolated intersection with the solidus at \sim 45 GPa and 3400 K, ³²⁸ however, is in agreement with the temperature (3000-3500 K) established γ ³²⁹ from equilibration of liquid metal and silicate at comparable P (Corgne *et al.*, $330\,2009$). The adiabatic gradient computed here (Fig. 4) is considerably lower ³³¹ than the komatiite adiabat based on shock-wave experiments used previously 332 for the Hadean magma ocean temperature profile (Miller *et al.*, 1991), due 333 to a smaller γ_0 .

 334 Using the adiabat with $T_0 = 2500$ K we can establish a viscosity profile of the magma ocean using the viscosity fit (Table 1) and find $\eta = 2 \cdot 10^{-2}$ 335 ³³⁶ Pa s at the surface, and viscosity to vary only weakly with pressure (Fig. $\frac{337}{4}$. Viscosity along the adiabat changes by less than 0.5 log-units up to 35 ³³⁸ GPa. Viscosity along the colder adiabat is higher by ∼0.1 log-unit at the ³³⁹ surface and by ∼0.3 log-units at 35 GPa. The viscosity profile obtained here $_{340}$ is in good agreement with those recently computed for $MgSiO₃$ (Karki and 341 Stixrude, 2010) and Mg_2SiO_4 (Ghosh and Karki, 2011) (Fig. 4). Based on ³⁴² these studies, viscosity does not exceed 0.1 Pa s even for the whole mantle ³⁴³ molten.

³⁴⁴ A viscosity minimum (2-3 GPa) and maximum (8 GPa) in the magma ³⁴⁵ ocean as implicated previously based on peridotite measurements (Liebske $_{346}$ et al., 2005) combined with an initially colder but steeper adiabat (Miller 347 et al., 1991) is unlikely along the temperature profile of the magma ocean 348 determined here: The minimum in η at 3000 K and 5 GPa for enstatite melt 349 computed by *ab-inito* simulations (Karki and Stixrude, 2010) is not reflected ³⁵⁰ in the viscosity profile (Fig. 4).

³⁵¹ In a magma ocean of 30-45 GPa depth viscosity can be assumed constant 352 for all practical purposes with a value of $\eta = 4 \cdot 10^{-2}$ Pa s. After crys-353 tallization starts in the magma ocean, effective viscosity (η_e) is rescaled by ³⁵⁴ the fraction (Φ) of the crystals formed, following a scaling law developed by ³⁵⁵ Roscoe (1952):

$$
\eta_e = \frac{\eta}{(1 - \Phi/\Phi_m)^{5/2}}.\tag{8}
$$

356 The critical packing fraction of crystals (Φ_m) is determined experimen-³⁵⁷ tally to be ∼0.6 (Lejeune and Richet, 1995). Even up to 25% crystallization ³⁵⁸ viscosity will change by less than a factor of 5.

³⁵⁹ The vigor of convection in the Hadean magma ocean is governed by its ³⁶⁰ Rayleigh number:

$$
Ra = \frac{\alpha \cdot c_P \cdot \rho^2 \cdot g \cdot \Delta T \cdot L^3}{k \cdot \eta}.
$$
\n(9)

³⁶¹ Using planetary physical parameters (gravitational acceleration g and 362 depth of the magma ocean L), thermodynamic properties of Mg_2SiO_4 melt 363 along the adiabat (thermal expansivity α , heat capacity c_P , and mean density β ₃₆₄ ρ) and the viscosity value just established, we compute Ra for two scenarios 365 (Table 3): (1) a magma ocean with a depth of 30 GPa (\sim 750 km) in the 366 accretion stage, i.e. with reduced radius of the planet (r) and consequently g, ³⁶⁷ and (2) a magma ocean with depth of the current mantle. Thermal conduc-³⁶⁸ tivity k of silicate melts at high pressures is unexplored, but ambient pressure 369 measurements on lavas (Buttner *et al.*, 2000), synthetic samples (Kang and 370 Morita, 2006), and molecular dynamics estimates of solid minerals at P and 371 T of the deep mantle (de Koker, 2010b) provide useful bounds (Table 3). 372 With a dense insulating atmosphere (Hashimoto *et al.*, 2007; Abe and Mat-373 sui, 1986) the temperature difference ΔT throughout the magma ocean is ³⁷⁴ that of the adiabat.

 $\text{In the two scenarios } Ra \sim 10^{28} \text{ and } Ra \sim 10^{29}$, respectively (Table 3). 376 This is consistent with values used in the literature (Rubie *et al.*, 2003; Höink 377 et al., 2006; Solomatov, 2007), putting the magma ocean in the dynamic 378 regime of hard turbulence (Solomatov, 2007; Yuen et al., 1993).

³⁷⁹ The total convective heat flow can be computed from scaling laws, using 380 the definition of the Nusselt number Nu :

$$
Nu = \frac{h \cdot L}{k},\tag{10}
$$

³⁸¹ which measures convective over conductive heat transfer. The convective 382 heat transfer coefficient h is defined as:

$$
h = \frac{q}{A \cdot \Delta T}.\tag{11}
$$

³⁸³ A is the surface area over which heat is lost - in the case of a planet the ³⁸⁴ surface of the spherical body - and equations 10 and 11 can be solved for the 385 total heat flux q:

$$
q = \frac{k \cdot A \cdot \Delta T}{L} \cdot Nu. \tag{12}
$$

 S_{386} Scaling laws can be used relating Ra, Nu and the Prandtl number Pr. 387 Pr measures the ratio of momentum to thermal diffusion

$$
Pr = \frac{\eta \cdot c_P}{k}.\tag{13}
$$

³⁸⁸ For high Ra Shraiman and Siggia (1990) have established such a scaling ³⁸⁹ relation, with a correction factor for the aspect ratio of the flow container 390 ($\Gamma = 2\pi \cdot r/L$ for the high aspect ratio of a magma ocean):

$$
Nu \approx 0.27 \cdot Pr^{-1/7} \cdot Ra^{2/7} \cdot \Gamma^{-3/7}.
$$
 (14)

³⁹¹ Substituing this relation into equation 12 the total heat flux can be com-³⁹² puted according to:

$$
q = 1.08 \cdot \pi \cdot k \cdot \Delta T \frac{r^2}{L} \cdot Ra^{2/7} \cdot Pr^{-1/7} \cdot \Gamma^{-3/7}.
$$
 (15)

³⁹³ For the two magma ocean scenarios considered (Table 3) we find a heat μ flow of 10^{18} and 10^{19} W, respectively.

395 The Prandtl number we obtain $(Pr \sim 10 \text{ and } Pr \sim 5$, respectively) for both scenarios (Table 3) are consistent with some magma ocean work (Höink *et al.*, 2006), and at the lower limit of other estimates (Solomatov, 2007). Due to high Ra, rotation - and hence the Coriolis force - does not contribute to convective flow and heat flux (Canuto and Dubovikov, 1998; Solomatov, 2007).

⁴⁰¹ 6. Conclusions

⁴⁰² Simulations on transport properties of Mg₂SiO₄ by molecular dynamics at high pressures (0-32 GPa) and temperatures (2600-3200 K) using an ad- vanced ionic interaction model yield results on self-diffusivity and viscosity that can readily be fit with an Arrhenius equation. Our results suggest that ⁴⁰⁶ diffusion mechanisms controlling the viscous flow in Mg_2SiO_4 melt are differ-ent between ambient and high pressures. For fully depolymerized melts at ambient pressure, the traditional use of the Eyring equation to describe the relation between the two transport properties does not seem to be appropri- ate. Further systematic studies on a range of silicate melt compositions are needed to identify the interplay between diffusing species and viscous flow units.

 μ_{413} Combining a thermodynamic model for Mg_2SiO_4 melt (Adjaoud *et al.*, 2008) with the viscosity fit we are able to constrain an adiabat and a related viscosity profile through the magma ocean: viscosity of the magma ocean ⁴¹⁶ is $\sim 2 \cdot 10^{-2}$ Pa s near the surface and varies by $\lt 0.5$ log-unit along the adiabat up to 35 GPa, in general agreement with ab-initio simulations on the 418 viscosity of MgSiO₃ (Karki and Stixrude, 2010) and Mg₂SiO₄ (Ghosh and Karki, 2011) melts. The thermodynamic data and constraints on viscosity allow us to qualitatively consider the dynamic regime of the magma ocean for two scenarios (magma oceans with a depth of 750 km and 2740 km) by establishing values of dimensionless fluid dynamics parameters for the ⁴²³ Rayleigh $(10^{28} \leq Ra \leq 10^{29})$ and Prandlt number $(5 \leq Pr \leq 10)$. These values for Ra and Pr are consistent with previous etimates for the magma α_{425} ocean (Höink *et al.*, 2006; Solomatov, 2007), and put the magma ocean in $\frac{426}{100}$ the regime of hard turbulence. Through Nusselt number (Nu) scaling laws for very high Ra we are able to estimate the total heat flux of the Earth in ⁴²⁸ the magma ocean stage to be in the range of 10^{18} - 10^{19} W. Further tighting of these constraints will depend on future work in geochemistry and simulations of accretion and differentiation of the Earth in order to determine the depth of the magma ocean and size of the Earth at the magma ocean stage.

7. Acknowledgments

 This work was funded by the State of Bavaria through the Graduate School "Oxides" in the Elitenetzwerk Bayern with a fellowship to OA and the German Research Foundation with grants to GSN (STE1105/5-1) and SJ (JA1469/4-1) . Computations were in part performed at the Leibniz Com- puter Center Munich. We greatly appreciate helpful discussion with N. de Koker, D. Dobson, D. Frost, M. Evonuk, and D.C. Rubie. Comments by Ch. Liebske and an anonymous reviewer significantly improved the manuscript.

References

- Abe, Y., 1997. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27-39.
- Abe, Y., Matsui, T., 1986. Early evolution of the Earth: accretion, atmo-sphere formation, and thermal history. J. Geophys. Res. 91, 291-302.
- 445 Adjaoud, O., Steinle-Neumann, G., Jahn, S., 2008. Mg_2SiO_4 liquid under ⁴⁴⁶ high pressure from molecular dynamics. Chem. Geol. 256, 184-191.
- Aguado, A., Bernasconi, L., Jahn, S., Madden, P.A., 2003. Multipoles and interaction potentials in ionic materials from planewave-DFT calculations. Faraday Discuss. 124, 171-184.
- Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids. Oxford University Press, New York.
- Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.J 2000. Relaxation in glassforming liquids and amorphous solids. J. Appl Phys. 88, 3113-3157.
- $\frac{455}{455}$ Bowen, N.L., Andersen, O., 1914. The binary system MgO-SiO₂. Am. J. Sci. 37, 487-500.
- Buttner, R., Zimanowski, B., Lenk, C., Koopmann, A., Lorenz, V., 2000. De- termination of thermal conductivity of natural silicate melts. Appl. Phys. Lett. 77, 1810-1812.
- Canuto, V.M., Dubovikov, M.S., 1998. Two Scaling Regimes for Rotating 461 Rayleigh-Bénard Convection. Phys. Rev. Lett. 80, 281-284.
- Chambers, J.E., Wetherill, G.W., 1998. Making the Terrestrial Planets: N- Body Integrations of Planetary Embryos in Three Dimensions. Icarus 136, 304-327.
- Corgne, A., Siebert, J., Badro, J., 2009. Oxygen as a light element: A solution to single-stage core formation. Earth Planet. Sci. Lett. 288, 108-114.
- de Koker, N.P., Stixrude, L., Karki, B.B., 2008. Thermodynamics, struc- $\frac{468}{468}$ ture, dynamics, and freezing of Mg_2SiO_4 liquid at high pressure. Geochim. Cosmochim. Acta 72, 1427-1441.
- de Koker, N.P., Stixrude, L., 2009. Self-Consistent Thermodynamic Descrip- tion of Silicate Liquids, with Application to Shock Melting of MgO Peri- $_{472}$ clase and MgSiO₃ Perovskite. Geophys. J. Int. 178, 162-179.
- de Koker, N.P., 2010. Structure, Thermodynamics, and Diffusion in $_{474}$ CaAl₂Si₂O₈ Liquid from First-Principles Molecular Dynamics. Geochim. Cosmochim. Acta 74, 5657-5671.
- de Koker, N.P., 2010. Thermal Conductivity of MgO Periclase at High Pres-⁴⁷⁷ sure: Implications for the D" Region. Earth Planet. Sci. Lett. **292**, 392-398.
- Dunn, T., 1982. Oxygen diffusion in three silicate melts along the join diopside-anorthite. Geochim. Cosmochim. Acta 46, 2293-2299.
- Eyring, H., 1936. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. J. Chem. Phys. 4, 283-291.
- Gale, J.D., Catlow, C.R.A., Mackrodt, W.C., 1992. Periodic ab initio deter-
- mination of interatomic potentials for alumina. Modell. Simul. Mater. Sci. Eng. 1, 73-81.
- Ghosh, D. B., Karki, B. B., 2011. Diffusion and viscosity of Mg_2SiO_4 liquid at high pressure from first-principles simulations. Geochim. Cosmochim. Acta 75, 4591-4600.
- Guillot, B., Sator, N., 2007. A computer simulation study of natural silicate melts. Part I: Low pressure properties. Geochim. Cosmochim. Acta 71, 1249-1265.
- Guillot, B., Sator, N., 2007. A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim. Cosmochim. Acta 71, 4538-4556.
- Hashimoto, G.L., Abe, Y., Sugita, S., 2007. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 112, E05010.
- ⁴⁹⁷ Höink, T., Schmalzl, J., Hansen, U., 2006. Dynamics of metal-silicate separa-tion in a terrestrial magma ocean. Geochem. Geophys. Geosyst. 7, Q09008.
- Hui, H., Zhang, Y., 2007. Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71, 403- 416.
- Ito, E., Kubo, A., Katsura, T., Walter, M.J., 2004. Melting experiments of mantle materials under lower mantle conditions with implications for ₅₀₄ magma ocean differentiation. Phys. Earth Planet. Inter. 143, 397-406.

 Jahn, S., Madden P.A., 2007. Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for ₅₀₇ the CMAS system. Phys. Earth Planet. Inter. 162, 129-139.

- Jahn, S., Martoˇn´ak, R., 2008. Plastic deformation of orthoenstatite and the ortho- to high-pressure clinoenstatite transition: A metadynamics simula-tion study. Phys. Chem. Minerals 35, 17-23.
- $_{511}$ Jahn, S., 2008. High-pressure phase transitions in MgSiO₃ orthoenstatite studied by atomistic computer simulation. Am. Mineral. 93, 528-532.
- $_{513}$ Jahn, S., Martoňák, R., 2009. Phase behavior of protoenstatite at high pres-sure studied by atomistic simulations. Am. Mineral. 94,950-956.
- Jahn, S., 2010. Integral modeling approach to study the phase behavior of $_{516}$ complex solids: application to phase transitions in MgSiO₃ pyroxenes. Acta 517 Cryst. A 66, 535-541.
- Kang, Y., Morita, K., 2006. Thermal conductivity of the CaO-Al₂O₃-SiO₂ system. ISIJ INTERNATIONAL 46, 420-426.
- Karki, B.B., Bhattarai, D., Mookherjee, M., Stixrude, L., 2009. Visualization-based analysis of structural and dynamical properties of sim-ulated hydrous silicate melt. Phys. Chem. Miner. 37, 103-117.
- Karki, B.B., Bohara, B., Stixrude, L., 2011. First-principles study of diffu- δ ₅₂₄ sion and viscosity of anorthite $(CaAl_2Si_2O_8)$ liquid at high pressure. Am. Mineral. 96, 744-751.
- Karki, B.B., Stixrude, L., 2010. Viscosity of MgSiO₃ liquid at mantle condi-₅₂₇ tions: implications for early magma ocean. Science **328**, 740-742.
- Kushiro, I., 1978. Density and viscosity of hydrous calc-alkaline andesite magma at high pressure. Annu. Rep. 1977-78: Geophys. Lab., Carnegie Inst, Washington, 675-677.
- Lacks, D.L., Rear, D.B., Van Orman, J.A., 2007. Molecular dynamics in- vestigation of viscosity, chemical diffusivities and partial molar volumes of liquids along the MgO-SiO₂ join as functions of pressure. Geochim. Cos-mochim. Acta 71, 1312-1323.
- $_{535}$ Lange, R.A., 1994. The effect of H_2O , CO_2 and F on the density and viscosity of silicate melts. Rev. Mineral. 30, 331-369.
- Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na₂O-K₂O-CaO-MgO- $F_5 = F_6 - F_2 - A_2 - A_3 - T_1 - S_1 - S_2$ liquids: new measurements and derived par-tial molar properties. Geochim. Cosmochim. Acta 51, 2931-2946.
- $_{540}$ Lee, C.T.A., Luffi, P., Höink T., Li J., Dasgupta, R., Hernlund, J. 2010. Upside-down differentiation and generation of a 'primordial' lower mantle. Nature 463, 930-933.
- Lejeune, A.M., and Richet, P., 1995. Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. 100, 4215-4229.
- Lesher, C.E., 2010. Self-diffusion in Silicate Melts: Theory, Observations and Applications to Magmatic Systems. Rev. Mineral. Geochem. 72, 269-309.
- Liebske, C., Schmickler, B., Terasaki, H., Poe, B.T., Suzuki, A., Funakoshi, K., Ando, R., Rubie, D.C., 2005. Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth Planet. Sci. Lett. $240, 589-604.$
- Madden, P.A., Heaton, R., Aguado, A., Jahn, S., 2006. From first-principles to material properties. J. Mol. Struct. (Theochem) 771, 9-18.
- Mann, U., Frost, D.J., Rubie, D.C., 2009. Evidence for high-pressure core- mantle differentiation from the metalsilicate partitioning of lithophile and weakly-siderophile elements. Geochim. Cosmochim. Acta 73, 7360-7386.
- Martin, G.B., Spera, F.J., Ghiorso, M.S., Nevins, D., 2009. Structure, ther- $_{558}$ modynamics, and transport properties of molten Mg_2SiO_4 : Molecular dy-559 namics simulations and model EOS. Am. Mineral. **94**, 693-703.
- Martyna, G.J., Tobias, D.J., Klein, M.L., 1994. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177-4189.
- Matsui, M., 1994. A transferable interatomic potential model for crystals and $_{563}$ melts in the system CaO-MgO-Al₂O₃-SiO₂. Miner. Mag. 58A, 571-572.
- Miller, G.H., Stolper, E.M., Ahrens, T.J., 1991. The Equation of State of a Molten Komatiite 2. Application to Komatiite Petrogenesis and the Hadean Mantle. J. Geophys. Res. 96, 11849-11864.
- Mookherjee, M., Stixrude, L., Karki, B.B., 2008. Hydrous silicate melt at high pressure. Nature 452, 983-986.
- Nevins, D., Spera, F.J., Ghiorso, M.S., 2009. Shear viscosity and diffusion in liquid MgSiO₃: Transport properties and implications for terrestrial planet magma oceans. Am. Mineral. 94, 975-980.
- Nosé, S., Klein, M.L., 1983. Constant pressure molecular dynamics for molec-ular systems. Mol. Phys. 50, 1055-1076.
- Ohtani, E., Kumazawa, M., 1981. Melting of forsterite Mg_2SiO_4 up to 15 GPa. Phys. Earth Planet. Inter. 27, 32-38.
- Poe, B.T., McMillan, P.F., Rubie, D.C., Chakraborty, S., Yarger, J., Diefen-
- bacher, J., 1997. Silicon and oxygen self-diffusivities in silicate liquids mea-578 sured to 15 gigapascals and 2800 Kelvin. Science 276, 1245-1248.
- Poe, B.T., Rubie, D.C., 2000. Transport Properties of Silicate Melts at High Pressure, Chapter 6.2 in H. Aoki et al. (eds.), Physics meets Mineralogy, Cambridge University Press, pp.340-353.
- Presnall, D.C., Walter, M.J., 1993. Melting of Forsterite, $Mg_2SiO₄$, from 9.7 to 16.5 GPa. J. Geophys. Res. 98, 19777-19783.
- Reid, J.E., Poe, B.T., Rubie, D.C., Zotov, N., Wiedenbeck, M., 2001. The s_{585} self-diffusion of silicon and oxygen in diopside (CaMgSi₂O₆) liquid up to 15 GPa. Chem. Geol. 174, 77-86.
- Reid, J.E., Suzuki, A., Funakoshi, K., Terasaki, H., Poe, B.T., Rubie, D.C.,
- 588 Ohtani, E., 2003. The viscosity of $\text{CaMgSi}_2\text{O}_6$ liquid at pressures up to 13
- GPa. Phys. Earth Planet. Inter. 139, 45-54.
- Rigden, S.M., Ahrens, T.J., Stolper, E.M., 1989. High-pressure equation of $\frac{1}{591}$ state of molten anorthite and diopside. J. Geophys. Res. **94**, 9508-9522.
- Righter, K., 2003. Metal-silicate partitioning of soderophile elements and core formation in the early Earth. Annu. Rev. Earth Planet. Sci. 31, 135-174.
- Roscoe, R., 1952. The viscosity of suspensions of rigid spheres. British J. Appl. Phys. 3, 267-269.
- Rubie, D.C., Melosh, H.J., Reid, J.E., Liebske, C., Righter, K., 2003. Mecha- nisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239-255.
- Rubie, D.C., Frost, D.J., Mann, U., Asahara, Y., Tsuno, K., Nimmo, F., Kegler, P., Holzheid, A., Palme, H., 2011. Heterogeneous accretion, com- position and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31-42.
- Shannon, R.D., Prewitt, C.T., 1969. Effective ionic radii in oxides and fluo-rides. Acta Cryst. B 25, 925-946.
- Shimizu, N., Kushiro, I., 1984. Diffusivity of oxygen in jadeite and diopside melts at high pressures. Geochim. Cosmochim. Acta 48, 1295-1303.
- Shraiman, B.I., Siggia, E.D., 1990. Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 3650-3653.
- Solomatov, V. S., 2007. Magma oceans and primordial mantle differentiation,
- in Treatise on Geophysics, edited by G. Schubert, Elsevier, 9, 91-120.
- Solomatov, V.S., Stevenson, D.J., 1993. Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res. 98, 5375-5390.
- Solomatov, V.S., Stevenson, D.J., 1993. Kinetics of crystal growth in a ter-restrial magma ocean. J. Geophys. Res. 98, 5407-5418.
- Stixrude, L., Karki, B., 2005. Structure and freezing of $MgSiO₃$ liquid in Earth's lower mantle. Science 310, 297-299.
- Stixrude, L., de Koker, N.P., Sun, N., Mookherjee, M., Karki, B.B., 2009. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 278, 226-232.
- Sun, N., 2008. Magma in Earth's Lower Mantle: First Principle Molecu- lar Dynamics Simulations of Silicate Liquids. Ph.D. Thesis. University of Michigan.
- Sun, N., Stixrude, L., de Koker, N., Karki, B.B., 2011. First principles molec-⁶²⁵ ular dynamics simulations of diopsidenext term $(CaMgSi₂O₆)$ liquid to high pressure. Geochim. Cosmichim. Acta 75, 3792-3802.
- Tangemann, J.A., Phyllips, B.L., Navrotsky, A., Weber, J.K.R., Hixson, 628 A.D., Key, T.A., 2001. Vitreous forsterite (Mg_2SiO_4) : Synthesis, structure, ⁶²⁹ and thermochemistry. Geophys. Res. Lett. **28**, 2517-2520.
- Tonks, W.B., Melosh, H.J., 1993. Magma Ocean Formation Due to Giant ⁶³¹ Impacts. J. Geophys. Res. **98**, 5319-5333.
- Tronnes, R., Frost, D.J., 2002. Peridotite melting and mineral-melt parti- tioning of major and minor elements at 22-24.5 GPa. Earth Planet. Sci. $_{634}$ Lett. 197, 117-131.
- Urbain, G., Bottinga, Y., Richet, P., 1982. Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta 46, 1061-1072.
- Walter, M., Tronnes, R., 2004. Early Earth Differentiation. Frontiers, Earth Planet. Sci. Lett. 225, 253-269.
- Wood, B.J., Walter, M.J., Wade, J., 2006. Accretion of the Earth and segre-gation of its core. Nature 441, 825-833.
- Yuen, D. A., Hansen, U., Zhao, W., Vincent, A.P., Malevsky, A.V., 1993. Hard Turbulent Thermal Convection and Thermal Evolution of the Man-tle. J. Geophys. Res. 98, 5355-5373.
- Zhang, L., Van Orman J.A., Lacks, D.J., 2010. Molecular dynamics inves- μ_{645} tigation of MgO-CaO-SiO₂ liquids: Influence of pressure and composition on density and transport properties. Chem. Geol. 275, 50-57.
- Zhang, J.Z., Herzberg, C., 1994. Melting experiments on anhydrous peri- dotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res.-Solid Earth 99, 17729-17742.

	X_0	E_a (kJ/mol) V_a (cc/mol)	
Diffusivity D_{Ω}	$(381 \pm 26) \cdot 10^{-9}$ m ² s ⁻¹ 125 \pm 2		0.710 ± 0.011
Diffusivity D_{Si}	$(331 \pm 21)\cdot 10^{-9}$ m ² s ⁻¹ 128 \pm 2		0.876 ± 0.009
	Diffusivity D_{Mg} $(635 \pm 26) \cdot 10^{-9}$ m ² s ⁻¹ 116 \pm 1		1.436 ± 0.007
Viscosity η	$(23.6 \pm 3.2) \cdot 10^{-5}$ Pa s 83 ± 4		1.344 ± 0.021

Table 1: Parameters derived from fitting an Arrhenius relation to self-diffusivity (eq. 3) and viscosity (eq. 4). X_0 refers to D_0 and η_0 , respectively.

		0 GPa	
	O^{2-}		SiO_4^{4-}
$\lambda_1\lambda_2\lambda_3$ (Å ³)	23.21		92.84
λ_1 (Å)	0.94		1.72
$(\lambda_2\lambda_3)^{1/2}$ (Å)	4.96		7.35
		32 GPa	
	O^{2-}		SiO_4^{4-}
$\lambda_1\lambda_2\lambda_3$ (Å ³)	15.42		61.71
λ_1 (Å)	1.22		1.93
$(\lambda_2\lambda_3)^{1/2}$ (Å)	$3.56\,$		5.64

Table 2: Calculated jump distances λ_1 and $(\lambda_2\lambda_3)^{1/2}$ for the diffusion of O^{2-} and SiO_4^{4-} at 0 GPa and 32 GPa (3000 K).

Property	deep magma ocean (32 GPa) whole mantle molten	
$g \text{ (m s}^{-2})$	8	10
r (km)	5100	6370
L (km)	750	2740
ΔT (K)	700	2300
α (K ⁻¹)	$5 \cdot 10^{-5}$	$2 \cdot 10^{-5}$
c_P (J kg ⁻¹ K ⁻¹)	250	250
ρ (g cm ⁻³)	2.65	3.0
k (W m ⁻¹ K ⁻¹)	1.0	3.0
η (Pa s)	$4 \cdot 10^{-2}$	$6 \cdot 10^{-2}$
Ra	$\sim 10^{28}$	$\sim 10^{29}$
Pr	~ 10	~ 5
q(W)	$\sim 10^{18}$	$\sim 10^{19}$

Table 3: Magma ocean properties based on thermodyamic parameters and viscosity for ${\rm Mg}_2{\rm SiO}_4$ melt and two scenarios of magma ocean dimensions.

Figure 1: Pressure and temperature dependence of self-diffusivity for O, Si, and Mg in Mg2SiO⁴ melt. Values at different temperatures are shown by symbols and colors. The dashed lines represent the fit to the Arrhenius relation for self-diffusivity (Table 1). Triangles left show self-diffusivity results from ab-initio computations at 3000 K (Ghosh and Karki, 2011) and triangles right are from rigid ion simulations at 3000 K (Lacks *et al.*, 2007).

Figure 2: Pressure and temperature dependence of viscosity for Mg2SiO⁴ melt. Values at different temperatures are shown by symbols and colors. The dashed lines represent fits to Arrhenius relation for viscosity (Table 1). The viscosity results at 3000 K (blue symbols) for rigid ion simulations are from Lacks et al. (2007) (triangles right) and Martin et al. (2009) (triangles down), ab-initio simuations from Ghosh and Karki (2011) (triangles left). The star shows ambient pressure viscosity for Mg_2SiO_4 from experiments, extrapolated to 2800 K (Urbain et al., 1982). For comparison η from ab-initio simulations on MgSiO₃ at 3000 K are included (blue triangles up) (Karki and Stixrude, 2010).

Figure 3: Pressure dependence of diffusion length λ , relating viscosity to self-diffusivity. The calculated λ values using the self-diffusivity of the atomic spieces are shown for oxygen (filled circles), silicon (filled squares) and magnesium (filled triangles up). For comparison (open symbols) the self-diffusivity values for O, Si and Mg at 3000 K from the ab-initio simulations are included (Ghosh and Karki, 2011). The open diamond is the result from a rigid ion simulation for O at 0 GPa (Lacks et al., 2007). The lines are the Stokes-Einstein relation with free slip boundary conditions using the ionic radius of Mg^{2+} (0.86 Å, solid line) and the radius of SiO_4^{4-} tetrahedra (2.16 Å, dashed line), respectively.

Figure 4: (a) Adiabatic temperature profiles of a forsterite magma ocean with potential temperatures of $T_0 = 2163$ K (solid red line) and $T_0 = 2500$ K (dashed red line) based on previously published thermodynamic parameters of Mg_2SiO_4 melt (Adjaoud et al., 2008). Alternative magma ocean adiabats from Stixrude et al. (2009) (green) and de Koker and Stixrude (2009) (blue) with the same footing temperatures are shown, as well as the experimentally determined komatiite adiabat (Miller *et al.*, 1991) (purple). The mantle melting interval (grey shaded area) is constrained by experiments to 25 GPa by experiments (Ito et al., 2004; Tronnes and Frost, 2002; Zhang and Herzberg, 1994) and at higher P by simulations of $MgSiO₃$ melting (Stixrude and Karki, 2005). (b) Corresponding viscosity profiles from our simulations (red lines) using the Arrhenius fit (Table 1) for T_0 $= 2163$ K (solid line) and $T_0 = 2500$ K (dashed line). For comparison the viscosity profiles from $ab\text{-}initio$ simulations for Mg_2SiO_4 (golden) (Ghosh and Karki, 2011) and $MgSiO_3$ (black) (Karki and Stixrude, 2010) liquids along our adiabat with $T_0= 2500$ K are shown.