Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Simulation, prediction and analysis of earth rotation parameters with a dynamic Earth system model

Urheber*innen

Seitz,  F.
External Organizations;

/persons/resource/mthomas

Thomas,  Maik
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Seitz, F., Thomas, M. (2012): Simulation, prediction and analysis of earth rotation parameters with a dynamic Earth system model. - In: Schuh, H., Böhm, S., Nilsson, T., Capitaine, N. (Eds.), - Earth rotation, reference systems, and celestial mechanics: synergies of geodesy and astronomy, Journées 2011 'Systèmes de référence spatio-temporels' (Vienna 2011) (Vienna 2011).


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_246091
Zusammenfassung
Dynamic processes in the Earth system involving mass transports in the subsystems atmosphere and ocean are known to be the prominent sources for changes of Earth rotation on subseasonal to interannual time scales. Since respective geodetic observations of polar motion and variations of length-of-day are integral quantities, numerical model approaches are required in order to assess individual contributions from underlying processes in different subsystems. This paper discusses simulations of polar motion from the dynamic Earth system model DyMEG. Results for two different model set-ups are presented: First, realistic forcing based on reanalysis data is applied. Second, DyMEG is forced by scenario runs over 200 years (1860-2060) based on a fully coupled atmosphere-hydrosphere model. Special attention is drawn to the long-term development of the modelled Chandler oscillation and its excitation mechanisms. It is shown that simulated and observed patterns of amplitude variations of the Chandler oscillation agree very well. Various experiments reveal that wind is its most important driving mechanism.