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Evaluation of common mixing models for calculating bulk 
thermal conductivity of sedimentary rocks: Correction 

charts and new conversion equations 
 

ABSTRACT 

 

Different numerical models can be deployed to calculate the matrix thermal conductivity of a 

rock from the bulk thermal conductivity (BTC), if the effective porosity of the rock is known. 

Vice versa, using these parameters, the BTC can be determined for saturation fluids of 

different thermal conductivity (TC). In this paper, the goodness-of-fit between measured and 

calculated BTC values of sedimentary rocks has been evaluated for two-component (rock 

matrix and pores) models that are used widely in geothermics: arithmetic mean, geometric 

mean, harmonic mean, Hashin and Shtrikman mean, and effective-medium theory mean. The 

examined set of samples consisted of 1147 TC data in the interval 1.0 to 6.5 W/(mK). The 

quality of fit was studied separately for the influence of lithotype (sandstone, mudstone, 

limestone, dolomite), saturation fluid (water and isooctane), and rock anisotropy (parallel and 

perpendicular to bedding). From the studied models, the geometric mean displays the best, 

however not satisfying correspondence between calculated and measured BTC. To improve 

the fit of all models, respective correction equations are calculated. The “corrected” geometric 

mean provides the most satisfying results and constitutes a universally applicable model for 

sedimentary rocks. In addition, the application of the herein presented correction equations 

allows a significant improvement of the accuracy of existing BTC data calculated on the basis 

of the other mean models. Finally, lithotype-specific conversion equations are provided 

permitting a calculation of the water-saturated BTC from data of dry-measured BTC and 

porosity (e.g., well log derived porosity) with no use of any mixing model. For all studied 

lithotypes, these correction and conversion equations usually reproduce the BTC with an 

uncertainty < 10%. 
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1. Introduction 

In geothermal studies, the rock thermal conductivity (TC) constitutes an important parameter. 

It is essential for the determination of the heat flow from the Earth’s interior and is 

indispensable in any thermal modeling. In sedimentary-basin research, large databases of TC 

are required to characterize the major lithotypes making up the different geological formations 

and hence entire sedimentary sections. The amount of data needed to characterize fully a 

sedimentary setting thereby depends on the geological history and associated facies changes 

and may be large.  

The most reliable TC values originate from direct laboratory measurements. If core samples 

are not available, indirect methods are used to calculate TC from petrophysical properties, 

including porosity, a parameter provided through well logging (e.g., Balling et al., 1981; Goss 

and Combs, 1976; Goutorbe et al., 2006; Hartmann et al., 2005). Another indirect approach of 

TC determination uses the abundance and composition of the rock-forming minerals and the 

porosity as a multi-component system (e.g., Brailsford and Major, 1964; Brigaud et al., 1990; 

Demongodin et al., 1991, Vasseur et al., 1995). All these indirect methods have their 

shortcomings and restrictions.  

Various laboratory methods for the measurement of TC are available comprising steady-state 

techniques (e.g., divided bar technique, needle probe) and transient techniques (e.g., line-

source methods, ring-source methods, optical scanning). Comprehensive reviews on these 

techniques are provided by Kappelmeyer and Haenel (1974), Beck (1988), Blackwell and 

Steele (1989), and Somerton (1992). The less time-consuming optical scanning technique 

(OS) is, since introduced in the 1990s by Y. Popov, recently the most frequently used method 

to measure TC for large sample sets. This method was applied successfully to crystalline 

rocks (e.g., He et al., 2008; Popov et. al., 1999) as well as to sedimentary rocks (e.g., Clauser, 

2006; Fuchs and Förster, 2010; Hartmann et al., 2005, 2008; Homoth et al., 2008; Liu et al., 

2011; Majorowicz et al., 2008; Mottaghy et al., 2005; Norden and Förster, 2006; Orilski et al., 

2010; Popov et al., 1995, 2003, 2010, 2011; Schütz et al., 2012). It involved the measurement 

of TC under ambient temperature and pressure, which is in contrast to the other widely used 

method, the divided-bar technique (DB). This method obtains TC applying uniaxial pressure. 

Measurements under pressure have the advantage that micro cracks that may have originated 

from decompression and cooling as result of borehole drilling or rapid uplift, will get closed. 

The presence of micro cracks would cause underestimation of TC compared to an intact 

sample, whereby the rate of underestimation strongly depends on the type of saturation (air or 
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water). Schärli and Rybach (1984) showed that because of micro cracks, the difference 

between dry and water-saturated TC in granitic rocks may be as high as 30%. For saturated 

metamorphic rocks (gneiss and amphibolite), the comparison of TC obtained by the DB and 

OS methods resulted in small discrepancies (AME < 3%), although an axial load of 4 to 6 

MPa was applied in the DB approach (Popov et al., 1999). An analog study for sedimentary 

rocks is missing. However, despite this circumstance we are confident that the approach of 

this paper, which is entirely based on OS results, is scientifically sound. 

To perform the laboratory work economically, i.e., studying large sample numbers in 

affordable time, measurements are usually performed in dry state, with air as the pore-

saturating medium. Additional effort then is needed to convert these TCs to values typical for 

e.g., aquifers with water as the pore-filling fluid or hydrocarbon reservoirs, in which the rock 

contains either water, oil, or gas, or a mixture of those. The calculation of the rock TC for 

different saturation fluids then requires the use of mixing models.  

In general, those multi-component mixture models to describe the TC of a rock can be 

grouped in (1) well-defined physical (often referred as structural or theoretical) models and in 

(2) purely empirical or semi-empirical approaches. A third group of models is based on 

numerical simulations. Physical models may have a wider applicability (depending on the 

degree of simplification to obtain a solution), but their usability is often limited by the 

inclusion of empirically determined parameters, compositional variations, or structural aspects 

(e.g., Schopper, 1991; Popov et al., 2003; Sugawara and Yoshizawa, 1961; Zimmerman, 

1989; Schopper, 1991). Empirical models have the drawback that they are strictly valid for the 

particular rock suite being used for model development. Extensive overviews of TC models 

are provided by Tinga et al. (1973) and Progelhof et al. (1976) (for two-component mixtures) 

as well as by Abdulagatova et al. (2009).  

Rather simple models, easily and comfortably applied, are based on a two-phase system of the 

rock comprising the solid mineral matrix and the pore space. Thus, if porosity and bulk TC 

(BTC) of a sample are measured, a matrix TC (MTC) can be inferred for the sample and in 

turn a BTC for another pore fluid with different TC calculated.  

This paper provides a validity study of simple and usually used mixing models for a two-

phase rock system involving (1) the layered medium model (series and parallel model 

corresponding to the arithmetic and harmonic means and the mean of both), (2) an empirical 

model not relying on any physical theory (the geometric mean), (3) the Hashin and Shtrikman 

mean, the upper and lower bounds of which provide tighter constraints than the arithmetic and 
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harmonic means, and (4) the effective medium mean (based on the effective-medium theory). 

The selection of these models builds on results of Clauser (2009), who discussed the 

performance of these mixing models for a fixed MTC and a variable porosity, however 

without validating the results with measured laboratory TC. 

It was examined, which of the selected mixing models best describes the TC of sedimentary 

rocks. The evaluation considers three different aspects: (1) lithotype, (2) pore content (air, 

water, or other saturating fluids), and (3) anisotropy. The statistical analysis of the deviations 

between laboratory-measured and calculated BTC data comprises 1147 single values obtained 

from 717 samples of sandstone, mudstone, limestone, and dolomite. As a result of this 

statistical analysis, the paper provides correction equations that yield an improved fit for some 

of the examined models. Finally, we present conversion equations that permit calculation of 

the water-saturated BTC from the dry-measured BTC for the case that porosity is known, e.g., 

from petrophysical well logging. This approach has the advantage that a BTC could be 

inferred for a different saturating fluid without application of any mixing model. 

2. Previous comparison studies 

A verification of the different mathematical models, considering a solid and a pore volume, by 

comparison with real data has not yet been comprehensively performed. Most studies 

comparing between measured and calculated BTC values encompassed crystalline rocks. 

Robertson and Peck (1974) compared BTC calculated from eleven theoretical mean models 

with TC values measured on 61 olivine-bearing basalt samples. None of the models showed a 

good agreement over the large range of porosity that the samples possessed (2–97%). The 

study showed on the one hand that a correction factor must be applied to the computed values 

to reduce the calculation error and on the other hand that the geometric-mean model belongs 

to those few approaches yielding the best, although unsatisfying, match. Horai (1991) 

reevaluated the data from Robertson and Peck (1974) and concluded that the mismatch in 

modeled and measured data is caused by errors introduced by the use of data from different 

measurement techniques.  

More recently, Pribnow (1994) examined the four most widely used models (geometric mean, 

arithmetic mean, harmonic mean, and the Hashin and Shtrikman mean) for 85 water-saturated 

amphibolite and gneiss samples using the DB technique (Birch, 1950) and the line-source 

approach (Lewis et al., 1993). The geometric mean model, together with the mean of the 

arithmetic and harmonic mean models, provided the best fit. 
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Analog studies of the evaluated mean models focusing on sedimentary rocks are rare. 

Woodside and Messmer (1961b) used six sandstone samples to validate the geometric mean 

model for consolidated rocks and recognized a good agreement between predicted and 

measured BTC. Hutt and Berg (1968) analyzed several mean models (arithmetic mean, 

harmonic mean, geometric mean, Bruggeman, Maxwell, Rayleigh, Archie) for 28 sandstone 

samples. They compared the calculated BTC (using the TC of minerals for calculating the 

MTC) with values measured with a needle probe. The harmonic mean showed a good fit, 

whereas the arithmetic and geometric mean model overestimated the measured data. 

Buntebarth and Schopper (1998) explored various models for a suite of eleven sedimentary-

rock samples saturated with different fluids (TC measurements with a needle probe). In their 

study, the application of the harmonic and arithmetic mean models resulted in a better fit 

relative to the geometric mean model. Clauser (2006) compared TC data of various 

sedimentary lithotypes with theoretical model curves and graphically identified the closest 

approximation of measured (using the OS technique) and calculated values for the geometric-

mean model, except for limy sandstones. Several authors (e.g., Carson et al., 2005; Revil, 

2000; Zimmermann, 1989) used the database of Woodside and Messmer (1961b) to test their 

own models for consolidated and unconsolidated rock. However, the number of data available 

for comparison was small and not comparable to the data set deployed in this study. 

3. Methods applied 

3.1 Models of two-phase systems  

Calculation of the BTC (λb) of a two-component rock system involves the MTC (λm), the 

effective porosity (�), and the TC of the pore content (λp).  

3.1.1 Geometric mean 

The empirical geometric-mean model (GM), which went back to Lichtenecker (1924) and was 

evaluated first by Woodside and Messmer (1961a, 1961b) for consolidated sandstones and 

unconsolidated sands, represents the most usual approach. The empirical formula provides a 

relatively simple mathematical expression to calculate the BTC of a porous rock.  

GM:     pmb  1           (1) 

3.1.2 Arithmetic and harmonic mean  
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Other frequently applied approaches comprise the arithmetic-mean (AM) and harmonic-mean 

(HM) models, which both are based on a sheet model representing a layered structure of 

phases, where the heat flow passes either parallel (AM) or perpendicular (HM) with respect to 

the plane boundaries. The two models are independent of the pore structure and constitute 

special cases (boundaries) of Wiener’s mixing law (Wiener, 1912), which applies to both 

isotropic and anisotropic mixtures. The models were introduced by Voigt (1928) and Reuss 

(1929) to define the upper and lower TC boundaries.  

AM:    pmb   )1(       (2) 

HM:    
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3.1.3 Hashin and Shtrikman mean 

The model of Hashin and Shtrikman (1962) (also referred as Maxwell-Eucken equations) is 

based on the theory of Maxwell (1892) and was extended by the work of Eucken (1940). It 

also uses upper ( U
HS ; represents fluid-filled, spherical pores) and lower ( L

HS ; represents 

grains suspended in a fluid) boundaries to calculate the TC of a two-phase system. The 

Hashin-and-Shtrikman bounds provide more restrictive narrower upper [Eq. (5)] and lower 

bounds [Eq. (7)] for isotropic mixtures, yet independent of the pore structure (Zimmermann, 

1989). The mean of both bounds is often used as best approximation of rock BTC.  
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Solving Eq. (5) for λm produces a quadratic equation requiring the quadratic formula for the 

solution, which leads to two results but only one produces the real value [Eq. (8)]. 
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3.1.4 Effective-Medium theory mean 

To infer the TC for homogenous (isotropic) rocks, Bruggeman (1935) put forward the 

effective-medium theory (often referred as self-consistent medium approximation), which also 

uses the Lichtenecker (1924) formula. The effective-medium theory assumes different 

spherical inclusions embedded in a conducting host medium where all phases were mutually 

dispersed. This approach was further developed by Hanai (1960) and Sen et al. (1981) to the 

Bruggeman-Hanai-Sen equation for two-component systems. In this differential effective-

medium theory the host phase percolates for the full range of fractions and the inclusions 

(second phase) may or may not conduct. 

The effective-medium theory model is applicable to the determination of the TC of a 

multiphase system. Clauser (2009) transformed this equation to calculate the BTC for a two-

component system [Eq. (10)] consisting of pore fluid and rock matrix:  
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Equation (10) can be transposed to get MTC on its own [Eq. (11)]:  

 
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3.2 Anisotropy of thermal conductivity 

The anisotropy of TC is a property that relates to the structure and texture of a rock, such as 

crystal anisotropy of the individual rock-forming minerals, intrinsic or structural anisotropy 

related to the shape of the grains and their textural arrangement, orientation and geometry of 

cracks, the spatial fracture distribution and other defects (Schön, 1996). For the quantification 

of anisotropy, TC is usually measured parallel ( || ) and perpendicular (  ) to bedding or 

schistosity. The anisotropy ratio (A) then is defined as:  
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



||A            (12)  

3.3 Methods of error calculation 

To evaluate the reliability of the different mean models applied, the measured BTC is 

compared with the respective calculated BTC. For an individual sample, the deviation (E, in 

%) between calculated (λcal) and measured (λmea) TC is expressed as:  




mea

meacal 
100  E           (13) 

For evaluating the different mean-model approaches, the arithmetic mean error (AME) was 

used to compare the calculated and the measured BTC: 


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where n is the number of samples in each lithotype group.  

In the following, the error is noted as the AME complemented by the respective 1 standard 

deviation (SD). The AME can be expressed also as root mean square error (RMSE), which is 

a good measure of model accuracy, having the form: 

n

E
n

i
i

 1

2

  RMSE           (15) 

The fit between predicted and measured data is statistically evaluated by regression analysis 

and the analysis of variances. The critical significance level α (mostly the statistical 

benchmark of 0.05), the observed significance level p, and the F-value constitute the key 

parameters for comparison (see section 5.1). 

4. The database 

In total, 1147 TC measurements performed on 717 samples were evaluated. The database 

comprises four data sets from different sedimentary basins: (a) Mesozoic platform sediments 

of the northern Sinai Microplate in Israel (81 drillcore samples; Schütz et al., 2012), (b) the 

eastern part of the North German Basin [339 drillcore samples of the Mesozoic; Fuchs and 

Förster, 2010, 2013 (unpublished results); 129 drillcore samples of the Permo-Carboniferous; 

Norden and Förster, 2006]; and (c) the South German Scarplands and the Molasse Basin (168 
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drillcore and outcrop samples; Clauser et al., 2007). The studied samples encompass the 

following lithotypes: 137 limestone samples, 63 dolomite samples, 409 sandstone samples, 

and 108 mudstone (claystone + siltstone) samples. The TC data from these lithological subsets 

were scrutinized with respect to statistical distribution, and outliers (> 2 SD) were omitted in 

additional analyses. 

All these TC data have in common that they were obtained with the Thermal Conductivity 

Scanning (TCS) apparatus (Lippmann and Rauen, GbR Schaufling, Germany), which is based 

on the high-resolution OS method (Popov et al., 1999) The sample size correlated with the 

drillcore diameter, which varied between 5 and 10 cm. Sample thickness was variable, but 

exceeded the required minimal length of scanning lines of 4 cm. Measurements were 

performed on a flat sample surface displaying a roughness of < 1 mm. The error of 

determination was less than 3%. 

All samples were measured under ambient pressure and temperature, both dry (oven-dried at 

60 °C) and water-saturated using distilled water. Determination of the anisotropy ratio of 

macroscopically isotropic samples involved TC measurement on the top/bottom of the 

cylindrical core and along the vertical core axis. For optically anisotropic samples, this ratio 

was calculated by measuring TC parallel and perpendicular to bedding (see section 3.2). The 

effective porosity was quantified by the mass change between dry and water-saturated 

samples (Archimedes method).  
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Fig. 1 Effective porosity and measured BTC (both water and isooctane-saturated) of the clastic and carbonate samples from 

this study. 
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Because of clay-swelling effects, mudstones and argillaceous sandstones were saturated with 

isooctane (density: 0.698 x 103 kg m−3; Budavari, 1989) instead of water to determine their 

porosity. TC values of 0.025 W/(mK) for air (Gröber et al., 1955), 0.095 W/(mK) for 

isooctane (Watanabe, 2003), and 0.604 W/(mK) (Lemmon et al., 2005) for distilled water 

were used in the calculations. 

Fig. 1 provides a compilation of measured BTC and effective porosity for the four lithotypes. 

The rocks covered a large range in effective porosity, from almost zero to about 30%. The 

carbonate rocks are usually less porous relative to the clastic rocks. Eighty percent of the 

entire data population of carbonates fall in the porosity range 113%, in contrast to 328% 

encompassed by the clastic rocks. As to the measured BTC, the sample suite spans the 

interval between 1.0 and 6.5 W/(mK). The larger variability in TC observed for sandstone [3.8 

± 0.7 W/(mK)], mudstone [2.5 ± 0.7 W/(mK)], and dolomite [3.3 ± 0.7 W/(mK)] relative to 

limestone [2.6 ± 0.3 W/(mK)] is a reflection of their greater heterogeneity in terms of modal 

mineralogy. 

5. Results 

The matrix thermal conductivity was calculated from measured dry and saturated values for 

arithmetic, harmonic, and geometric means using Eq. (1), (2) and (3) transposed to λm. Eqs. 

(7) and (11) were applied for the Hashin-Shtrikman and the effective medium means, 

respectively. Water-saturated BTC for the various mixing models were subsequently 

calculated from Eqs. (1) – (4) and (10). The BTC results are shown as scatter plots for the six 

models (Fig. 2). Fig. 3 illustrates the influence of different saturation fluids (water and 

isooctane) on BTC.  

5.1 General model fit 

A regression analysis was performed to ascertain the model with the highest coefficient of 

determination (R²). The results show that most of the evaluated mixing models predict the 

measured BTC unsatisfactorily. The highest value of R2 is related to the geometric mean (R² = 

0.62, F ~ 1348). Significantly poorer fits are observed for the arithmetic mean (R² = 0.37, F ~ 

600), followed by the effective medium mean (R² < 0.24, F ~ 321) and Hashin and Shtrikman 

mean (R² = 0.23, F ~ 298). The harmonic mean (R² < 0.01, F = 1.56) as well as the mean of 

arithmetic and harmonic mean (R² = 0.01, F = 9.01) show even lower coefficients of 

determination. If the value obtained for F is equal to or larger than the critical F-value, then 
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the null hypothesis (H0: µ1 = µ2) is rejected, and the result is significant at the chosen level of 

probability (α = 0.05). This critical value is assumed to be Fcrit (1/1017) = 3.85.  
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Fig. 2 Scatter plots of measured vs. calculated water-saturated BTC for clastic (n = 885) and carbonate sediments (n = 262). 
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Fig. 2 shows the comparison between measured and calculated BTC for the different models. 

The arithmetic mean (Fig. 2a) tends to underestimate BTC in particular for clastic sediments 

(AME 33 ± 20%), but yields an acceptable fit for carbonate samples (deviation 11 ± 20%). 

The harmonic mean (Fig. 2b) consistently underestimates BTC and, with respect to the 

insignificant regression relation, is excluded from further discussion. This poor match also 

holds for the mean of arithmetic and harmonic means (Fig. 2c). The geometric mean (Fig. 2d) 

shows a reasonably good fit for both carbonate (AME 6 ± 10%) and clastic (AME 5 ± 17%) 

rocks. It tends to slightly overestimate BTC, but 80% of the samples show deviations  20%. 

The Hashin and Shtrikman mean (Fig. 2e) shows an acceptable fit for carbonate (AME 

19 ± 13%), but a poor fit for clastic rocks (AME 51 ± 18%). Its overall distribution pattern 

largely corresponds to those of the arithmetic and effective medium means (Fig. 2f). Because 

these three models provided virtually the same goodness of fit (ANOVA, Tukey’s HSD, α = 

0.05, n = 1019), the effective medium mean could be eliminated from further analysis. 

5.2 Anisotropy of thermal conductivity 

The vast majority of rock samples possess 

anisotropy ratios between 0.8 and 1.2 

(Fig. 3). Whereas the carbonate rocks and 

most sandstone samples are largely 

isotropic (mean anisotropy ratio = 1.01  

0.05 and 0.97  0.08, respectively), many 

mudstone samples are anisotropic, 

exposing a mean anisotropy ratio of 1.11  

0.19.  

 

 

 

Rock samples showing an anisotropy > 5% (n = 424) are evaluated in terms of a possible 

impact that anisotropy has on the mixing model that should be selected for calculation. A 

paired T-test was made to compare the average deviations of the predicted BTC with the BTC 

measured parallel and perpendicular to bedding. 

Fig. 3 Scatter plot of measured water-saturated BTC 

parallel and perpendicular. See text for explanation.
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Because the arithmetic-mean model is based 

on a sheet model with the heat flowing 

parallel to the components, it seemed 

reasonable to assume that this model will 

better fit the BTC parallel than perpendicular 

to bedding (harmonic mean) as well as those 

models that refer to isotropic media (the 

geometric and the Hashin and Shtrikman 

means). 

However, the expectations are not met. For 

data referring to measurements parallel to 

bedding, the arithmetic mean model provides 

the same poor fit as for data related to 

measurements performed in the opposite 

direction (paired T-test, n = 128, α = 0.01, p 

= 0.425). As to the geometric and Hashin and 

Shtrikman means, the results are in line with 

the theoretical background that the goodness 

of fit is basically the same for isotropic or 

anisotropic rocks.  

5.3 Saturating fluid 

The correlation between measured and 

calculated BTC of samples saturated with 

water or isooctane is displayed in Fig. 4. For 

the range where measured TC values are 

available, the goodness of fit for samples 

saturated with isooctane is basically the same 

as for samples saturated with water. 

Accordingly, both the arithmetic and Hashin 

and Shtrikman means seriously 

underestimate BTC also for samples 

saturated with isooctane.  

Fig. 4 Plots of measured BTC versus calculated BTC 

for water-saturated (n = 757) and isooctane-saturated 

(n = 128). 
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For this saturation fluid, the geometric mean again shows the best fit (AME 6 ± 6%).  

5.4 Impact of lithotype 

Fig. 5 shows the model-based relations between measured and calculated BTC for the 

different lithotype groups. For sandstones (Fig. 5a), only the geometric mean shows an 

acceptable fit (AME 13 ± 11%), whereas the arithmetic and the Hashin and Shtrikman means 

strongly underestimate the BTC (AME 41 ± 14% and 53 ± 16%, resp.). For limestones 

(Fig. 5b), the fit for the geometric and the arithmetic means is reasonably good (AME 6 ± 5% 

and 8 ± 6%) and acceptable for the Hashin and Shtrikman mean (AME 12 ± 9%).  
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Fig. 5 Calculated BTC (water-saturated) based on different mixing models compared to measured BTC for different 

lithotypes. 
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For mudstones (Fig. 5c), the geometric mean is the only approach resulting in a good fit. Both 

the arithmetic (AME 14 ± 9%) and the Hashin and Shtrikman means (AME 20 ± 12%) again 

underestimate the BTC, but less significantly. For dolomite, none of the models gave rise to a 

fit evaluated as good. An acceptable fit was obtained upon utilization of the geometric and 

arithmetic means (AME 12 ± 11% and 16 ± 12%, resp.). 

6. Discussion 

6.1 General model fit, anisotropy, and saturating fluid 

The various mixing models evaluated in this study approximate measured BTC data in 

different, however mostly unsatisfying quality. Only the geometric mean consistently shows a 

good fit, with the bulk of calculated data deviating less than  20% from measured BTC 

(Fig. 5). Considering the entire sample suite, the deviation averages between 11% (geometric 

mean) to 31% (arithmetic mean) and 42% (Hashin and Shtrikman mean). Only examining the 

lithotype, the deviation varies between 5.7% and 13% (geometric mean), 7.6% and 40% 

(arithmetic mean), and 12% and 53% (Hashin and Shtrikman mean). These results are in line 

with observations reported by Pribnow (1994) and Buntebarth and Schopper (1998). The 

latter authors rated the geometric mean model as best solution for situations, in which no 

additional criterion (e.g., an empirical alpha-value describing the pore structure of the rock) is 

considered.  

Calculation of BTC with the harmonic mean [Eq. (3)] results in abnormal values (Fig. 2). 

More than 96% of the calculated BTC values are negative. This misfit, which was already 

recognized, for instance, by Beck and Beck (1965), Robertson and Peck (1974), and Pribnow 

(1994), can be attributed to the equation for calculating the MTC which allows the 

denominator to get zero or negative. Especially high porosities almost inevitably cause a 

negative denominator. Hence, this model is unfeasible and, with it, also the mean of the 

harmonic and arithmetic mean.  

The goodness-of-fit and the effective porosity are antipathetically related also for the other 

models. This observation is linked with the mathematical formalisms of BTC calculation, 

causing greater uncertainties with increasing porosity. 

For rocks with anisotropies > 5%, the arithmetic-mean model did not show the expected 

correlation with the direction of measurement (i.e., the fit between measured and calculated 

TC should be better for data acquired parallel to bedding). The observations made in this 
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study are just in opposition to this expectation and may question the physical concept of this 

model. This criticism is in line with earlier observations (e.g., Zimmermann, 1989) and 

implies that a body (rock) consisting of alternating slabs of matrix and pore space is 

physically unrealistic, at least for clastic sediments. The arithmetic-mean model, however, 

may apply for fractured aquifers in carbonate rocks in the situation of a layered fracture 

pattern. Moreover, because the bulk of our samples is only weakly anisotropic, the results of 

this study strictly apply only to rocks with anisotropies 20%. More strongly anisotropic 

rocks may fit the arithmetic-mean model better. 

The use of isooctane (Fig. 4) has no statistically discernible impact on the quality of fit for 

either model (independent t-test, α = 0.05, p > 0.1). The lower TC of isooctane compared to 

water and, hence, the smaller ratio between the TC of saturating fluid and air (factor ~ 3 for 

isooctane compared to factor ~ 24 for water) does not result in larger deviations between 

measured and predicted BTC, as one might expect. This observation is in contradiction to 

results of Buntebarth and Schopper (1998), who showed that the type of saturating fluid had a 

strong influence on the fitting of the geometric mean. These authors identified an acceptable 

fit for the geometric mean only for sandstone samples that were water-saturated (n = 11). 

More work is needed to explain this discrepancy. 

The re-calculation of isooctane-saturated BTC to water-saturated BTC is afflicted with several 

uncertainties. Therefore, saturation with water should be preferred to isooctane saturation in 

determining BTC. The use of isooctane or other alkanes, such as n-heptane utilized by 

Woodside and Messmer (1961b) and Zimmerman (1989), is an expedient alternative only for 

determining the porosity of argillaceous rocks.  

In the special situation of handling BTC measured with different saturation fluids (air, water, 

n-heptane), we recommend averaging the respective matrix values. This recommendation is 

rooted in the observation of a significant difference in MTC calculated from dry-measured 

BTC (lower by 5.2%) compared to the matrix value calculated from isooctane-saturated BTC 

(paired t-test, n = 127, α = 0.05, p < 0.000). A difference also is observed, but with an 

opposite trend, between MTC calculated from dry-measured BTC (higher by 4.9%) compared 

to the matrix value calculated from water-saturated BTC (paired t-test, n = 1019, α = 0.05, p 

< 0.000).  
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Fig. 6 Variations between calculated and measured BTC values (a, b, c, d) and derived correction values (e, f, g, h) for 

different lithotypes and mixing models, respectively. Regression coefficients and RMS values for A-L are listed in Table 1 
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6.2 Correction charts 

The only mixing model that generally reproduces the measured BTC satisfactorily is the 

geometric mean, but the data scatter is still large. The other mean models examined in this 

paper produce TC data often significantly deviating from measured values. The question 

arises whether it is possible to calculate correction charts that permit reduction of the 

deviation and the scatter of the different mean models. In order to verify this idea, the 

relations between absolute deviation [in W/(mK)] and porosity for the different lithotypes and 

mean models (Fig. 6a-d) are investigated. For this purpose, the data set is subdivided into 

porosity (%) classes: 0−3; 3−6; 6−10; 10−15; 15−20; 20−25; 25−30; 30−35 (Fig. 6e-h). The 

mean deviation within each porosity class is the input parameter for the regression analyses. 

The statistical treatment resulted in linear or logarithmic trend lines and respective equations, 

which in turn provided the correction values for every mean model and lithotype. For 

statistical reason, the initial data set was randomized into two groups. The first group (85% of 

data) is the regression set, from which the equations were derived; the second group (15% of 

data) is the testing set, from which the fitting parameters were calculated. The inversion of the 

curves shown in Fig. 6e-h gives the 

correction value [in W/(mK)] for 

sandstone, mudstone, limestone, and 

dolomite, calculated by the arithmetic 

or geometric means. Table 1 is a 

compilation of the computed 

regression parameters for the various 

lithotypes and mean models. The 

correlation coefficients for the 

different groups scatter between 0.76 

and 0.99, indicating a remarkably 

good degree of tracking. The only 

lithotype, for which the linear 

regression did not result in a satisfying 

improvement of the fit, is dolomite, 

with a quiet poor correlation 

coefficient of 0.43 for the geometric 

mean. The possible reason for this 

Table 1. Coefficients of determination for correction charts shown 

in Fig. 6 (right panel). 

  Mean 
Model1 

Regression Parameter2 

  Type bo b1 R² 

  Sandstone 

A GM linear 0.504 -3.039 0.927

B AM ln 2.091 0.340 0.887

C H&S ln 2.779 0.461 0.922

  Mudstone 

D GM linear 0.208 -3.261 0.757

E AM ln 1.003 0.179 0.871

F H&S ln 1.502 0.282 0.941

  Limestone 

G GM linear 0.059 -3.833 0.967

H AM ln 0.820 0.178 0.986

I H&S ln 1.378 0.301 0.976

  Dolomite 

J GM linear -0.104 -1.648 0.436

K AM ln 1.329 0.293 0.781

L H&S ln 1.869 0.388 0.909
1 GM: Geometric mean; AM: Arithmetic mean; H&S: Hashin & 
Shtrikman. 
2 b0 and b1 are constants for regression model. Linear (linear) 
equation is y = b1x + b0, logarithm equation (ln) is y = b1 ln(x) + 
b0, where y ist the calculated correction value and x is the given 
porosity value. 
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unsatisfying result is the fact that in our suite of dolomite rocks, the number of samples and 

the TC deviations in each porosity class are highly variable and, consequently, the calculated 

averages of deviation display larger uncertainties.  
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Fig. 7 Left: Comparison of corrected (b) (Fig. 6 and Table 1) and uncorrected (a) calculations. Black bar: geometric mean; 

dark grey bar: arithmetic mean; light grey bar: Hashin and Shtrikman mean. Right: Distribution of percent errors (c) for 

corrected (solid line) and uncorrected (dashed line) values for sandstones calculated with the arithmetic mean. 
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The impact of implementing these correction coefficients in the calculation of BTC is shown 

in Fig. 7a and b, separately for every model and lithotype. The application of the correction 

results in noticeable improvements of the fits for all mean models, on average reducing the 

deviations for the Hashin and Shtrikman equation by 70%, for the arithmetic mean by 59%, 

and for the geometric mean by another 15%. This improvement is exemplarily shown for the 

arithmetic mean used for BTC calculation of sandstone samples (Fig. 7c), exposing a smaller 

mean deviation and variance. In order to improve the applicability of the correction chart, 

mean deviations were converted to user-friendly correction values (Fig. 8). Those porosity-

dependent correction values either have to be added to or subtracted from (depending on the 

algebraic sign) the original mixing-model results. 

6.3 Conversion equations 

The unsatisfying fitting behavior of most 

mean models and the necessity of applying 

correction charts encouraged us to examine 

our data set in whether is it possible to set 

up an equation that permits estimation of 

the water-saturated BTC directly from dry-

measured BTC data and known porosity 

values.  

For this goal, the data set was tested using a 

multiple regression analysis. The fitting 

result of this type of analysis is shown in 

Fig. 9. For statistical reasons, the initial 

data set was randomized into two groups of 

85% (regression set) and 15% (testing set). 

The plot of measured versus predicted BTC 

shows a good fit for both the regression and the testing sets, with a deviation of 10 ± 8% 

(AME) for the testing set. 

The coefficients of determination resulting from the multiple regression analysis are listed in 

Table 2 for the entire sample set and, additionally, for the various lithotypes. All listed 

equations display an AME equal or less than 10%. If the lithotype is sufficiently well known, 

we recommend application of the equations elaborated for mudstone, limestone, and dolomite  
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Fig. 9 Scatter plot of predicted (conversion equation based on

multiple regression analysis) vs. measured water-saturated

BTC. 
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Table 2. Results of multiple regression analyses of dry and saturated-measured BTC and effective porosity, respectively. 

Samples 
Regression Parameter  

R² 
ANOVA 

AME 
bo b1 b2  F n p 

All -0.406 7.417 1.216  0.726 1348.0 740/130 <0.001 10.2 ± 7.8 % 

Sandstone 1.579 2.244 0.817  0.667 581.4 494/87 <0.001 8.7 ± 7.2 % 

Mudstone -0.696 8.446 1.290  0.895 243.9 51/8 <0.001 8.3 ± 7.7 % 

Limestone 0.272 3.961 0.914  0.758 243.2 134/23 <0.001 4.8 ± 4.3 % 

Dolomite 0.631 2.527 0.890  0.779 119.6 60/10 <0.001 6.5 ± 9.0 % 
b0, b1 and b2 are constants for the multiple regression model. Equation is y = b1x + b2z + b0, 
where y ist the calculated bulk thermal conductivity, x is the given porosity value and z is the 
dry thermal conductivity.  
R² = coefficient of determination, F = F-value, n = number of samples (first value: regression 
set, second value: testing set), p = observed significance level, AME = arithmetic mean error ± 
1 standard deviation for testing group. 

instead of the one based on the entire set of samples, because the specific equations exhibit 

significantly lower AMEs (ANOVA, Tukey’s HSD, α = 0.05).  

Table 3 compares the errors after applying correction charts to the various mean models with 

the errors resulting from utilizing the new conversion equations. Considering all samples, the 

implementation of correction charts resulted in the smallest error for the arithmetic mean. If 

lithotypes are concerned, the fit of all these approaches is good for every mixing model, 

except for the geometric mean applied to sandstone. This misfit is a consequence of the high 

porosity of the sandstone samples (19.8 ± 8.8%), combined with the mathematical structure of 

the geometric mean.  

For all lithotypes, both the correction equations for the mean models and the conversion 

equations yield to uncertainties in the BTC ranging between 5% and 10% (AME). These 

uncertainties are significantly better than those arising from application of the mean models 

without correction (range of AME 11–42%). 

 

Table 3. BTC mean errors as from correction equations and direct conversion equations. 

Samples 
Correction Equations Conversion

Equations AM GM H&S 

All 7.4 ± 6.9 % 9.5 ± 9.5 % 7.6 ± 7.0 % 10.2 ± 7.8 
%

Sandstone 8.3 ± 7.2 % 11 ± 10.2 % 8.4 ± 7.2 % 8.7 ± 7.2 %

Mudstone 7.1 ± 7.3 % 5.7 ± 4.9 % 8.5 ± 9.1 % 8.3 ± 7.7 %

Limestone 3.9 ± 3.7 % 4.6 ± 4.5 % 4.4 ± 4.0 % 4.8 ± 4.3 %

Dolomite 8.0 ± 7.4 % 10.0 ± 9.5 % 7.6 ± 7.1 % 6.5 ± 9.0 %

GM: Geometric mean; AM: Arithmetic mean; H&S: Hashin & 
Shtrikman.  
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7. Conclusions 

In both the general geothermal characterization of sedimentary basins, including the 

assessment of geothermal reservoirs, as well as the modeling of other potential resources, for 

example oil and gas, the implementation of large numbers of BTC data is required. In the light 

of the time-extensive effort necessary to determine water-saturated TC for such large sample 

sets, methods are requested to reduce the work load. The mean models for BTC of two-phase 

rocks presented and evaluated in this study constitute efficient tools to transfer air-saturated 

BTC to water-saturated BTC, if porosity is known from independent sources (e.g., derived 

from standard well logs). If a correction equation (see section 6.2) is applied to the mean 

model result, the errors in water-saturated BTC can be reduced to 4−11%, depending on 

lithotype. In turn, the application of model-independent conversion equations (reported in 

section 6.3) allows a general reduction of the error to < 10%. This accuracy is sufficient for 

many industrial as well as specific scientific applications.  

The more sophisticated physical rock models, that are advanced effective-medium theory 

models, require knowledge of additional rock parameters that are not readily available. 

Acquisition of such additional parameters (for instance, distribution and size of grains and 

pores) is labor-intensive and requires special analytical equipments. Therefore, such models 

are suitable for basic research, but are unlikely to be routinely used in exploration studies. 

It remains to be investigated whether the TC measuring technique, on which the data 

evaluated in this study are based and which do not apply pressure to the sample, eventually 

underestimates the measured TC, and whether these effects are statistically relevant to alter 

the equations and correction charts developed in this study. In addition, laboratory studies are 

required to eliminate the ambiguity in pressure dependency of TC in the range < 10 MPa. This 

would also shed light on the reasoning of the small deviation between DB and OS values 

recognized by Popov et al. (1999), implying a pressure dependency of TC that is much 

smaller than reported by other authors (e.g., Buntebarth, 1991; Hurtig and Brugger, 1970; 

Kukkonen et al., 1999; Somerton et al., 1963; Walsh and Decker, 1966). Unless those 

ambiguities are overcome, we consider our results as universal for application for isotropic to 

weakly anisotropic sedimentary rocks. 
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