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Abstract

We show how the maximum magnitude within a pre-defined future time horizon may be

estimated from an earthquake catalog within the context of Gutenberg-Richter statistics. The

aim is to carry out a rigorous uncertainty assessment and calculate precise confidence intervals

based on an imposed level of confidence α. In detail, we present a model for the estimation of the

maximum magnitude to occur in a time interval Tf in the future, given a complete earthquake

catalog for a time period T in the past and, if available, paleoseismic events. For this goal,

we solely assume that earthquakes follow a stationary Poisson process in time with unknown

productivity Λ and obey the Gutenberg-Richter law in magnitude domain with unknown b value.

The random variables Λ and b are estimated by means of Bayes’ theorem with non-informative

prior distributions. Results based on synthetic catalogs and on retrospective calculations of

historic catalogs from the highly active area of Japan and the low-seismicity, but high-risk

region Lower Rhine Embayment in Germany indicate that the estimated magnitudes are close

to the true values. Finally, we discuss whether the techniques can be extended in order to

meet the safety requirements for critical facilities like nuclear power plants. For this aim, the

maximum magnitude for all times has to be considered. In agreement with earlier work, we find

that this parameter is not a useful quantity from the viewpoint of statistical inference.

Introduction

The maximum possible earthquake magnitude in a seismically active region is a key parameter of

seismic hazard and risk analysis. The knowledge of this parameter is crucial for various issues like

pricing strategies of insurance companies or the definition of requirements for building construction.

The devastating M9 earthquake that occurred on 11 March 2011 in Tohoku, has demonstrated that
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the selection of appropriate sites for high risk industrial plants and critical infrastructure may be

the most important field where quantitative constraints for catastrophic events are needed. In

the framework of statistical modeling, these constraints can only be provided on the ground of

data. However, regions like Germany are characterized by low seismic hazard and high seismic

risk. Roughly speaken, this means that earthquakes are rare in general; however, due to the high

population density as well as critical infrastructure which either exists (industry, nuclear power

plants) or is planned (nuclear disposal facilities), the damage potential is enormous. In the light

of sparse data, the estimation of relevant parameters is related to high uncertainties. Therefore

it is an important challenge to provide a precise statement of uncertainties in terms of confidence

intervals.

In a recent work, Holschneider et al. (2011) have shown in agreement with Pisarenko et al. (1996)

that the maximum magnitude for all times in the framework of a doubly-truncated Gutenberg-

Richter model (Kijko 2004) , that is the maximal possible magnitude in an infinite time horizon, is

not a useful quantity for seismic hazard analysis, because the confidence interval diverges in general.

This finding is independent on the type of truncation of the Gutenberg-Richter distribution. In

particular, it also holds for a smoothly tapered Gutenberg-Richter distribution (Kagan and Schoen-

berg , 2001). Holschneider et al. (2011) argue that the maximum magnitude to occur in a finite time

horizon is more useful, because large earthquakes have almost vanishing probability in finite time

and thus the confidence intervals will be finite. Pisarenko et al. (2008) report the same finding in

the context of extreme value statistics. In fact, the calculation of the maximum event, treated as

a random variable, in a given time interval is a typical problem in extreme value statistics leading

under certain assumptions to the General Extreme Value (GEV) distribution. Epstein and Lomnitz
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(1966) have shown that the predictive distribution of the maximal earthquake magnitude to occur

in a year is given by the Gumbel distribution, which is part of the family of GEV distributions, if a

Poisson process in time and Gutenberg-Richter statistics in magnitude domain are assumed. Haz-

ard estimates based on the Gumbel distribution require knowledge of the Poisson intensity (or the

Gutenberg-Richter-a value) and the Gutenberg-Richter-b value. Of course it is possible to plug-in

point estimates â for a and b̂ for b, but in the light of the high uncertainties of these estimates, the

predictive power of this method will be poor.

In the present work, we continue the study of Holschneider et al. (2011) and focus on the

calculation of confidence intervals for the maximum magnitude in a finite time horizon. Again, we

distinguish between the frequentist confidence interval and the Bayesian confidence interval. For

the case that the magnitude distribution is exactly known, we show that both confidence intervals

become equal in an asymptotic limit. In general, the frequentist approach becomes questionable for

the study of a particular seismically active region, because probabilities are considered as relative

frequencies of the outcome of a random experiment that is repeated several times. In terms of

estimating parameters from an earthquake catalog, the calculation of a frequentist probability

requires a large number of earthquake catalogs from the same region. This is, however, in contrast

to the situation that only one catalog is available. The frequentist approach becomes useful for

the risk assessment of portfolios, i.e. for insurance companies dealing with several objects like

earthquake catalogs from different regions. For studies of single regions, a powerful tool is Bayesian

analysis, as used by Campbell (1982). The goal is to account for all possible parameter values (e.g.

a and b) by using Bayes’ theorem. In particular, Campbell (1982) uses the concept of conjugate

distributions after assuming that the uncertainties in the a and the b values follow a Γ−distribution.
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These parameters are expressed through the “best estimates” of their mean value and standard

deviation, which are then plugged into an extreme value distribution in order to calculate the

seismic hazard. This approach has serious drawbacks, especially when applying it to low-seismicity

regions: 1. The assumption of Γ−distributed uncertainties is questionable; 2. Plugging estimates

of mean value and standard deviation into the extreme value distribution may introduce high errors

depending on the goodness of the estimation. In the present work, we address these problems by

using the following strategy: We solely assume a Poisson process in time with unknown productivity

Λ > 0 and Gutenberg-Richter statistics with unknown b > 0. No further assumptions about Λ and

b are made. Based on an earthquake catalog, we calculate the full Bayesian posterior distribution

(or rather Bayesian predictive distribution) of the maximum magnitude in a given time period.

Evaluation of this distribution allows for a comprehensive investigation of the uncertainties. In

detail, we are able to provide formulas for the confidence interval of the maximum magnitude in a

finite time horizon. For example, we can precisely address the question: Given a complete catalog

covering 20 years, what is the magnitude that is not exceeded in the next 50 years with a given

probability, say 1− α = 95%?

Our work is structured as follows: First, we derive the mathematical framework for the case

that the magnitude distribution, i.e. the Gutenberg-Richter-b value is exactly known and only the

productivity Λ of the Poisson process is unknown. Then we extend the methodology to Gutenberg-

Richter statistics with unknown b value. The methods are applied first to synthetic data; second,

we focus on a high-seismicity region (Japan), and on a low seismicity region, the Lower Rhine

Embayment, Germany. We discuss the extension of the technique in order to calculate reference

magnitudes for potential sites of critical facilities like nuclear power plants. A discussion on the
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conditions for the validity of the Poisson and the Gutenberg-Richter distribution as well as on the

resulting requirements for data selection is provided.

Confidence Interval for the Maximum Magnitude in a Time Interval

T for Known Magnitude Distribution Fθ(m)

In this section, we use the unrealistic assumption that the magnitude distribution is exactly known.

In the Extreme Value Distribution section, we derive the extreme values distribution in a general

context. In the Terminology and Definition of Confidence Interval section, the confidence intervals

of the maximum magnitude in a future time horizon are specified for a given an earthquake catalog.

Then, we derive the frequentist confidence interval (Frequentist Approach section) and the Bayesian

confidence interval (Bayesian Approach section) for a family of magnitude distributions Fθ depend-

ing on a parameter θ, which can be multidimensional. For both approaches, we show explicitely the

result for Fβ(m) = 1− exp [−β(m−m0)], which is the unbounded Gutenberg-Richter distribution

for earthquakes with magnitude above a given threshold m0 depending on the Gutenberg-Richter-b

value or β = b log (10).

Gutenberg-Richter and Poisson Assumption

The following study is mainly based on two assumptions, both of which have important implica-

tions for the catalog selection and data pre-processing: first, earthquake magnitudes follow the

Gutenberg-Richter distribution including the Gutenberg-Richter-b value, and second, earthquake

rates are described by a stationary Poisson process in time with productivity Λ. The estimation
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of b requires a broad range of magnitude data, preferentially from the magnitude of the maximum

observed earthquake down to the magnitude of completeness. On the other hand, the tendency for

non-Poissonian earthquake clustering is strong for small magnitudes leading to errors in the esti-

mation of Λ. Furthermore, in Holschneider et al. (2011) it is argued that the estimates of maximum

magnitudes depend predominantly on the largest observed earthquakes. It is, therefore, desirable

to study historic earthquake catalogs covering hundreds of years and spanning a range broader

than one magnitude unit. Such a historic catalog including, say 20, moderate to large earthquakes,

carries more information with respect to large future events than instrumental catalogs with thou-

sands of earthquakes, but only one or two big events. In addition, the declustering of catalogs

may be considered in order to better fulfill the Poisson assumption. It has to be pointed out that

declustering is always a delicate issue because additional parameters and assumptions come into

the game, and declustering algorithms might not be suitable for mega-earthquakes like the Suma-

tra mega-event. In a recent study, Michael (2011) has shown for the five M ≥ 8.5 earthquakes

worldwide between 2004 and 2011 that the hypothesis of a stationary Poisson process cannot be

rejected, at least for the case of declustered seismicity. Adding, however, the recent M8.6 Sumatra

event on 11 April 2012 the sequence becomes non-Poissonian, because the declustering algorithm is

not suitable to identify this event as an aftershock of 2004 mega-earthquake (A. Michael, personal

communication).

In the present work, we apply our methodology to two historic earthquake catalogs: a catalog

of Japan covering 1300 years with 7 ≤ m ≤ 9 and a catalog of the Lower Rhine Embayment since

1600, which is complete for m ≥ 4 and includes a maximum earthquake with m = 5.4. For both

cases, we will compare original seismicity with declustered seismicity using the method of Gardner
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and Knopoff (1974). In Japan, however, declustering may be problematic for the reasons mentioned

above. In the case of the Lower Rhine Embayment, we provide the frequency-size distribution and

will explicitely test the Poisson hypothesis using a Kolmogorov-Smirnov (KS) test.

Extreme Value Distribution

We consider a random variable X drawn from a given distribution F (x). Then, the maximum of n

independently drawn numbers {xi}i=1,...,n is a random variable with distribution

Pr(max{xi} ≤ x) = [F (x)]n. (1)

Given a Poisson process with productivity Λ, the probability of observing n events is calculated

from the Poisson distribution

P (n; Λ) =
Λn

n!
e−Λ. (2)

In a random experiment, where values of X are drawn from F (x) and the number of events is

drawn independently from a Poisson process with productivity Λ, the probability that all values xi

are ≤ x, can be calculated using the total probability theorem. Accordingly the probabilities of all

independent possible outcomes (in terms of the number n of events) have to added:

Pr(max{xi} ≤ x) = P (x) =

∞∑
n=0

Λn

n!
exp (−Λ)[F (x)]n = exp [−Λ(1− F (x))]. (3)

The corresponding probability density function is

p(x) =
dP (x)

dx
= Λ f(x) exp [−Λ(1− F (x))] (4)

with f being the probability density function with respect to the distribution function F (x)

f(x) =
dF (x)

dx
. (5)

8



In the specific case, where F (x) is the unbounded Gutenberg-Richter distribution F (x) = 1 −

exp [−β(x−m0)], P (x) is the Gumbel distribution (Gumbel , 1958), where Λ can also be expressed

by the Gutenberg-Richter a-value (Epstein and Lomnitz , 1966).

Terminology and Definition of Confidence Interval

In this section, we use Eq. (3) to describe earthquakes following a Poisson process with given

productivity Λ and magnitude distribution Fθ(m), where θ includes one or more parameters. In

detail, we specify a fixed region in space, a future time interval of length Tf , and a past time interval

of length T , where an earthquake catalog is given. Supposing that the events in the past and in the

future arise from the same Poisson process and magnitude distribution, we address the question:

What can be inferred from a complete earthquake catalog with n events {mi}, i = 1, . . . n during

time T with respect to future predictions, in particular about the maximum earthquake to occur

in time Tf? Under the assumption of constant Poisson rate we have

Tf =
Λf
Λ
T. (6)

In Table 1, we list the terminology, which will be used in the remainder of this paper.

For exactly known θ in Fθ(m), the rate Λ remains the only unknown parameter. In general how-

ever, we have at best a (physically motivated) parameterized family Fθ of event size-distributions.

Then, in addition to the randomness of the event generating process itself, we have to take into

account the uncertainties of both Λ and θ.

We will consider two approaches to deal with this. In the frequentist setting, we look at

confidence intervals of level 1−α, α ∈ [0, 1), for the maximum magnitude to occur in the prediction
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interval Tf . A frequentist confidence interval is defined as a function

ψ(observed catalog) = ψ(n, {mi})→ R

or equivalently a family of functions ψn associated with a catalog {mi} of length n

ψn : {mi} → R, (7)

which assigns to every observed catalog an upper bound ψ such that on average we fail in at most

a fraction of α times to give a correct upper bound for µ:

E (Pr(ψ(catalog) < µ)|Λ, θ) ≤ α, for all Λ, θ. (8)

The expectation is over random catalogs in the past drawn according to the parameters Λ and θ.

The probability is about the random behavior in the future of µ for these same parameters. In

more concrete terms this reads

∞∑
n=0

Pr(n, ψn({mi}) < µ | θ,Λ) ≤ α for all θ,Λ (9)

Clearly, smaller values of ψn are the better in view of applications. The goal is to present optimal

confidence intervals with respect to this (half) order relation. In case that the parameter θ is

known with certainty, only the uncertainties with respect to Λ have to be considered. In this case

the actual observed magnitudes do not contribute and the confidence intervals satisfy

∞∑
n=0

Pr(n, ψn < µ | Λ) ≤ α for all Λ (10)

The other approach uses Bayes’ theorem. Plugging prior information about θ and Λ into a prior

distribution P0(θ,Λ) , the likelihood function L({mi}|θ,Λ) and the resulting posterior distribution
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P (θ,Λ|{mi}) can be calculated:

P (θ,Λ|{mi}) = cL({mi}|θ,Λ)P0(θ,Λ), (11)

where c is a normalization constant of the posterior distribution and L is the likelihood function

L(n, {mi}|Λ, θ) =
Λne−Λ

n!︸ ︷︷ ︸
gΛ(n)

n∏
i=1

fθ(mi)︸ ︷︷ ︸
hθ({mi})

, (12)

which can be written as a product of two functions, gΛ(n) and hθ({mi}), one depending on n and

the other depending on the magnitudes {mi}. The parameter Λ refers to the time coverage T of

the catalog. According to Eq. (6) the corresponding value for the future time horizon is

Λf =
Tf
T

Λ. (13)

The probability that the maximum magnitude µ in time Tf is smaller than or equal to m is

P (µ ≤ m|{mi}) =

∫
Θ

dθ dΛ P (θ,Λ|{mi})P (µ ≤ m|θ,Λf ), (14)

where Θ denotes the domain for values of θ and Λ, and P (µ|θ,Λf ) is calculated from Eq. (3):

P (m|θ,Λ) = exp [−Λf (1− Fθ(m))]

= exp [−(Tf/T )Λ(1− Fθ(m))].

(15)

Because the Bayesian approach delivers a probability distribution, the calculation of confidence

intervals becomes straightforward.

In the remainder of this section, we consider the case that the frequency-size distribution Fθ(m)

is known. In this special case, the parameter θ is exactly known and does not occur anymore as an

estimation parameter in Eq. (11) and (12). For example, the likelihood function in Eq. (12) reduces
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essentially to gΛ(n), while the function hθ({mi}) becomes constant and can be absorbed by the

normalization constant. In the Bayesian Estimation of Maximum Magnitude and Waiting Time

for an Unknown Magnitude Distribution Fθ(m) section and the Bayesian Estimation of Maximum

Magnitudes and Waiting Times for the Unbounded Gutenberg-Richter Distribution section, this

assumption will be abandoned and a Gutenberg-Richter distribution with unknown b values will

be used.

Frequentist Approach

Since the likelihood function (Eq. 12) can be written as a product of a function gΛ(n) and hθ({mi}),

it follows that n is a sufficient statistics for Λ (Fisher , 1922); consequently, the estimated value

of Λ depends solely on the number n of earthquakes rather than on all the details of the catalog.

Assuming a Poisson process with productivity Λ and a magnitude distribution Fθ(m) with known

θ, the probability for the maximum magnitude in time Tf to be smaller than or equal to m and to

have n events in the catalog during time T , is

Pr(n, µ ≤ m|Λ, θ) =
Λn

n!
e−Λ exp

{
−
Tf
T

Λ[1− Fθ(m)]

}
=

Λn

n!
e−Λ exp{−(Tf/T )Λ[1−Fθ(m)]}. (16)

We first suppose that the distribution of magnitudes is known (i.e. θ is known). Then the only

uncertainty comes from Λ, the productivity. For the calculation of the frequentist confidence interval

defined by Eq. (7), each possible earthquake catalog can be considered as a possible outcome

of a random experiment. Therefore, all possible catalogs arising from a Poisson process with

productivity Λ have to be taken into account in terms of event numbers n. Applying the total
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probability theorem, we have to search for numbers of the form ψn with

∞∑
n=0

Λn

n!
e−Λ exp{−Λ(Tf/T )[1− Fθ(ψn)]}︸ ︷︷ ︸

:=S(Λ,θ,ψn)

≥ 1− α for all Λ > 0. (17)

Without further assumptions, it is not possible to provide analytical expressions for ψn from

Eq. (17). In the following, we show that an asymptotic expression for small values of α and high

values of Λ can be derived, given that the distribution Fθ is exactly known. For small values α� 1,

we can expand the exponential expression in S(Λ, θ, ψn) into a series in εn = (Tf/T )(1 − Fθ(ψn))

leading to

S(Λ, θ, ψn) =
∞∑
n=0

Λn

n!
e−(1+εn)Λ = 1−

∞∑
n=0

Λn+1

n!
εne
−Λ + . . . (18)

The function sn = Λn+1

n! εne
−Λ has a local maximum at Λn = n+ 1; the other terms in the sum will

change the location of the local maxima of the order of magnitude O(ε). The value of the sum at

the local maximum is to first order in ε equal to the value at the unchanged points, k ∈ N, leading

to
∞∑
n=0

kn+1

(n+ 1)!
e−k(Tf/T )(n+ 1)[1− Fθ(ψn)] = α, (19)

which can also be written as a matrix equation

∞∑
n=0

Aknηn = Aη = α (20)

with

Akn =
kn+1

(n+ 1)!
e−k and ηn = (Tf/T )(n+ 1)[1− Fθ(ψn)]. (21)

This infinite system of equations can only be solved numerically. However, Eq. (19) is fulfilled, if

we formally set

(Tf/T )(n+ 1)[1− Fθ(ψn)] =
α

1− e−k
, (22)
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which becomes in the asymptotic limit k →∞ and expression that does not involve k anymore,

(Tf/T )(n+ 1)[1− Fθ(ψn)] = α, (23)

and which therefore gives an asymptotic solution for large n

ψn = F−1
θ

[
1− α

(Tf/T )(n+ 1)

]
. (24)

Inserting the Gutenberg-Richter distribution Fβ(ψn) = 1− exp [−β(ψn −m0)], which depends only

on β (= b log (10)), we get

ψn = m0 −
1

β
log

[
α

(Tf/T )(n+ 1)

]
. (25)

Unknown Parameter θ

Finally, for the sake of completeness, we consider the case of unknown θ. In this case the observed

magnitudes carry information about the unknown parameter θ and we need to satisfy

∞∑
n=0

(
n∏
i=1

∫
dFθ(mi)

)
Λn

n!
e−Λ exp{−Λ(Tf/T )[1−Fθ(ψn(m1, . . . ,mn))]} ≥ 1−α for all Λ > 0, θ.

(26)

This relation can only be solved numerically for ψn. In this paper however we will not pursue the

numerical analysis of this expression.

Bayesian Approach

In the first step of the Bayesian approach, we consider again the case that Fθ(m) is exactly known

and the productivity Λ is the only unknown parameter which is estimated by means of Bayes’

theorem (Eq. 11). As discussed earlier, the likelihood function (Eq. 12) reduces to

L(n, {mi}|Λ) ∝ gΛ(n). (27)
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The Bayesian posterior in Eq. (11) becomes

P (Λ|{mi}) ∝ gΛ(n)P0(Λ), (28)

with the prior distribution P0(Λ). Finally, we use Eq. (14) and (15):

Pθ(µ ≤ m|{mi}) =

∞∫
0

Λn

n!
exp (−Λ) exp [−(Tf/T )Λ(1− Fθ(m))]P0(Λ)dΛ. (29)

Here P (µ ≤ m|{mi}) denotes the posterior distribution for the maximum magnitude in the future

time interval Tf being smaller than or equal to m given n earthquakes in the past time interval

of length T . The distribution P0(Λ) includes possible prior information about Λ. In the common

situation that no such information is available, a non-informative prior is chosen, in the simplest

case a flat prior P0(Λ) = const. We note that the flat prior is improper in the sense that P0(Λ)

is not normalized. This is, however, not a problem as long as the posterior distribution can be

normalized.

Substituting z = Λ[1 + (Tf/T )(1 − Fθ(m))], the integral in Eq. (29) can be transformed to a

Γ−function with respect to z. Using the flat prior P0(Λ) = const. the value becomes

P (µ ≤ m|{mi}) =
1

{1 + (Tf/T )[1− Fθ(m)]}n+1
. (30)

We note that for magnitudes m with Fθ(m) = 0, P (µ ≤ m|{mi}) > 0 becomes constant. In

particular, for a distribution F with a lower magnitude cutoff m0, the case m < m0 has finite

probability, namely the probability that no earthquake occurs within Tf (n = 0).

The corresponding probability density function of the maximum event in the future µ is

p(µ) =
(Tf/T )(n+ 1)fθ(µ)

[1 + (Tf/T )(1− Fθ(µ))]n+2
. (31)
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From Eq. (30), Bayesian confidence intervals can be calculated: Given a confidence level α ∈ [0; 1),

having observed n events in the past, the probability that during time Tf an earthquake with

m > ψn occurs, is at most α, for ψn given by

ψn = F−1
θ

{
1− T

Tf

[(
1

1− α

) 1
n+1

− 1

]}
. (32)

As in the previous section, we insert the Gutenberg-Richter distribution with known β for Fθ

and get

ψn = m0 −
1

β
log

{
T

Tf

[(
1

1− α

) 1
n+1

− 1

]}
. (33)

Finally, we show that the frequentist and the Bayesian confidence interval (Eq. 25 and 33) become

identical in the limit α � 1. The term (1 − α)−1/(n+1) in Eq. (32) and (33) can be expanded for

α� 1 as

(1− α)−
1

n+1 ≈ 1 +
1

n+ 1
α (34)

leading to the same formula as in Eq. (24) and (25):

ψn ≈ F−1
θ

{
1− T

Tf

[
1 +

α

n+ 1
− 1

]}
= F−1

θ

[
1− α

(n+ 1)(Tf/T )

]
. (35)

In the Bayesian Estimation of Maximum Magnitude and Waiting Time for an Unknown Magnitude

Distribution Fθ(m) section and the Bayesian Estimation of Maximum Magnitudes and Waiting

Times for the Unbounded Gutenberg-Richter Distribution section, this approach will be extended

in order to take into account the uncertainties of b (or β).
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Bayesian Estimation of Maximum Magnitude and Waiting Time

for an Unknown Magnitude Distribution Fθ(m)

In the previous section, the exact knowledge of the magnitude distribution Fθ(m) has been assumed.

However, uncertainties of the parameters contained in θ, cannot be neglected. Therefore, we have

to take into account the full Bayesian posterior function P (θ,Λ|{mi}) from Eq. (11) including

uncertainties of θ. Because the likelihood function can be written as a product (see Eq. 12)

L(n, {mi}|Λ, θ) = gΛ(n)hθ({mi}), (36)

we can calculate the posterior with respect to θ

P (θ|{mi}) ∝ hθ({mi})P0(θ) with hθ({mi}) =
n∏
i=1

fθ(mi), (37)

where P0(θ) is a (flat) prior for θ.

Combining this result with Eq. (31), the Bayesian posterior density of the maximum magnitude

in a finite time horizon given by Tf becomes

pTf (µ|{mi}) ∝
∫
Θ

fθ(µ)

[1 + (Tf/T )(1− Fθ(µ))]n+2
P (θ|{mi}) dθ, (38)

where Θ denotes the domain for the (multidimensional) parameter θ; for example, in the case of

the unbounded Gutenberg-Richter distribution, θ reduces to a single value, namely β, and the

integration will be carried out from 0 to ∞.

On the other hand, we can fix a target magnitude µT and consider the waiting time Tf to the

next earthquake with magnitude ≥ µT as a random variable that is estimated:

PµT (Tf |n, θ) = 1−
∞∫
0

Λn

n! exp (−Λ) exp [−(Tf/T )Λ(1− Fθ(µT ))]dΛ

= 1− 1
[1+(Tf/T )(1−Fθ(µT ))]n+1 .

(39)
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The density of Eq. (39) with respect to Tf becomes

pµT (Tf |n, θ) =
(n+ 1)[1− Fθ(µT )]

[1 + (Tf/T )(1− Fθ(µT ))]n+2
. (40)

Combining now Eq. (37) with a flat prior density P0(θ) and Eq. (40), we get the posterior density

of Tf for n observed events as a function of µT :

pµT (Tf |{mi}, n) ∝
∫
Θ

1− Fθ(µT )

[1 + (Tf/T )(1− Fθ(µT ))]n+2
P (θ|{mi}) dθ. (41)

Bayesian Estimation of Maximum Magnitudes and Waiting Times

for the Unbounded Gutenberg-Richter Distribution

For observed seismicity, it is widely accepted that the frequency-magnitude statistics of earth-

quakes follows the Gutenberg-Richter law (Gutenberg and Richter , 1956). Therefore, we apply

Equations (37) to (41) for the Gutenberg-Richter law (Estimation Based on Catalog Data sec-

tion). In the Estimation Based on Catalog Data and a Paleoearthquake section, we also show, how

additional paleoseismological knowledge can easily be taken into account.

Bounded Versus Unbounded Gutenberg-Richter Distribution

The Gutenberg-Richter (GR) distribution is commonly used in two versions: The unbounded GR

distribution allows magnitudes to have infinite size:

Fβ(m) = 1− exp [−β(m−m0)]; m ≥ m0. (42)

Although the probability of occurrence of very large earthquakes approaches zero, this version

violates, in principle, the law of energy conservation. Technically this flaw can be overcome by
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truncating the unbounded GR distribution at a finite value M :

FβM (m) =
exp (−βm0)− exp (−βm)

exp (−βm0)− exp (−βM)
; m0 ≤ m ≤M. (43)

The value of M is, however, unknown. A comprehensive analysis on the estimation of M is given

by Holschneider et al. (2011); in this work, it is shown that a rigorous statistical estimation of M

from an earthquake catalog including precise confidence intervals is not possible. For the present

study, we argue that the question of truncation plays no role for the estimation of the maximum

magnitude in a time horizon, as long as the length of the time horizon is short or moderate (< 1000

years or so). The reason is that the probability of occurrence of a very large event is negligible

on such time intervals. This can be illustrated in the following way: Assume that Λ and the b-

value were exactly known: In a setup with m0 = 4, b = 1, and, on average, one earthquake with

magnitude ≥ m0 in ten years, we estimate the maximum magnitude m95 in the next 50 years with

confidence level α = 0.05 using Eq. (3) for the truncated GR distribution (Eq. 43) FM (m) with

three values M = 7.5, 8.5, 12. For each value of M , we calculate the relative error of m95 in relation

to the corresponding estimate from the unbounded GR distribution FM=∞(m) (Eq. 42). In the

case M = 7.5, the use of the unbounded GR distribution leads to an overestimation of 0.2%, for

M = 8.5, this value becomes 0.02%, and for M = 12 it is < 10−6. Since the overestimation of

m95 for the unbounded GR distribution compared to the truncated GR distributions is negligible

and the exact value of M is unknown, it is justified to use the unbounded GR distribution. The

unrealistic high magnitudes that violate energy conservation, do not contribute to the estimation

of maximum magnitudes for small and moderate time horizons. The picture changes, however,

if the time horizons become large, e.g. several thousands of years. For this case, the unbounded

GR distribution has to be replaced by the truncated one, and M becomes an unknown parameters
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similar to β and Λ. The corresponding methods will be developed in the Application IV: Critical

Facilities section.

Estimation Based on Catalog Data

Now, we focus on the case of small and moderate time horizons. As discussed in the Bounded

Versus Unbounded Gutenberg-Richter Distribution section, we will use the unbounded Gutenberg-

Richter distribution. After observing n earthquakes with magnitudes mi, the Bayesian posterior

distribution (Eq. 37) using a flat prior distribution of β becomes

P (β|{mi}) ∝ βn exp [−βn(〈m〉 −m0)], (44)

where n and the sample mean of the magnitudes 〈m〉 are sufficient statistics for β. Finally,

Eq. (37), (38) and (44) can be combined in order to compute the posterior probability density

pTf (m) accounting for uncertainties of both Λ and β:

pTf (µ|{mi}, n) ∝
∞∫

0

dβ βn+1 exp [−β(µ−m0)] exp [−βn(〈m〉 −m0)]

{1 + (Tf/T )[1− Fβ(µ)]}n+2
. (45)

Analogously, we can derive the formula for the Bayesian posterior density with respect to the

waiting time Tf to an earthquake with given target magnitude µT . From Eq. (37), (41) and (42),

we get

pµT (Tf |{mi}, n) ∝
∞∫

0

dββn
exp [−nβ(〈m〉 −m0)] exp [−β(µT −m0)]

{1 + (Tf/T ) exp [−β(µT −m0)]}n+2
. (46)

Estimation Based on Catalog Data and a Paleoearthquake

In this section we take into account the knowledge of a single paleoearthquake with magnitude

mP ± ∆m occurring as the largest event during a time interval TP , which covers typically some
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thousand years. The generalization to more than one paleoevent is straightforward and is therefore

not presented in this study. Assuming a Poisson process with intensity Λ/T and the unbounded

Gutenberg-Richter distribution Fβ(m) (Eq. 42), the probability that at least one earthquake with

magnitude between mP −∆m and mP + ∆m occurs during the interval of length TP is

PβΛ(mP ) =
∞∑
n=1

(γΛ)n

n!
exp (−γΛ) [Fβ(mP + ∆m)− Fβ(mP −∆m)]︸ ︷︷ ︸

:=∆Fβ(mP )

; (47)

here γ = Tp/T is the time interval in units of the catalog length T . As long as no other information is

available, the true magnitude of the paleoearthquake is assumed to arise from a uniform distribution

within the interval [m0 −∆m;m0 + ∆m]. Evaluating the sum in Eq. (47) gives

PβΛ(mP ) = ∆Fβ(mP )[1− exp (−γΛ)] (48)

Using this result, Eq. (29) becomes

PTf ,β,mP ,∆m,Tp(µ ≤ m|{mi}, n) =

∞∫
0

Λn

n! exp (−Λ)∆Fβ(mP )[1− exp (−γΛ)] exp [−(Tf/T )Λ(1− Fβ(m))]P0(Λ)dΛ.

(49)

Inserting the flat prior for P0(Λ) and evaluating the integral with respect to Λ leads to the density

pTf ,β,mP ,∆m,Tp(µ|{mi}, n) ∝

∞∫
0

dβ
[

fβ(µ)∆Fβ(mP )

[1+(Tf/T )(1−Fβ(µ))]n+2 +
fβ(µ)∆Fβ(mP )

[1+γ+(Tf/T )(1−Fβ(µ))]n+2

]
βn exp [−βn(〈m〉 −m0)]

(50)

in analogy to Eq. (45).

The equation corresponding to Eq. (46) for the waiting time Tf to the next earthquake exceeding
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a target magnitude µT becomes

pµT ,mP ,∆m,Tp(Tf |{mi}, n) ∝

∞∫
0

dβ
[

(1−Fβ(µT ))∆Fβ(mP )

[1+(Tf/T )(1−Fβ(µT ))]n+2 +
(1−Fβ(µT ))∆Fβ(mP )

[1+γ+(Tf/T )(1−Fβ(µT ))]n+2

]
βn exp [−βn(〈m〉 −m0)].

(51)

Application I: Synthetic Earthquake Data

Before applying the methods developed in the previous sections to real earthquake catalogs, we per-

form tests using synthetic data which have been created under controlled conditions; in particular,

we simulate earthquake catalogs with known values of Λ and b addressing two questions: 1. Is the

estimated maximum magnitude consistent with the outcome of a frequently repeated simulation of

future seismicity? 2. Does the method proposed in this study improve the results achieved from

the Campbell-method based on the Bayesian extreme-value distribution (Campbell , 1982)?

When we compare magnitude values extracted from the Bayesian posterior distribution with

results from repeated Monte-Carlo simulations, we essentially compare them with values from

frequentist confidence intervals. Therefore, the calculations in this section do not reflect the full

Bayesian point of view. However, for practical purposes, we feel that it is important to provide a

test on the performance of the method; because the Bayesian posterior distribution is not testable

in a rigorous sense, we assume the results coming from a “black box” and test them in a frequentist

context.

Our testing includes the following steps:

1. For given Λ, b, and m0, we generate 10,000 earthquake catalogs with time coverage T , each
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catalog based on a Poisson process with intensity Λ/T and a Gutenberg-Richter distribution

Fb(m) = 1− 10−b(m−m0).

2. For each catalog, we estimate the maximum magnitude m̃95 in a future time horizon Tf (50

years) using the confidence level α = 0.05.

3. We generate 10,000 future catalogs with time coverage Tf . From each catalog we extract the

maximum magnitude and calculate m95, the 95% quantile of the distribution of maximum

magnitudes.

4. We count the fraction of cases, where m95 underestimates the maximum magnitude in the

future catalog. Due to the imposed confidence level of α = 0.05, this fraction should be close

to 5%.

5. We compare the estimated values m̃95 (from step 2) with the “true” value m95 from step 3.

For our tests, we use the following values for the parameters: Λ/T = 0.1yr−1, b = 1, m0 = 4,

Tf = 50yr and α = 5%. First, we focus on step 4 in order to test the overall performance of our

method. Using T = 1000 years catalog length to estimate the maximum magnitude in a future

time interval of Tf = 50 years, the maximum magnitude is underestimated in 6.2% of the 10,000

cases. For shorter catalogs (T = 100 years) this fraction is 5.5%. These numbers are in overall

good agreement with the imposed confidence level α = 5%.

Performing step 5, the length of the (past) catalog T is also a crucial parameter: For a high

value of T corresponding to a large number of events, we expect that the method in this study

as well as the Campbell-method provide good estimates of the true value in terms of the future

scenarios (step 3). This is because the uncertainties of Λ and b will be small for long catalogs. A
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corresponding simulation result is given in Fig. 1(a) for T = 1000 years. The “true” value of m95 is

found to be m95 = 6.09 (black vertical line); the estimation based on the method of Campbell (1982)

results on average in 〈m̃C
95〉 = 6.06, while the distribution in Eq. (45) leads to 〈m̃ZHH

95 〉 = 6.03.

In the more relevant case of a short catalog, the growing uncertainties in the estimation of

Λ and b will clearly influence the posterior distribution of the maximum magnitude in the time

horizon Tf . Results for Tf = 100 years are shown in Fig. 1(b). The corresponding values for the

upper bound of the 95% confidence interval are m95 = 6.11 (black), 〈m̃ZHH
95 〉 = 6.44 (solid), and

〈m̃C
95〉 = 6.79 (dashed). We find that both methods overestimate the value m95. The bias in our

method is, however, smaller than that in the Campbell-method. Furthermore, for T = 100yr the

fraction of cases with magnitude estimates that are unrealistically high (m95 > 10) is still 1.4% for

the Campbell method, while the corresponding fraction is only 0.3% for our method.

We conclude that for small number of data our technique improves the uncertainty assessment

compared to the method of Campbell (1982). However, both methods use Bayes’ theorem and

depend, therefore, on a prior distribution which is, strictly speaking, subjective and arbitrary. Even

if no seismological prior information is given, different options for prior distributions are available.

Apart from the flat prior used in this study, we mention the Jeffreys prior (Jeffreys, 1946) that

is invariant with respect to reparametrization of the parameter to be estimated. For example, it

makes no difference whether m or 10m is estimated. Having in mind that the size of an earthquake

can be expressed with different measures (e.g. magnitude, moment, energy), the Jeffreys prior

might be a suitable alternative, although there is no compelling reason for this choice. A detailed

investigation of this question is left for future work.
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Application II: Retrospective Estimations of the Tohoku Earth-

quake

The M9 Tohoku earthquake in Japan (Peng et al., 2012), which occured on 11 March 2011, offers

excellent opportunities for retrospective testing of seismicity models, because high quality data are

available for both, instrumental and historic seismicity. We emphasize, however, that our methods

to estimate maximum magnitudes are not suitable for rigorous retrospective testing for the following

reasons: First, we consider maximum magnitudes in a pre-defind time interval, where the length

Tf depends on the type of application. Second, the outcome of our estimations is not a single value

of µ, but a full probability distribution, which is eventually evaluated with respect to a pre-defined

confidence level α expressing the probability of error one is willing to accept. Using a catalog that

ends before 2011, both parameters can be adjusted in order to “forecast” the Tohoku earthquake,

which is, of course, not a reasonable mission. Instead, we test the plausibility of our method by

performing the following experiments:

1. We use a catalog of historic earthquake in Japan, beginning in 684 and 30 years (option 1),

and 50 years (option 2) before the Tohoku earthquake.

2. Based on a confidence level of 1−α = 0.95, we calculate µ for a future time interval of Tf = 30

years (option 1), and Tf = 50 years (option 2).

3. For both options, we also provide the probability that the magnitude µt = 9.0 will be exceeded

within 30 years, and within 50 years.

25



The earthquake catalog is combined from the JMA catlog from 1926 to 2005, and the NOAA catalog

from 684 to 1925. Visual inspection of the frequency-size distribution provides catalog completeness

for magnitudes m ≥ 7.0. The combined catalog from 684 to 2005 contains 234 earthquakes; a

maximum-likelihood estimate of the b value results in b = 0.98 ± 0.06. Despite the large time

coverage and the high value of the magnitude of completeness, we provide results not only for

the original catalog, but also for the declustered seismicity applying the method of Gardner and

Knopoff (1974) The declustered catalog contains 211 earthquakes with b = 0.93± 0.06.

Results are provided in Table 2. The values are in overall reasonable in relation to the Tohoku

earthquake. The results show that a M9 event was not unexpected. The probability for such

an earthquake or an even larger one is 7% and 12% for the original catalog, respectively. The

declustering leads to small changes; results are given in parentheses. Finally, we provide the value

of µ based on 1−α = 0.95 and Tf = 50 years for the catalog until today including the M9 Tohoku

earthquake. For the original catalog with 243 earthquakes, we find µ = 9.10; for the declustered

catalog including 217 events the value is µ = 9.17. It is conspicuous that these values are smaller in

comparison to the truncated catalogs without the recent mega-event. However, we emphasize that

despite the occurrence of the Tohoku earthquake in 2011, the average magnitude 〈m〉 (see Eq. 45)

slightly decreased in the last 50 years.

Application III: Lower Rhine Embayment, Germany

In this section, we focus on a low-seismicity region, the Lower Rhine Embayment, Germany. Com-

pared to Japan, the most conspicuous difference is the sparseness of data and, of course, the absence
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of mega-earthquakes. In the first part, we introduce the earthquake catalog of the Lower Rhine

Embayment. In the second part, we present results for the case of known magnitude distribution

and, in the third part, for the general case. Finally, we discuss a retrospective estimation as in the

previous section with focus on the 1992 Roermond earthquake.

Data

We investigate earthquakes in the Lower Rhine Embayment (LRE), Germany. In this section,

we briefly describe the data; for more details, we refer to Reamer and Hinzen (2004), Hinzen

and Reamer (2007) and Schmedes et al. (2005). The LRE is of particular interest for seismic

hazard assessment, because it it characterized by a large damage potential in the regions around

Cologne. The strongest earthquakes include the 1756 Düren earthquake with mw = 5.4 and the

1992 Roermond event with mw = 5.2, while paleoseismic studies suggest an event with magnitude

6.7 (Camelbeeck et al., 2000). The earthquake catalog of the Northern Rhine area can be accessed

online (see Data and Resources section). In this work, we generate a subcatalog for the LRE in the

same spatial region as shown in Fig. 1 in Schmedes et al. (2005). This catalog covers the time from

1600 until 2011 and has been partly published in Reamer and Hinzen (2004). Local magnitudes

have been transformed to moment magnitudes according to the relation

mw = 0.722ml + 0.743 (52)

suggested in Reamer and Hinzen (2004). In the present study, we analyze two catalogs: First, the

catalog from 1600 to 2011 with a magnitude of completeness of m0 = 4.0, containing 26 earthquakes

during the time interval of length T = 411 years in the study area. Figure 2(a) shows the magnitude

distribution. This catalog will be labeled hereinafter as LRE. Second, the catalog after removing
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six aftershocks, which have been identified with the algorithm of Gardner and Knopoff (1974).

The frequency-size distribution of the declustered catalog, called LRE-DEC, is given in Fig. 2(b).

The maximum likelihood estimation b̂ of the Gutenberg-Richter b value is

b̂ = 1.08± 0.21 for catalog LRE;

b̂ = 1.00± 0.22 for catalog LRE-DEC.

(53)

In Table 3 we summarize parameters of the two catalogs, which are relevant for the present study.

Testing the Poisson Model

The methods to estimate maximum magnitudes in a time horizon are based on the first-order

approximation that earthquake occurrence follows a Poisson process with constant rate λ corre-

sponding to exponentially distributed waiting times. Therefore we first test the hypothesis that

the catalogs LRE respectively LRE-DEC are realizations of a Poisson process.

For both catalogs, we perform a one-sample Kolmogorov-Smirnov (KS) test with an exponen-

tial distribution of waiting times ∆t as a null hypothesis. For the rate, we simply use λ = 1/〈∆t〉

corresponding to the ratio of the event number and the total catalog time. To account for uncer-

tainties of this point estimate, we also consider deviations (〈∆t〉± 1 year) from this value. The

KS test will return a p-value which is smaller then 0.05, if deviations with imposed significance

level α = 0.05 from the Poisson model are present (rejection of the null hypothesis). On the other

hand, for p > 0.05, the Poisson model is not rejected. The p-values are calculated with the R code

“ks.test()” included in the R package “stats” (see Data and Resources section) based on Marsaglia

et al. (2003). The results provided in Table 4 indicate that the Poisson model is rejected for the

catalog LRE, while it is not rejected for the declustered catalog LRE-DEC. This result favors the
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catalog LRE-DEC for the further analysis. In general, two effects have to be balanced in this

context: first, declustering leads to Poissonian earthquake occurrence, and second, reducing the

number of events will also reduce the accuracy of the b-value estimation (see Data section). To find

the influence of the declustering, we will perform all calculations for both catalogs.

Lower Rhine Embayment: Results for Known Magnitude Distribution

In the Frequentist Approach section and the Bayesian Approach section, formulas for the frequentist

and the Bayesian confidence interval for known magnitude distributions have been derived. Now,

we calculate the upper limit of the confidence interval for the two earthquake catalogs from the

Lower Rhine Embayment described in the Data section with the estimated b̂ values in Eq. (53).

For the time horizon of 50 years we get the values listed in Table 5. We note that Eq. (25) for the

frequentist confidence interval is an asymptotic approximation (α� 1,Λ� 1); therefore, no values

are provided for α = 0.5 in the frequentist case. The values in Table 5 show that both confidence

intervals are nearly identical. This is an expected result, because in the Bayesian Approach section,

we have explicitly shown that for α � 1 the Bayesian confidence interval becomes identical with

the asymptotic formula of the frequentist confidence interval.

The Lower Rhine Embayment: Results for the General Case

Now, we apply the techniques developed on the previous sections to the earthquake catalog of

the Lower Rhine Embayment (LRE) in Germany described above. Based on a given confidence

level α, we calculate for the two catalogs LRE and LRE-DEC (1) posterior distributions of the

maximum magnitude to occur in a given time horizon Tf (Eq. 45), and (2) posterior distributions
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of the waiting time Tf to the next earthquake with a given target magnitude µT (Eq. 46). Both

types of distribution are calculated on the one hand for the situation where only the earthquake

catalog is given and on the other hand for the situation, where the information of paleoearthquakes

is taken into account (Eq. 50 and 51). Figures 3 and 4 show the full posterior distributions. In

both figures, the plot on the left hand side does not take into account paleoseismicity, while the

plot on the right hand side is based on the catalog and the paleoearthquake with m = 6.7 ± 0.3

at 47.5 kyr BP (Camelbeeck et al., 2000). Table 6 provides results for the upper bound of the

Bayesian confidence interval for three values of α (0.50, 0.05, and 0.01). Table 7 includes results

for the waiting times for α = 0.5, 0.05, 0.01 and the scenario earthquakes µT = 5 and µT = 6. For

illustration, we note that the time of 98 years for µT = 6 (Table 7) and α = 0.05 without including

paleoseismicity means: With a probability of 1 − α = 95% the next M6 earthquake will occur at

earliest in 89 years from now.

As a first observation, we find that single paleoearthquakes have an influence on the posterior

distribution, but the picture does not change completely: The maximum magnitude increases and

the waiting time to an earthquake with given target magnitude is reduced. It is, therefore important

to gather more information from paleoseismology in order to reduce uncertainties in the calculation

of the seismic hazard and the seismic risk.

The selection of the time horizon depends on the practical requirements; building codes for

private residences may be defined on time scales of decades, while nuclear waste deposits require

1 million years. In the latter case the assumption of constant Poisson intensity Λ/T will become

controversial. In this section, we have chosen a time horizon of 50 years which might be relevant for

many individuals. Furthermore, we have carried out the calculations for both catalogs, LRE, and
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LRE-DEC; a comparison of the results indicates that earthquake clusters have only small influence

on the estimated values.

As an example, we consider the case with α = 0.05, the catalog LRE-DEC, and the m =

6.7 paleoearthquake. Here, the maximum magnitude in the next 50 years is estimated to m =

6.06 (Table 6). An earthquake of this size occurring in the area of Cologne with a focal depth

of 10km leads to an estimated loss of $US 14.5 billion (Allmann et al., 1998). Increasing the

confidence level to α = 0.01 would lead to an estimated loss of more than $US 100 billion (Allmann

et al., 1998). For a moderate confidence level (α = 0.5) the magnitude decreases to m = 4.69,

which can still lead to serious damage, if the earthquake occurs in a populated area. On the other

hand, if we aim at estimating the time where we can sure with 1 − α = 0.95 confidence that no

M6 earthquake occurs, we get 49 years for the catalog LRE-DEC (Table 7) in agreement with the

result in Table 6 (α = 0.05, catalog LRE-DEC and m=6.7 paleoearthquake).

We note that our study does not allow to calculate probabilities of earthquake occurrence in

specific spatial regions within the study area. However, as an example for a worst case scenario,

we conclude that the possibility of an M6 earthquake in the area of Cologne in the next 50 years

has to be considered from a statistical point of view.

The Lower Rhine Embayment: Retrospective Estimation of µ

As in the Application II: Retrospective Estimations of the Tohoku Earthquake section, we carry

out retrospective estimations by cutting the catalog and comparing the estimations of µ based on

an imposed confidence level with the observed seismicity after the cut. In particular, we truncate

the LRE catalogs 30 years (50 years) before the m = 5.15 Roermond earthquake on 13 April 1992
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and calculate µ using 1− α = 0.95 confidence and the future time horizon Tf = 30 years (Tf = 50

years). As in the Application II: Retrospective Estimations of the Tohoku Earthquake section,

we list magnitude estimations and probabilities for µ = 5.15 corresponding to the Roermond

event in Table 8. Again, we consider clustered and declustered seismicity and the occurrence of a

paleoearthquake.

The calculated values overestimate the magnitude of the Roermond event. However, the longer

catalog ending 30 years before the Roermond earthquake provides magnitudes that are closer to

the true value. In general, we have to note that small number of events in the LRE results in higher

uncertainties, e.g. in comparison with the Japan. This observation is most conspicuous for high

levels of confidence, because the forecasted magnitude are only poorly supported by data. Using

α = 0.5, the estimated magnitudes for the different options are closely located around µ ≈ 4.6.

Again, it has to be emphasized that magnitude estimations depend not only on the future time

horizon, but also on level of confidence that one is willing to accept.

Application IV: Critical Facilities

The future horizon Tf is constrained by individual requirements. For the definition of building

codes, return periods of tens to hundreds of years are typical. In Holschneider et al. (2011) it is

argued that for such relatively short intervals the maximum magnitude for all times has almost

no influence on the estimation of the maximum magnitude in the finite future interval. This will

change, however, if long time horizons, e.g. 103 to 106 years, are considered. For this aim, we derive

equations that consider the maximum magnitude M for all times in the truncated Gutenberg-
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Richter law (Eq.43) as an unknown parameter that has to be estimated in addition to β and Λ.

In particular, we estimate the maximum magnitude using the doubly truncated Gutenberg-

Richter distribution FβM (m) (see Eq. 43) and a flat prior P0(M) for M .

Using solely catalog data, we get from Eq. (37)

pTf (µ|{mi}, n) ∝
∞∫
0

dβ
∞∫

mmax,obs

dM×

×
[

β
exp (−βm0)−exp (−βM)

]n+1
exp (−βµ) exp (−βn〈m〉)

[1+(Tf/T )(1−FβM (µ))]n+2P0(M).

(54)

Taking a paleoearthquake into account the formula becomes with Eq. (50)

pTf ,mP ,∆m,Tp(µ|{mi}, n) ∝
∞∫
0

dβ
∞∫

mmax,obs

dM
[

fβM (µ)∆FβM (mP )

[1+(Tf/T )(1−FβM (µ))]n+2 +
fβM (µ)∆FβM (mP )

[1+γ+(Tf/T )(1−FβM (µ))]n+2

]
×

×
[

β
exp (−βm0)−exp (−βM)

]n
exp [−βn〈m〉]P0(M),

(55)

where mmax,obs is the maximal observed magnitude of an earthquake; in Eq. (55) this will be general

the lower limit of the paleoearthquake: mmax,obs
= mP −∆m.

Equation (54) and (55) have two important implications: First, the integral is divergent, since

1 + (Tf/T )(1 − FβM (µ)) goes to a constant for M → ∞. Second, if the integration with respect

to M is carried out from mmax,obs to a final values M̃ , and M̃ → ∞ afterwards, the results be-

come identical to the estimations with the unlimited Gutenberg-Richter distribution. In agreement

with Holschneider et al. (2011), we find that M , the maximum magnitude for all times is not a

useful parameter from the viewpoint of statistical inference.

A simple way to overcome this problem is to truncate the Gutenberg-Richter law at a magnitude

which cannot be exceeded in a given tectonic setting for physical reasons. For the Lower Rhine

Embayment a threshold of M = 8 is certainly realistic in terms of a worst case scenario. Using
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a time horizon of 105 years and 50% quantiles as in (Bundesamt für Strahlenschutz , 2010), the

maximum magnitude for declustered seismicity becomes µ = 7.54 without the paleoearthquake,

and µ = 7.80 including the paleoearthquake. The results for the catalog including clusters are

µ = 7.44 (no paleoearthquake) and µ = 7.79 (including the paleoearthquake). We point out that

the values of µ depend on the choice of M as already discussed in Holschneider et al. (2011).

Choosing M small, will result in µ ≈M for long time horizons.

A more sophisticated way to deal with the problem discussed above is to calculate first the

bivariate posterior distribution with respect to b and Λ based on the catalog, and second the

predictive distribution of the magnitudes. Evaluating the latter at a pre-defined level of confidence

allows to estimate the magnitude of a design earthquake. The detailed study of the predictive

distribution is left for further work.

Conclusions

The knowledge of the maximum magnitude in a specific region is one of the holy grails in seismic

hazard assessment. Apart from pure scientific interest, this parameter is of direct relevance for

pricing strategies of insurance companies. For this aim it is not sufficient to provide point estimates

of the maximum magnitude in terms of expectation value and variance; it is rather important

to calculate magnitude ranges on the basis of a pre-defined confidence level, which is subject

to the agreement of insurance company and customer. In mathematical terms, the knowledge of

confidence intervals for the maximum magnitude for given confidence level is required. Holschneider

et al. (2011) have shown that confidence intervals diverge in most cases, if the maximum magnitude
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M for all times in a specific region is studied in the framework of a doubly-truncated Gutenberg-

Richter model. In the present study, we show that confidence intervals can be precisely calculated

in a Bayesian framework, the maximum magnitude in a finite time horizon is considered. In

general, computing maximum values in time intervals is subject to extreme value statistics: For

example, annual maximum values from a data set may be used to calibrate a General Extreme

Value Distribution (Coles, 2001). This approach neglects, however, information from smaller

events and becomes unstable for sparse data. For earthquake occurrence, empirical findings like

the Gutenberg-Richter (GR) law can be used to overcome this drawback to some extent. On the

other hand, the GR law includes two parameters, the a and the b value which are not known a

priori. Inserting point estimates or distributions for a and b introduces new errors of unknown size.

In the present work, we estimate the maximum magnitude in a finite time horizon with the

following strategy: First, we use minimum assumptions, namely a Poisson process with unknown

productivity Λ for earthquake rates and a GR distribution with unknown b value for earthquake

magnitudes. Second, in order to provide a rigorous uncertainty assessment, we calculate the full

Bayesian posterior distribution of both the maximum magnitude for a given time horizon and the

waiting time to a target earthquake with given magnitude. The approximate validity of the Poisson

model and the Gutenberg-Richter model has been achieved by using historic earthquake catalogs,

which can be considered as complete in a specific magnitude range. If declustering techniques are

applicable, results are compared for catalogs with and without clusters. We note, however, that

for catalogs including mega-earthquakes (m > 8), declustering becomes questionable and probably

unstable. The Bayesian posterior distribution is evaluated with respect to precise confidence inter-

vals for both quantities. The required data include a complete earthquake catalog and, if available,
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paleoearthquakes.

As a first result, we find that retrospective estimations of the maximum magnitude prior to

the Tohoku earthquake in the high-seismicity area of Japan, and the Roermond earthquake in the

low-seismicity region of Germany are reasonably close to the observed magnitudes. We emphasize,

however, that this is not a rigorous retrospective testing because the results depend on the imposed

time horizon and the confidence level α. For the Lower Rhine Embayment, Germany, we present

results for various scenarios. Using a declustered earthquake catalog from 1600 until 2011 with

magnitudes m ≥ 4 and a paleoearthquake with m = 6.7, we conclude that in the next 50 years

an earthquake with m ≥ 6 occurs with 5% probability. This same estimation for the catalog

with clusters differs only by 0.3%. In general the results indicate that declustering has only minor

influence on the estimated values, as long as the total number of events is not reduced too drastically.

The extrapolation of the method to very long time horizons can be carried out technically by

considering the maximum magnitude M for all times as an unknown parameter within the Bayesian

framework. In agreement with earlier work (Holschneider et al., 2011), we find that M is a useless

parameter from the viewpoint of statistical inference. Design earthquakes for critical facilities may

be estimated by assuming a fixed upper bound M that cannot be exceeded for physical reasons in

a specific tectonic environment. Using a time horizon of 105 years and M = 8, the magnitude of

the design earthquake for the Lower Rhine Embayment is around µ = 7.5.

Crucial issues in estimating maximum magnitudes, are data quality and selection. Since historic

earthquake catalogs include more information on high magnitude events than instrumental catalogs,

the balancing of catalog length, completeness and realization of Poissonian earthquake occurrence

may become a complicated task and needs more detailed exploration in the future. While we use
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a constant magnitude of completeness in this work, the next step will be the generalization of the

methods towards episodes with different completeness levels. Although, the Bayesian approach is,

in principle, applicable to arbitrarily sparse data, the limit of credibility will be reached, if high

confidence levels are required for estimations that are based on poor data.

Finally, we note that the approach of the present work can be extended, if new information, for

example earthquake on earthquake slip, become available. The balancing of earthquake slip with

average slip rates on the fault can provide a further important constraint for the largest earthquakes

and can thus reduce the uncertainties in the calculation of the seismic hazard and the seismic risk.

Data and Resources

Earthquake catalog of the Northern Rhine area available via

http://www.seismo.uni-koeln.de/catalog/index.htm, last accessed 11 September 2012.

JMA earthquake catalog of Japan (1926-2005) available via

http://wwweic.eri.u-tokyo.ac.jp/db/jma/index.html, last accessed 11 September 2012.

NOAA earthquake catalog (684-1925) of Japan available via

http://www.ngdc.noaa.gov, last accessed 11 September 2012.

For the Kolmogorov-Smirnov test, we used R software available via

http://www.r-project.org, last accessed 11 September 2012.
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Tables

Table 1

Table 1: Terminology used from the Terminology and Definition of Confidence Interval section to

the end of the paper

parameter explanation

T Duration of catalog

Tf Future time horizon

Λ productivity of Poisson process in the past

Λf (= ΛTf/T ) productivity of Poisson process in the future

mmax,obs magnitude of maximum observed earthquake

µ Maximum magnitude during Tf

M maximum magnitude for all times

{mi} Set of magnitudes in the catalog

n Number of events in the catalog
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Table 2

Table 2: Results for the Tohoku earthquake

catalog end nr of probability

(years before Tohoku) events µ (µT = 9.0)

30 191 (174) 9.15 (9.19) 0.07 (0.07)

50 163 (146) 9.48 (9.28) 0.12 (0.08)

µ is the magnitude that is not exceeded within 30 or 50 years based on a confidence level of 1−α = 0.95; the last

column includes the probability of having an earthquake with magnitude 9.0 in the respective time interval; values

in parentheses refer to the declustered catalog. See text for more explanation.
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Table 3

Table 3: Parameters of the catalogs LRE and LRE-DEC

catalog n 〈m〉

LRE 26 4.39

LRE-DEC 20 4.43

n : number of events; 〈m〉: sample mean of magnitudes. Common parameters include the magnitude of complete-

ness m0 = 4, the total duration of the catalog T = 411 years, and the maximum observed event: mmax,obs = 5.36.

43



Table 4

Table 4: Kolmogorov-Smirnov test for catalogs LRE and LRE-DEC and the Poisson model as null

hypothesis

catalog n λ = λ = λ =

1/〈∆t〉 p 1/(〈∆t〉 − 1yr) p 1/(〈∆t〉+ 1yr) p

LRE 26 14.49yr 0.0058 13.49yr 0.0069 15.49yr 0.0050

LRE-DEC 20 19.07yr 0.3111 15.47yr 0.3542 17.47yr 0.2752
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Table 5

Table 5: Values for the upper limit of the confidence interval ψn for the frequentist and the Bayesian

approach and the catalogs LRE and LRE-DEC

Frequentist Bayes

catalog α = 0.5 α = 0.05 α = 0.01 α = 0.5 α = 0.05 α = 0.01

LRE - 5.68 6.33 4.62 5.67 6.33

LRE-DEC - 5.71 6.41 4.56 5.70 6.41

The calculations are based on Eq. (25) and (33) using a future time horizon of Tf = 50 years. Because Eq. (25)

is an approximation for α� 1, no values for α = 0.5 are provided in the frequentist case.
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Table 6

Table 6: Results for the catalogs LRE and LRE-DEC excluding and including a paleoearthquake

with magnitude mP

catalog mP ±∆m(Tp) α = 0.5 α = 0.05 α = 0.01

LRE - 4.59 5.70 6.45

6.7±0.3 (47.5 kyrs BP) 4.71 6.05 6.95

LRE-DEC - 4.53 5.74 6.58

6.7±0.3 (47.5 kyrs BP) 4.62 6.01 6.95

Upper bounds of the Bayesian confidence intervals for the maximum magnitude within a time horizon of 50 years

including uncertainties of Λ and b.
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Table 7

Table 7: Results for the catalogs LRE and LRE-DEC excluding and including a paleoearthquake

with magnitude mP

catalog mP ±∆m(Tp) µT α = 0.5 α = 0.05 α = 0.01

LRE - 5.0 143 10 2

6.7±0.3 (47.5 kyrs BP) 5.0 92 6 1

- 6.0 1848 98 19

6.7±0.3 (47.5 kyrs BP) 6.0 758 45 9

LRE-DEC - 5.0 153 10 2

6.7±0.3 (47.5 kyrs BP) 5.0 107 7 1

- 6.0 1637 85 16

6.7±0.3 (47.5 kyrs BP) 6.0 812 49 9

Estimated time interval, where no earthquake with magnitude ≥ µT is expected based on the confidence level

α.
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Table 8

Table 8: Results for the Roermond earthquake; see text for explanation.

catalog end declustered paleo- nr of probability

(years before Roermond) earthquake events µ (µT = 5.15)

30 - - 24 5.45 0.10

- × 24 5.80 0.26

× - 21 5.47 0.10

× × 21 5.75 0.24

50 - - 22 5.69 0.17

- × 22 6.13 0.28

× - 19 5.74 0.17

× × 19 6.07 0.25
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Figure captions

Figure 1: Synthetic earthquake catalogs: Distribution of the estimated upper bound m95 of the

confidence interval of the maximum magnitude for a time horizon of 50 years. Solid: Eq. (45) of

this study; dashed: Campbell method based on the Bayesian extreme-value distribution (Camp-

bell , 1982); vertical line: “true” value calculated from 10,000 future earthquake catalogs, each

covering 50 years. Plot (a) is based on 10,000 earthquake catalogs with time coverage T = 1000yr,

while for (b) T = 100yr has been used.

Figure 2: Frequency-magnitude distributions of the earthquake catalogs for the Lower Rhine Em-

bayment; solid: catalog LRE from 1600 to 2011 (26 earthquakes); dashed: declustered catalog

LRE-DEC from 1600 to 2011 (20 earthquakes).

Figure 3: Probability density function for the magnitude, that is not exceeded within a time interval

of 50 years, given the LRE catalog. The solid line refers to the catalog LRE, while the dashed line

refers to the declustered catalog LRE-DEC; (a) only the LRE catalog is taken into account (Eq. 45);

(b) results including also a paleoearthquake with moment magnitude 6.7± 0.3 (Eq. 50).

Figure 4: Probability density function for the time interval, where no earthquake with magnitude

≥ 6 is expected using the catalogs LRE (solid line) and LRE-DEC (dashed line); (a) result without

taking into account a paleoearthquake; (b) result including the m = 6.7 paleoearthquake.

49



50



Figures

Figure 1

5.5 6.0 6.5 7.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

 (a) 

m95

p
d

f

This study (Eq. 45)

Campbell (1982)

Simulation of future

6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

 (b) 

m95

p
d

f

This study (Eq. 45)

Campbell (1982)

Simulation of future

51



Figure 2
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Figure 3
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Figure 4
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