English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Data Publication

40-year record of radon, water temperature, and discharge rate from a hot spring in China

Authors

Yan,  Rui
External Organizations;

/persons/resource/radon

Woith,  H.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/wang

Wang,  R.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Wang,  Guangcai
External Organizations;

External Ressource
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Yan, R., Woith, H., Wang, R., Wang, G. (2018): 40-year record of radon, water temperature, and discharge rate from a hot spring in China.
https://doi.org/10.5880/GFZ.2.1.2018.002


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3027903
Abstract
A high-fidelity radon record covering nearly 40 years from the hot spring site of BangLazhang (BLZ), Southwestern China allows to study multi-year periodicities. At BLZ, radon dissolved in water (Radon), water temperature (WT), and spring discharge rate (DR) were measured daily from 1976 until 2015. Barometric pressure, regional rainfall, galactic cosmic rays (GCR flux is modulated by solar wind and thus a proxy for solar activity), and regional seismicity from the same period were considered to identify potentially influencing factors controlling the changes in radon [Yan et al., 2017]. Various wavelet techniques indicate that the long-period radon concentration is characterized by a quasi-decadal (8-11 years) cycle, matching well with the concurrent periodicity in water temperature, spring discharge rates. The BLZ hot spring monitoring site is maintained and operated by the China Earthquake Administration of Yunnan Province. Water from the spring is sampled once daily and measurements of radon have been performed routinely in a laboratory since 1976 April 6. The sample time is designated to occur at 8 o’clock in the morning in order to reduce the effect of daily variations. The radon concentration has been measured with three types of radon measurement instruments during the past 40 years. From 1976 April 6, to 1982 June 5, a FD-105 type radon gas detector was used, reporting the radon concentration in Eman. Eman is converted to the metric unit Bq/L using the relationship 1 Eman = 3.7 Bq/L. From 1982 June 6 to 2012 April 11, a FD-105K type electrometer (manufactured by Shanghai Electronic Instrument, co.) was used, the measurements given in Bq/L. Since 2012 April 12, a FD-125 type Radon & Thorium analyzer, manufactured by Beijing Nuclear Instrument Factory, sponsored by CNNC (China National Nuclear Corporation), has been used. Water sampled from the spring is degassed by bubbling air and transported into a chamber, where the radon concentration is measured in a ZnS cell connected to a photomultiplier detector, and a scintillation counter. The measurement precision of the instruments is 0.1 Bq/L. A solid radium source (226Ra) with a known radioactive radon content is used for the calibration of the water radon under normal working conditions. This source is used to measure and calculate the calibration value of the instrument. In addition to radon, water temperature and spring discharge rate are measured at the spring site when the water is sampled for radon. Temperature is measured using a mercury thermometer with a resolution of 0.1°C. Discharge rate is measured using the stopwatch capacity method, i.e., the required time per unit volume of water is measured. Barometric pressure has been measured since 1997. Regional rainfall data were downloaded through the CPC Merged Analysis of Precipitation (CMAP) for the same period to evaluate its possible influence on radon in the present study.