English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals

Authors
/persons/resource/saynisch

Saynisch,  J.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/irrgang

Irrgang,  C.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mthomas

Thomas,  M.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

3120889.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Saynisch, J., Irrgang, C., Thomas, M. (2018): On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals. - Journal of Geophysical Research, 123, 3, 2305-2314.
https://doi.org/10.1002/2017JC013742


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3120889
Abstract
Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, sub‐seasonal magnetic signal.