English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Geostrophic approach to observe electromagnetic oceanic signals

Authors
/persons/resource/saynisch

Saynisch,  J.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/irrgang

Irrgang,  C.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mthomas

Thomas,  M.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Saynisch, J., Irrgang, C., Thomas, M. (2018): Geostrophic approach to observe electromagnetic oceanic signals, (Geophysical Research Abstracts ; Vol. 20, EGU2018-4716, 2018), General Assembly European Geosciences Union (Vienna 2018).


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3134907
Abstract
Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fit could be analyzed for physical properties of the ocean, e.g., the heat budget. We report when and where the EM proxy data describes the true magnetic signal sufficiently well.