Originally published as:

DOI: [10.1130/G34934.1](http://dx.doi.org/10.1130/G34934.1)
How accurate are rivers as gauges of chemical denudation of the Earth surface?

Julien Bouchez1,2 and Jérôme Gaillardet2

1GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany
2Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris-Cité, 1 rue Jussieu, 75238 Paris cedex 05, France

ABSTRACT
Examination of the behavior of oxygen and hydrogen during weathering reactions shows that river dissolved load, although widely used, is an imperfect tracer of chemical denudation. At the current state of knowledge, none of the metrics for river total dissolved loads (such as the silicate-derived total dissolved solids, $TDS_{sil} = Ca^{2+} + Mg^{2+} + Na^+ + K^+ + SiO_2$, converted or not to equivalent oxides) account, in a mechanistic manner, for the transfer of oxygen and hydrogen between the solid and fluid phase during weathering reactions. We assess that chemical denudation derived from TDS_{sil} will significantly overestimate the true chemical denudation for weathering of Ca-feldspar to kaolinite, whereas weathering of water-rich sedimentary rocks will be characterized by an underestimation of chemical denudation by TDS_{sil}. For a handful of field sites, we estimate that the bias is lower than ±10%. The sign and extent of the bias depends on the nature of bedrock and on weathering conditions. Altogether, our analysis questions the broadly accepted concept of chemical denudation rate.

INTRODUCTION
Chemical weathering is the major geological and geochemical process leading to mass transfer from the upper continental crust to the ocean. Chemical denudation of the Earth surface occurs through a global reaction network involving elements present in rocks of the continental crust, and species from the atmosphere and hydrosphere. The water molecule and protons permit the hydrolysis of chemical bonds, which releases major rock constituents such as Si, Na, K, Mg, and Ca, and leads to the incorporation of hydrogen into secondary weathering products such as oxyhydroxides, amorphous aluminosilicates, and clay minerals. Protons provided by the dissociation of H$_2$CO$_3$ (derived from CO$_2$), H$_2$SO$_4$, HCl, or HNO$_3$ are neutralized during weathering reactions. We propose here that chemical denudation is defined as the net mass loss from the Earth surface to the oceans (Lyell, 1853). Clarke (1924) was the first to use river dissolved loads to appraise the rate of solute delivery from continents to oceans. Later, several authors refined these estimates (Livingstone, 1963; Holeman, 1968; Garrels and Mackenzie, 1972; Martin and Meybeck, 1979) and introduced a series of corrections to the river solute load to discard contributions of rainwater-derived solutes and anthropogenic and biogenic inputs.

Accordingly, more recent studies (e.g., Meybeck, 1987; Edmond et al., 1995; Gaillardet et al., 1999) argued that chemical denudation of the Earth surface can be quantified from river dissolved loads. For example, in the case of rivers draining exclusively silicate rocks, the chemical denudation rate, C (typically in kg m$^{-2}$ y$^{-1}$, which can be converted to mm yr$^{-1}$), would be:

$$C = \frac{Q_{riv} \cdot TDS_{sil}}{A_{riv}} = \frac{Q_{riv}}{A_{riv}} \left(\frac{M_{Na} [Na^+]_{sil} + M_{K} [K^+]_{sil} + M_{Mg} [Mg^{2+}]_{sil} + M_{Ca} [Ca^{2+}]_{sil} + (M_{Na} + 2 \cdot M_{Ca}) [SiO_2]_{sil}}{2} \right)$$

where Q_{riv} is the time-integrated water discharge of the river (in m3 y$^{-1}$), A_{riv} is its drainage area (in m2), and TDS_{sil} quantifies the amount of total dissolved solids sourced from silicate rocks (in kg m$^{-3}$, or equivalently g L$^{-1}$). TDS_{sil} is calculated from the silicate-derived dissolved major cation concentrations (called $[X]_{sil}$, with $X = Na^+$, K^+, Mg^{2+}, and Ca^{2+}) and total concentration of SiO$_2$, which is generally derived from silica weathering. Concentrations (in mol L$^{-1}$) are weighted by the molar mass of the corresponding compounds (M_x in g mol$^{-1}$). It is assumed here that the dissolved load of other elements such as Fe, Al, P, or Mn is too low to contribute significantly to TDS_{sil}. For a large river draining mixed lithologies, the contributions of different rock types have to be taken into account in the calculation of C. For rivers draining evaporites, anions released by rock weathering shall be accounted for, and in the case of rivers draining carbonate rocks, half the bicarbonate concentration has to be included in the definition of TDS, the other half being derived from the atmosphere. If only chemical denudation associated with silicate weathering is sought, and if sulfate derived from the oxidative weathering of pyrite can be neglected, then anion concentrations can be ignored in Equation 1, as bicarbonate is only derived from atmospheric and soil CO$_2$. Bearing in mind these additional complexities at the large river scale, here we focus primarily on chemical denudation associated with silicate weathering.

While C as defined in Equation 1 clearly quantifies the specific export of major dissolved species from the catchment, its broad acceptance as a measure of chemical denudation of continents is questionable. Indeed, the concept of chemical denudation suffers from the lack of a clear definition with respect to the fate of chemical elements supplied by the fluid phase during weathering reactions. We propose here that chemical denudation is defined as the net mass loss from crustal rocks as a result of chemical weathering reactions (Fig. 1). It is thus the net effect of (1) mass loss from the lithosphere by solubilization of chemical elements, and (2) mass gain by the solids through incorporation of chemical elements (oxygen and hydrogen) derived from the atmosphere and hydrosphere. As TDS_{sil} does not necessarily account for the transfer of oxygen and hydrogen between rocks and fluids, chemical denudation cannot be quantified accurately by Equation 1. To avoid confusion, we suggest that the flux of matter quantified by TDS_{sil} should be rather called the chemical weathering rate. In the present contribution, we set out to quantify the difference between chemical denudation and chemical weathering rates.

MONOMINERALIC WEATHERING REACTIONS
In order to demonstrate that TDS_{sil} is not an accurate measure of chemical denudation, we first examine the transfer of chemical elements in a series of simple examples of weathering reactions affecting one single mineral (Table 1). All these reactions are independent of the acid species providing the protons, such as carbonic, sulfuric, or nitric acid. This simple approach helps in setting boundaries to the bias associated with TDS_{sil} as a measure of chemical denudation. For each of these reactions, we count the net release of oxygen (ΔO) and hydrogen (ΔH) from the solid phase during the weathering reaction, for each mole of initial mineral. For example, each mole of K-feldspar contains 8 atoms of oxygen and can be hydrolyzed to...
half a mole of kaolinite (reaction R3, Table 1), which contains 4.5 atoms of oxygen and 2 atoms of hydrogen. Therefore, 3.5 moles of oxygen is transferred from the solid to the fluid phase, while 2 moles of hydrogen makes the inverse journey (ΔO = 3.5 and ΔH = −2). However, if one were able to measure the dissolved load of the corresponding leaching solution, T_{Daw} would account for 4 moles of oxygen (as 2 moles of SiO$_2$ is released) per mole of K-feldspar weathered. Therefore, in this case, chemical denudation would account for 4 moles of oxygen (as 2 moles of SiO$_2$ is released) per mole of K-feldspar weathered. Thus, chemical denudation based on the fluid and the solid phase, where a positive value means a net release of oxygen (or hydrogen) to the fluid phase; T_{Daw}—mass of Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$, and SiO$_2$ released by the reaction (in grams of dissolved species released per mole of initial mineral weathered); Φ—bias in estimating denudation rates using T_{Daw} (in%; see text Equation 2). A positive value of Φ means that T_{Daw} overestimates the actual chemical denudation rate.

Reactions: K-feldspar to (R1) montmorillonite, (R2) illite, (R3) kaolinite, and (R4) gibbsite; (R5) Ca-feldspar to kaolinite; (R6) chlorite to kaolinite; (R7) Fe-pyroxene to magnetite.

Table 1. Silicate Mineral Weathering Reactions

<table>
<thead>
<tr>
<th>Equation</th>
<th>O_{res}</th>
<th>ΔO</th>
<th>ΔH</th>
<th>T_{Daw} (g mol$^{-1}$)</th>
<th>Φ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1) KAlSi$_3$O$_8$ + H$^+$ → 1/2 Al$_2$Si$_2$O$_5$(OH)$_2$ + K$^+$ + SiO$_2$</td>
<td>2</td>
<td>+2</td>
<td>−1</td>
<td>99.2</td>
<td>1.0</td>
</tr>
<tr>
<td>(R2) KAlSi$_3$O$_8$ + 2/3 H$^+$ → 1/3 KAlSi$_3$O$_8$(OH)$_2$ + 2/3 K$^+$ + 2SiO$_2$</td>
<td>4</td>
<td>+4</td>
<td>−0.66</td>
<td>146.0</td>
<td>0.45</td>
</tr>
<tr>
<td>(R3) KAlSi$_3$O$_8$ + H$^+$ + 1/2 H$_2$O → 1/2 Al$_2$Si$_2$O$_5$(OH)$_2$ + K$^+$ + 2SiO$_2$</td>
<td>4</td>
<td>+3.5</td>
<td>−2</td>
<td>159.3</td>
<td>6.3</td>
</tr>
<tr>
<td>(R4) KAlSi$_3$O$_8$ + H$^+$ + H$_2$O → Al(OH)$_3$ + K$^+$ + 3SiO$_2$</td>
<td>6</td>
<td>+5</td>
<td>−3</td>
<td>219.4</td>
<td>8.6</td>
</tr>
<tr>
<td>(R5) CaAl$_2$Si$_2$O$_6$ + 2H$^+$ + H$_2$O → Al$_2$Si$_2$O$_5$(OH)$_2$ + Ca$^{2+}$</td>
<td>0</td>
<td>−1</td>
<td>−4</td>
<td>40.1</td>
<td>49.9</td>
</tr>
<tr>
<td>(R6) Mg$_3$Al$_2$Si$_3$O10(OH)$$_2$ + 10H$^+$ → Al$_2$Si$_2$O$_5$(OH)$_2$ + 5Mg$^{2+}$ + SiO$_2$ + 7H$_2$O</td>
<td>2</td>
<td>+9</td>
<td>+4</td>
<td>181.6</td>
<td>−59.5</td>
</tr>
<tr>
<td>(R7) FeSiO$_3$ + 1/6 O$_2$ → 1/3 Fe$_2$O$_3$ + SiO$_2$</td>
<td>2</td>
<td>+1.66</td>
<td>0</td>
<td>60.1</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Note: O_{res}—oxygen atoms present in dissolved SiO$_2$ released and hence "counted" by T_{Daw} (in mole per mole of initial mineral weathered); ΔO and ΔH—oxygen and hydrogen transfers (in mole per mole of initial mineral weathered) between the fluid and the solid phase, respectively. In the case of Ca-feldspar to kaolinite (R5), an important mineral weathering reaction affecting granitic and basaltic rocks, chemical denudation is clearly overstated by T_{Daw} (Φ = 49.9%). The reaction of chlorite to kaolinite (R6), typical of sedimentary rock weathering, is associated with a large negative bias (Φ = −59.5%). Interestingly, some authors have suggested use of a modified definition of T_{Daw} to account for the loss of oxygen from the rock during chemical denudation, whereby Ca$^{2+}$, Mg$^{2+}$, Na$^+$, and K$^+$ are all expressed in mass of equivalent oxides (Stallard, 1995, 2012; West et al., 2005; Calmels et al. 2011). In most cases, with this method “too many” oxygen atoms are assumed to be released from the mineral (Table DR1 in the GSA Data Repository4).
In the following, we proceed to derive a generic formulation of the bias \(\Phi \) as a function of the stoichiometry of the silicate weathering reaction, that can be applied to single minerals or to bulk rocks.

GENERALIZATION

Monomineralic silicate weathering reactions such as those listed in Table 1, as well as bulk rock weathering reactions, can be written in a generic way. To this aim, we decompose silicate weathering into several mechanisms, each affecting one of the major components of silicates (Table DR2). Silicates contain as major oxides \(\text{SiO}_2, \text{Al}_2\text{O}_3, \text{FeO}, \text{Fe}_2\text{O}_3, \text{TiO}_2, \text{MnO}, \text{Mn}_2\text{O}_3, \text{MnO}_2, \text{P}_2\text{O}_5, \text{CaO}, \text{MgO}, \text{K}_2\text{O}, \text{Na}_2\text{O}, \text{and} \ H_2\text{O}, \) and therefore can be described following the stoichiometric formula:

\[
\left[\sum_{i \in \{1, \ldots, n\}} P_p (\text{Si}^{IV}, \text{Ti})_{x_i}, \sum_{i \in \{1, \ldots, n\}} (\text{Fe}^{III}, \text{Mn}^{III}, \text{Al})_{x_i} \right] \times \left(\text{Ca}, \text{Mg} \right) \times \left(\text{Na}, \text{K} \right) \times \text{H}_2\text{O} = \text{sil} \ (3) \]

In order to balance the positive charges of the mineral, the number of oxygen moles is \(x = 2.5p + 2(t + t + t) + 1.5(a_i + a_i + a_i) + f + m + c + 0.5(n + h) \). During weathering reactions, \(\text{Al}_2\text{O}_3, \text{Fe}_2\text{O}_3, \text{MnO}, \text{Mn}_2\text{O}_3, \text{and} \ \text{TiO}_2, \) are essentially immobile and their role in chemical denudation can be neglected in the present analysis. The other oxide components are affected by various weathering mechanisms. Any silicate weathering reaction is then a linear combination of the mechanisms affecting oxide components, as listed in Table DR2, applied to the silicate material of Equation 3:

\[
\left[\sum_{i \in \{1, \ldots, n\}} P_p (\text{Si}^{IV}, \text{Ti})_{x_i}, \sum_{i \in \{1, \ldots, n\}} (\text{Fe}^{III}, \text{Mn}^{III}, \text{Al})_{x_i} \right] \times \left(\text{Ca}, \text{Mg} \right) \times \left(\text{Na}, \text{K} \right) \times \text{H}_2\text{O} = \text{sil} \ (3) \]

In order to satisfy electroneutrality, the number of oxygen moles in the weathered solid product is \(y = 2.5(p - \gamma) + 2(t + t + t) + 1.5(a_i + a_i + a_i) + f + m + c - \varepsilon - \mu - v - \theta - \alpha + 0.5(a_i + h + \beta + \delta) \), or equivalently \(y = x - 2.5\gamma - 2(\xi - \mu) + 1.5(\varepsilon + v) - \mu - v - \theta - \alpha + 0.5(\delta + \beta) \).

From Equation 4, it can be inferred that the net number of oxygen moles solubilized during the reaction is \(\Delta O = x - y = 2.5\gamma + 2\xi + \alpha - \theta + \mu + 0.5(\beta - \delta - \varepsilon - v) \). Similarly, it is straightforward that \(\Delta H = -\delta \). If \(\Delta H_{\text{sil}} \) were measured in the leaching solution resulting from this weathering reaction, only \(2\xi \) moles of oxygen would be counted via dissolved \(\text{SiO}_2 \) for each mole of initial silicate weathered. Therefore, the bias (Equation 2) when using river load to estimate chemical denudation is

\[
\Phi = \frac{2.5\gamma + \alpha - \theta + \mu + 0.5(\beta - \delta - \varepsilon - v)}{\Delta H_{\text{sil}}} \times M_{\text{sil}} - \delta \cdot M_{\text{sil}} \times 100. \quad (5) \]

Because of the small value of the molar mass of hydrogen as compared to that of oxygen, the sign of \(\Phi \) is mainly controlled by the term between brackets. Therefore, Equation 5 shows that river loads will lead to an overestimation of chemical denudation (positive values of \(\Phi \)) if rock hydration (\(\delta \)) and/or oxidative weathering (\(\varepsilon, v, \) and \(\mu \)), which add oxygen to the solids, are important. By contrast, an underestimation of chemical denudation will be obtained if solubilization of base cations (\(\alpha, \beta, \theta, \) and \(\gamma \)) is the major process, as it removes oxygen from the source rock. Each of these coefficients is a priori independent of the others. These coefficients will most likely depend on the type of source mineral and/or rock, and on the weathering regime that will condition the type of secondary phase precipitating (Table 1). In the next section, we estimate the value of \(\Phi \) in several natural settings, using reported data on the chemistry of soil profiles.

APPLICATION TO NATURAL SETTINGS

We now estimate the error associated with chemical denudation rates calculated from river dissolved chemistry. This can be done provided that the stoichiometric coefficients and \(\Delta H_{\text{sil}} \) of Equation 5 are measured. A first possibility would be to use published river dissolved loads to estimate both \(\Delta H_{\text{sil}} \) and the coefficients of Equation 5. However, it is not straightforward, if not impossible, to determine the coefficients \(\varepsilon \) and \(\delta \) (associated with Fe and Mn oxidation and OH incorporation, respectively) from river dissolved loads. A second option is to compare the chemical composition of source rock and solid weathering products. While it is virtually impossible to determine the coefficients \(\delta \) and \(\varepsilon \) from the chemistry of river-borne solids (as the available data usually does not comprise hydrogen content, oxidation state of Fe), this approach can be performed using data on soil chemistry and associated bedrock for a handful of well-characterized weathering profiles, such as Critical Zone Observatories. In these cases, \(\Delta H_{\text{sil}} \) in Equation 5 can be predicted from the amount of soluble cations (Si, Ca, M, Na, K) lost between bedrock and soil (per kilogram of bedrock weathered, for example), rather than measured in the dissolved compartment. Such a predicted value of \(\Delta H_{\text{sil}} \) characterizes a dissolved load that is the chemical complement of the soil over the time scale of the formation of the weathering profile. Therefore, the predicted \(\Delta H_{\text{sil}} \) value will match the measured \(\Delta H_{\text{sil}} \) in the water draining the weathering profile only if the considered weathering system is operating at steady state. Nevertheless, the present approach only requires the predicted \(\Delta H_{\text{sil}} \) value in order to estimate \(\Phi \), and does not require that the system is actually operating at steady state (the latter being one of the central concepts in weathering and erosion studies). We identified four Critical Zone Observatories for which the required data to estimate \(\Phi \) from Equation 5 is reported: Luquillo (Rio Icacos watershed, Puerto Rico; White et al., 1998), Panola (Georgia, USA; White et al., 2001), Nsimi (Cameroon; Braun et al., 2012), and Susquehanna Shale Hills (Pennsylvania, USA; Jin et al., 2010).

Details on the calculations are provided in the Data Repository, and the results are listed in Table DR3 and plotted in Figure 2. In Luquillo and Panola, values for \(\Phi \) of \(-5\%\) are calculated, while in Nsimi, \(\Phi \) is \(4\%\). However, in Shale Hills, a value of \(\Phi = -11\%\) is obtained and is mainly driven by \(\text{H}_2\text{O} \) loss from the metastablebedrock (Table DR3; Fig. 2). The bias resulting from the use of dissolved load to estimate chemical denudation was also calculated based on \(\Delta H_{\text{sil}} \) expressed as oxides (e.g., West et al., 2005). In most cases, this calculation results in an overestimate of chemical denudation, as “too many” oxygen atoms are accounted for by \(\Delta H_{\text{sil}} \) (Table DR3).

CONCLUSION

Following our findings, at the current state of knowledge the main concern on the validity of reported chemical denudation rates is likely not the behavior of oxygen and hydrogen. Uncertainties on solute sources (atmosphere, human activities, carbonates, evaporites, or silicate rocks) and hydrological fluxes are certainly larger. Regarding estimates of total (i.e., including both physical and chemical) denudation rates from river loads, particulate fluxes are the main source of uncertainty. However, the definition of physical denudation also deserves examination. Indeed, if physical denudation is defined as the mass or volume of upper crust eventually exported as solids, this number is different from the mass of sediment exported from a weathering system (soil profile or river basin), as this sediment mass also contains oxygen and hydrogen atoms originally supplied by the fluids and not by the rock (Fig. 1). A viable alternative to retrieve accurate estimates of total denudation rates from river dissolved loads is...
divided the dissolved flux of a given soluble element not incorporated in solids by its concentration in bedrock (Turner et al., 2003; Mortatti and Probst, 2003; Stallard, 2012).

Extrapolating this analysis, weathering of basalts and granitic rocks under fast denudation, during which weathering of Ca-feldspar to kaolinite should prevail, will be characterized by an underestimation of chemical denudation by TDS$_\text{Na}$ (Table 1). By contrast, chemical denudation in river basins underlain by water-rich meta-sedimentary rocks will have much higher denudation than suggested by their river dissolved loads alone (Table 1; Table DR3), because the release of the water molecule from the rock is not accounted for by TDS$_\text{Na}$. In the case of organic-rich sedimentary rocks, oxidation of organic carbon and pyrite will lead to an additional mass loss from the solid that is not measurable using TDS$_\text{Na}$. Conversely, addition of water to the residual solid via clay swelling will lead to a mass gain of the solid phase, again invisible to TDS$_\text{Na}$. These observations are of particular significance at the global scale as shales represent such a large portion of the continental crust undergoing denudation.

Our analysis has fundamental implications on the way denudation rates should be defined, and on the concept of chemical denudation itself. Many important scientific challenges are related to these findings, such as the oxygen and hydrogen geological cycles, the role of weathering in Earth’s surface lowering, or the intimate mechanisms of chemical weathering.

ACKNOWLEDGMENTS

This study greatly benefited from comments from R.A. Berner, D. Calmels, C. Dessert, A. Galy, Y. Goddéris, F. Guyot, P. Louvat, M. Lopker, E. Tipper, J. Schott, R.F. Stallard, J. Viers, and A.J. West. The participation in the poll, “What is chemical denudation?,” was much appreciated.

REFERENCES CITED

Manuscript received 12 July 2013
Revised manuscript received 27 October 2013
Manuscript accepted 3 November 2013

Printed in USA