The Mérida Andes of Venezuela: Magnetotelluric forward modelling and comparison with real data

Cruces-Zabala, J.1,2,3, Ritter, O.1,2, Weckmann, U.1,4, Tietze, K.1,3, Schmitz, M.1

1 GeoForschungsZentrum Potsdam, 2 Venezuelan Foundation for Seismological Research, 3 Freie Universität Berlin, 4 Potsdam University

Abstract

The interaction of the Caribbean and South American plate in the western part of Venezuela and its relationship with the Venezuelan Andes, is not well understood from a geophysical point of view. The aim of the project is to develop a geodynamic model of the Mérida Andes and Western Venezuela, employing a wide range of geophysical methods such as gravity, seismology, seismic, GPS, MT and others.

MT data acquisition and processing

Between March and April 2015 a total of 72 MT stations were acquired across the Venezuelan Andes

Acquisition settings:
- 5–3 km site spacing
- 5-component MT stations
- Sampling rate: 25 kHz (10 min/day) – 1250 Hz (10 min/24h) – 50 Hz (continuous), using S.P.A.M. Mk IV.
- Recording time: 3 days/site.
- Remote Reference Station approx. 300 km east of profile.

Data processing

MT transfer functions were processed using single site and remote reference processing techniques.

Acknowledgements

This project was carried out with the funding of the Integrated Geosciences of the Mérida Andes Project (GIAME) (FONACIT-201103202) and the specific agreement PVGSA – FUNVISIS (12/09/2012), as well as a cooperation agreement between GFZ-Potsdam – FUNVISIS (07/21/2013). This work would not have been possible without all the hard work from the students and personal from USG, UCV, PDVSA, FUNVISIS and GFZ-Potsdam.

Summary

- Off-profile structures have strong influence on MT profile data: inversion strategy based on 3D modelling with 3D control and 3D inversion with geophysical content.
- The interaction of the Caribbean Sea has little influence (Fig. 5).
- Considering topography is important.

1D forward modelling

1D forward models were developed to better understand the influence of far away structures and the effect of topography.
- Models were created on 3D grid (version 2.3.4) and NOEM (Biggert & Kelbert 2012, Meqbel 2009, Kelbert et al. 2014) with varying structural and topographic conditions.
- Topography in the survey area varies from 0 m to 3600 m a.s.l.

Data analyses

- Dimensionality and directionality analysis:
 - Phase tensor (PT) (Caldwell et al., 2004) were used to describe the surface complexity of the area.
 - PT data values deviating from zero and variable orientation of PT ellipses indicate a 3D response for most of the sites towards medium/long periods.
 - A strike analysis using the algorithm of Becken & Burkhardt (2004) suggest a regional electrical strike of N 54° E.
- Data indicates that there is more than one strike direction varying from north to south along the profile.

References