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Abstract 8 

Regionalization and pooling stations to form homogeneous regions or communities are essential 9 

for reliable parameter transfer, prediction in ungauged basins, and estimation of missing 10 

information. Over the years, several clustering methods have been proposed for regional 11 

analysis. Most of these methods are able to quantify the study region in terms of homogeneity 12 

but fail to provide microscopic information about the interaction between communities, as well 13 

as about each station within the communities. We propose a complex network-based approach to 14 

extract this valuable information and demonstrate the potential of our approach using a rainfall 15 

network constructed from the Indian gridded daily precipitation data. The communities were 16 

identified using the network-theoretical community detection algorithm for maximizing the 17 

modularity. Further, the grid points (nodes) were classified into universal roles according to their 18 

pattern of within- and between-community connections. The method thus yields zoomed-in 19 

details of individual rainfall grids within each community. 20 
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1. Introduction 22 

Reliable and accurate information about precipitation is essential for most hydrological studies. 23 

For example, precipitation observations are required for the design of hydraulic structures, flood 24 

estimation and forecasting, assessment of water availability, or climate impact studies. However, 25 

in most situations, raingauges are scarce, requiring knowledge about how precipitation 26 

characteristics at neighboring stations are related. These interrelationships can be viewed in a 27 

statistical sense (e.g. by applying correlation analysis), in a physical sense (as in dynamical 28 

meteorology), or in a topological sense (as in complex network analysis). Knowledge of these 29 

interrelationships will be crucial for various purposes, including (1) applying 30 

interpolation/extrapolation techniques to generate rainfall at locations where raingauge 31 

measurements are not available (Yang et al., 2015), (2) filling gaps in historical rainfall records 32 

using available rainfall observations at neighboring stations (Jha et al., 2015), (3) determining the 33 

optimal density and locations for the installation of new raingauges (Mishra and Coulibaly, 2009; 34 

Pardo-Igúzquiza, 1998), and (4) analysing regional flood frequency (Hassan and Ping, 2012; 35 

Smith et al., 2015; Zrinji and Burn, 1994, 1996).  36 

Even though there is a plethora of methods available for identifying homogeneous 37 

regions, such as clustering algorithms (Agarwal et al., 2016; Hsu and Li, 2010), principal 38 

component analysis (Darand and Mansouri Daneshvar, 2014), region-of-influence approach 39 

(Zrinji and Burn, 1994, 1996), or multiple regression (Sivakumar et al., 2015), there are some 40 

important challenges which need to be addressed.  41 

(i) A common assumption in studies (Razavi and Coulibaly, 2013; Salinas et al., 2013) 42 

dealing with interpolation/extrapolation, missing values and prediction in ungauged 43 

basins (PUB) is that the variables of interest, such as precipitation characteristics, at 44 

nearby points are more closely related than those at distant points, as described by 45 
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(Tobler, 1970) in his ‘First Law of Geography’. This assumption is also the foundation of 46 

geostatistics, which in turn is fundamental to many classical approaches to spatial data 47 

analysis and interpolation throughout hydrology and other geoscientific disciplines. 48 

While this assumption is often reasonable, it may not hold in every situation, especially in 49 

regions with complex topography (Jha et al., 2015). In such areas, statistics of rainfall 50 

recorded at neighboring stations can significantly vary due to the high topographic 51 

gradients and, hence, changes in rainfall patterns between them (Berndtsson, 1988; Li et 52 

al., 2014; Niu, 2013; Özger et al., 2010). 53 

(ii) A significant disadvantage of these methods is that the selection of factors for identifying 54 

the similarity in rainfall patterns is highly subjective. They rely on the preconceived 55 

notion of the existence of linear relationship between the factors that influence the 56 

precipitation in a region. For instance, in PCA method the subjectivity is introduced in 57 

terms of  extraction method, rotation method, number of compoenents to be retined etc. 58 

For more details refer to Saxena et al., 2017. 59 

(iii) More importantly, the traditional methods for pooling stations within homogeneous 60 

regions are not capable of unraveling the role of each raingauge station within the 61 

community. This includes the interactions within the community, the role of the stations, 62 

and the strength and number of inter- and intra-community connections.  63 

The main aim of this paper is to address this last point by proposing a network-based approach 64 

for unravelling the role of each node in a community. This microscopic analysis is essential to 65 

understand the role of each of the member stations of the community and is very useful in many 66 

applications. For example, by knowing the connections and their strength, it is possible to reduce 67 

the uncertainty of predictions at ungauged locations by including only those stations that have 68 
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strong connections in that community. Similarly, the reliability of filling gaps in observational 69 

time series can be improved by identifying the stations that share strong connections with that 70 

particular station. The relative importance of the stations in the community will also help in 71 

understanding the connection between the communities and is particularly useful for selecting 72 

stations that share characteristics with more than one community.   73 

In the context of connections within rainfall systems, recent developments in network theory, 74 

especially regarding complex networks, have been found useful for identifying the spatial 75 

connections in rainfall (Malik et al., 2012). Steinhaeuser et al. (2010) explored the utility of 76 

complex networks to analyze climate data, i.e., air temperature, pressure, relative humidity and 77 

perceptible water. They used the WalkTrap community detection algorithm to identify 78 

communities. They concluded that these communities have a climatological interpretation and 79 

that alterations in community structure can be an indicator of climatic events. Tsonis et al. (2011) 80 

applied complex networks and modularity based community detection to observed and simulated 81 

model data and concluded that the complexity of the system condenses into small interacting 82 

components called communities. This approach provided information about the nature of 83 

different climate subsystems. Jha et al. (2015) demonstrated the use of the clustering coefficient, 84 

a complex network based measure (Stolbova et al., 2014), on two rainfall networks in Australia. 85 

They attempted to relate the strength of spatial connections in rainfall to topographic and rainfall 86 

properties, towards identifying dominant factors governing spatial connections and for offering a 87 

better physical interpretation on spatial rainfall variability. Eustace et al. (2015) identified 88 

community structures by proposing local community neighborhoods ratio algorithm and showed 89 

that the algorithm detects well-defined communities in networks by a wide margin. Conticello et 90 

al. (2017) applied the Louvain community detection algorithm to identify clusters of rainfall 91 
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stations using the concept of event synchronization and Self Organizing Maps. Even though the 92 

study of Halverson and Fleming (2015) on streamflow regionalization is not directly relevant for 93 

rainfall, it showed that the choice of the community detection algorithm does not strongly impact 94 

the community structure. 95 

All above-mentioned studies have used complex network based community detection algorithm 96 

to identify homogenous regions but little attention has been paid to the different characteristics or 97 

roles of each of the member stations of a community. Although Halverson and Fleming, 2015 98 

have identified the high priority stations, based on high betweenness centrality values, but have 99 

not discussed the role of other stations. This study shows that the microscopic analysis of 100 

homogeneous regions provides additional insights into the behavior and dynamics of single 101 

stations within the homogeneous region, which can be vital for many engineering and water 102 

management purposes. 103 

This study builds on emerging ideas in the very fast-evolving field of complex network theory 104 

and contributes to work in hydro-monitoring system design. Although studies in different fields, 105 

such as physics (Quian Quiroga et al., 2002b; Quiroga et al., 2000) or neurology (Rubinov and 106 

Sporns, 2010; Zhou et al., 2007), have seen immense use of complex network theory, event 107 

synchronization, and Z-P space, our study is the first combined application of these methods in 108 

hydrology to date. It clearly demonstrates the large potential of these methods in hydrology.  109 

As advancement to the research in the application of complex networks in rainfall network 110 

analysis, we use a network-based measure to provide a comprehensive analysis of the stations in 111 

a community and their roles. For this, we apply the concept of cartographic representation of 112 

networks by Guimerà and Amaral (2005). The proposed approach is demonstrated using the 113 

synthetic network and then applied to the Indian Precipitation gridded precipitation dataset. The 114 
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paper is organized in the following manner. Section 2 describes the basic aspects of network 115 

construction, and network measurement and Section 3 briefly discusses the methods used in the 116 

study. The application of the methodology and the subsequent results obtained are discussed in 117 

detail in Section 4. The conclusions are reported in Section 5.  118 

2. Methods 119 

2.1 Network definition 120 

A network or a graph is a collection of entities (nodes, vertices) interconnected by lines (links, 121 

edges) as shown in Fig. 1. These entities could be anything from humans defining social 122 

networks (Arenas et al., 2008), computers in web networks (Zlatić et al., 2006), neurons of the 123 

brain (Pfurtscheller and Lopes da Silva, 1999; Zhou et al., 2007), streamflow stations defining 124 

hydrological networks (Halverson and Fleming, 2015; Sivakumar and Woldemeskel, 2014) to 125 

raingauge stations defining climate networks (Stolbova et al., 2014; Malik et al., 2012; 126 

Rheinwalt et al., 2016). 127 

Formally, a network or graph is defined as an ordered pair 𝐺𝐺 = (𝑁𝑁, 𝐸𝐸), containing a set of 128 

nodes 𝑁𝑁 = {𝑁𝑁1, 𝑁𝑁2, … .𝑁𝑁𝑁𝑁} together with a set E of edges  {𝑖𝑖, 𝑗𝑗} which are 2-element subsets of 129 

N. In this work, we consider undirected and unweighted graph (𝐺𝐺), where only one edge can 130 

exist between a pair of nodes and self-loops of the type {𝑖𝑖, 𝑖𝑖} are not allowed. Hence, edges 131 

simply show connections between nodes, and each edge can be traversed in either direction. This 132 

type of graph can be represented by the symmetrical adjacency matrix (Stolbova et al., 2014) 133 

𝐴𝐴𝑖𝑖,𝑗𝑗 = �
0 {𝑖𝑖, 𝑗𝑗} ∉ 𝐸𝐸
1 {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸  

(1) 

Figure 1 is a simple example of an undirected and unweighted network. In general, large graphs 134 

with non-trivial topological characteristics, used to represent real systems, are called complex 135 

networks. To define whether a link between two nodes exists, any similarity measure can be 136 
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used, such as correlation (Donges et al., 2009; Jha et al., 2015), synchronization (Conticello et 137 

al., 2017; Malik et al., 2012; Stolbova et al., 2016) or mutual information (Paluš, 2018). 138 

Depending on the topological structure of the network, groups of nodes can be pooled together 139 

forming communities (Jha et al., 2015). 140 

 141 

Figure 1. The topology of the sample network used to explain the network construction and universal role of 142 

a node. Different colors represent different communities, i.e., community 1 (red) and community 2 (blue). 143 

Nodes 4 and5 are the hybrid nodes connecting their community to the other community. Nodes 1 and 6 are 144 

the hubs of their respective community.  145 

 146 

2.2 Event synchronization 147 

We use event synchronization (Stolbova et al., 2014) to define whether a link between two nodes 148 

exists. Event synchronization (ES) has been specifically designed to calculate nonlinear relations 149 

between timeseries with events defined on them. A simple algorithm proposed by (Quian 150 

Quiroga et al., 2002a) can be used for any time series for which we can define events, such as 151 

single-neuron recordings, epileptiform spikes in electroencephalograms (EEG), heartbeats, stock 152 

market crashes, or rainfall events. When dealing with signals of a different character, the events 153 
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could be defined differently in each time series, since their common cause might manifest itself 154 

differently in different time series. ES has advantages over other time-delayed correlation 155 

techniques (e.g., Pearson lag correlation), as it uses a dynamic (not fixed) time delay (Agarwal et 156 

al., 2018, 2017). The latter refers to a time delay that is adjusted according to the two time series 157 

being compared, which allows its application to different situations. Another advantage of ES is 158 

that it can be applied to non-Gaussian data (Stolbova et al., 2014; Tass et al., 1998).  Having its 159 

roots in neuroscience, ES only considers events beyond a threshold and ignores the absolute 160 

magnitude of events, which could be a challenge to incorporate in future, work. 161 

A number of modifications have been proposed to the basic algorithm, considering various issues 162 

such as boundary effects or bias toward the number of events (Agarwal et al., 2017; Rheinwalt et 163 

al., 2016). The modified algorithm proposed by (Rheinwalt et al., 2016) can be explained as 164 

follows: An event above a threshold 𝛼𝛼 percentile occurs in the signals 𝑥𝑥(𝑡𝑡)and 𝑦𝑦(𝑡𝑡) at times𝑡𝑡𝑙𝑙𝑥𝑥 165 

and 𝑡𝑡𝑚𝑚
𝑦𝑦  where 𝑙𝑙 = 1,2,3,4 …𝑆𝑆𝑥𝑥, 𝑚𝑚 = 1,2,3,4 …𝑆𝑆𝑦𝑦 and within a time lag ±𝜏𝜏𝑙𝑙𝑙𝑙

𝑥𝑥𝑥𝑥  which is defined 166 

as (Stolbova et al., 2014) 167 

𝜏𝜏𝑙𝑙𝑙𝑙
𝑥𝑥𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑙𝑙+1𝑥𝑥 − 𝑡𝑡𝑙𝑙𝑥𝑥, 𝑡𝑡𝑙𝑙𝑥𝑥 − 𝑡𝑡𝑙𝑙−1𝑥𝑥 , 𝑡𝑡𝑚𝑚+1

𝑦𝑦 − 𝑡𝑡𝑚𝑚
𝑦𝑦 , 𝑡𝑡𝑚𝑚

𝑦𝑦 − 𝑡𝑡𝑚𝑚−1
𝑦𝑦 }/2 (2) 

where 𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑦𝑦 are the total number of events (greater than the threshold 𝛼𝛼) in the signals 𝑥𝑥(𝑡𝑡) 168 

and 𝑦𝑦(𝑡𝑡), respectively. This definition of the time lag helps to separate independent events, 169 

which in turn allows to take into account the fact that different processes are responsible for the 170 

generation of events. To count the number of times an event occurs in 𝑥𝑥(𝑡𝑡) after it appears in 171 

𝑦𝑦(𝑡𝑡) and vice versa, 𝐶𝐶(𝑥𝑥|𝑦𝑦)and 𝐶𝐶(𝑦𝑦|𝑥𝑥) are defined as follows: 172 

𝐶𝐶(𝑥𝑥|𝑦𝑦)  = � � 𝐽𝐽𝑥𝑥𝑥𝑥

𝑆𝑆𝑦𝑦

𝑚𝑚=1

𝑆𝑆𝑥𝑥

𝑙𝑙=1 

 
 

(3) 
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And 
 

𝐽𝐽𝑥𝑥𝑥𝑥 =  

⎩
⎨

⎧1           𝑖𝑖𝑖𝑖  0 < 𝑡𝑡𝑙𝑙𝑥𝑥 − 𝑡𝑡𝑚𝑚
𝑦𝑦 < 𝜏𝜏𝑙𝑙𝑙𝑙

𝑥𝑥𝑥𝑥

1
2

           𝑖𝑖𝑖𝑖                       𝑡𝑡𝑙𝑙𝑥𝑥 = 𝑡𝑡𝑚𝑚
𝑦𝑦

0           𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,                                  

 

 
(4) 

𝐶𝐶(𝑦𝑦|𝑥𝑥) is defined accordingly, and from these quantities we obtain: 173 

𝑄𝑄𝑥𝑥𝑥𝑥 =
𝐶𝐶(𝑥𝑥|𝑦𝑦) + 𝐶𝐶(𝑦𝑦|𝑥𝑥)

�(𝑆𝑆𝑥𝑥 − 2)(𝑆𝑆𝑦𝑦 − 2)
 

 
(5) 

𝑄𝑄𝑥𝑥𝑥𝑥 is a measure of the strength of the event synchronization between 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡). It is 174 

normalized to 0 ≤ 𝑄𝑄𝑥𝑥𝑥𝑥 ≤ 1. This implies that𝑄𝑄𝑥𝑥𝑥𝑥 = 1 for perfect synchronization between 𝑥𝑥(𝑡𝑡) 175 

and  𝑦𝑦(𝑡𝑡).    176 

2.3 Network construction 177 

To construct a rainfall network, each grid cell is considered as a node and links between each 178 

pair of nodes are setup based on the statistical relationship between them. The similarity measure 179 

used is the ES which gives a 𝑄𝑄 matrix (Eq.5). Applying a certain threshold (𝜃𝜃) Ron the Q matrix 180 

(Eq.5), we yield an adjacency matrix (rewriting Eq. 1) 181 

𝐴𝐴𝑖𝑖,𝑗𝑗 =  �1,    𝑖𝑖𝑖𝑖 𝑄𝑄𝑖𝑖,𝑗𝑗  ≥  𝜃𝜃𝑖𝑖,𝑗𝑗
𝑄𝑄

0,                   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,
 

 
(6) 

Here, 𝜃𝜃𝑖𝑖,𝑗𝑗
𝑄𝑄 = 95𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a chosen threshold, and 𝐴𝐴𝑖𝑖,𝑗𝑗 = 1 denotes a link between the 𝑖𝑖𝑡𝑡ℎ 182 

and 𝑗𝑗𝑡𝑡ℎnodes and 0 denotes otherwise. The adjacency matrix represents the connections in the 183 

rainfall network. In this study, we use an undirected network, meaning we do not consider which 184 

of the two synchronized events happened first, in order to avoid the possibility of misleading 185 

directionalities of event occurrences between nodes that are topographically close to one another.  186 
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2.4 Network measures 187 

To analyze and quantify the topological features of complex networks, a large number of 188 

network measures have been introduced (Blondel et al., 2008; Malik et al., 2016). We use the 189 

within-module degree Z-score (𝑍𝑍) and the participation coefficient (𝑃𝑃) (Guimerà and Amaral, 190 

2005) to investigate the role of individual nodes within a community. 𝑍𝑍 identifies hubs and non-191 

hubs within the community. Hubs are nodes with a significantly larger number of links compared 192 

to the other nodes in the network. 𝑃𝑃 is a measure of the diversity of the connections between 193 

individual nodes and identifies to which extent a node has intra-community or inter-community 194 

links.  195 

The within-module degree (𝒁𝒁𝒊𝒊 or Z-score) is a within-community version of degree centrality 196 

(total number of link of any node) and shows how well a node is connected to other nodes in the 197 

same community. It is estimated as (Guimer and Amaral, 2005) 198 

𝑍𝑍𝑖𝑖 =
𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑠𝑠𝚤𝚤����
𝜎𝜎𝑘𝑘𝑠𝑠𝑖𝑖

 

 (7) 
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where 𝑲𝑲𝒊𝒊 is the total number of links (degree) of node 𝒊𝒊 in the community𝒔𝒔𝒊𝒊, 𝑲𝑲𝒔𝒔𝒊𝒊 �����is the average 199 

degree of all nodes in the community 𝒔𝒔𝒊𝒊, and 𝝈𝝈𝒌𝒌𝒔𝒔𝒊𝒊 is the standard deviation of 𝑲𝑲 in 𝒔𝒔𝒊𝒊. Since two 200 

nodes having the same Z-score may play different roles within the community, this measure is 201 

often combined with the participation coefficient 𝑷𝑷𝒊𝒊. 202 

The participation coefficient (𝑷𝑷𝒊𝒊) compares the number of links of node i to nodes in all 203 

communities with the number of links within its own community. We define the 𝑷𝑷𝒊𝒊 of node 𝒊𝒊 as 204 

(Guimer and Amaral, 2005) 205 

𝑃𝑃𝑖𝑖 = 1 −� �
𝑘𝑘𝑖𝑖𝑠𝑠𝑗𝑗
𝑘𝑘𝑖𝑖
�
2𝑁𝑁𝑀𝑀

𝑠𝑠𝑗𝑗=1
 

 (8) 

where 𝑘𝑘𝑖𝑖𝑖𝑖𝑗𝑗  is the number of links of node 𝑖𝑖 to nodes in community 𝑠𝑠𝑗𝑗, and 𝑘𝑘𝑖𝑖 is the total number 206 

of links (degree) of node 𝑖𝑖. 𝑁𝑁𝑀𝑀 represent the number of communities in the network. The 207 

participation coefficient of a node is therefore close to one if its links are uniformly distributed 208 

among all the communities, and zero if its entire links are within its own community because in 209 

later case Kisj = Ki hence Pi = 0. 210 

2.5 Community detection 211 

Complex networks often show subsets of nodes that are densely interconnected. These subsets 212 

are called communities. The community structure of a complex network provides insight into the 213 

network (Girvan and Newman, 2002). For instance, different communities within a network may 214 

have very different properties compared to the averaged properties of the complete network.  215 

There exist several community detection approaches aiming at stratifying the nodes into 216 

communities in an optimal way (see (Fortunato, 2010) for an extensive review). The question 217 

which community detection algorithm should be used is difficult to answer. However, it has been 218 
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found that the choice of the community detection algorithm has a small impact on the resultant 219 

communities in geophysical data science studies (Halverson and Fleming, 2015). In this study, 220 

we use the Louvain method which maximizes the modularity to find the optimal community 221 

structure in the network. The optimal community structure is a subdivision of the network into 222 

non-overlapping groups of nodes, which maximizes the number of within-group edges and 223 

minimizes the number of between-group edges (Blondel et al., 2008; Rubinov and Sporns, 224 

2011).  225 

Modularity is defined, besides a multiplicative constant, as the number of edges falling within 226 

groups minus the expected number in an equivalent network with edges placed at random. 227 

Positive modularity values suggest the presence of communities. Thus, one can search for 228 

community structures by looking for the network divisions that have positive, and preferably 229 

large, modularity values (Newman, 2004). Modularity (M) is calculated as: 230 

𝑀𝑀 =
1

2𝑚𝑚
��𝐴𝐴𝑖𝑖𝑖𝑖 −

𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

�
𝑖𝑖,𝑗𝑗

𝛿𝛿(𝐶𝐶𝑖𝑖𝐶𝐶𝑗𝑗) 
  

(9) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 represents the number of edges between 𝑖𝑖 and 𝑗𝑗, 𝑘𝑘𝑖𝑖 = ∑  𝐴𝐴𝑖𝑖𝑖𝑖𝑗𝑗  is the sum of the number 231 

of the edges (degree) attached to vertex 𝑖𝑖, 𝐶𝐶𝑖𝑖 is the community to which vertex 𝑖𝑖 is assigned, the 232 

𝛿𝛿 − function 𝛿𝛿(𝑢𝑢, 𝑣𝑣) is 1 if 𝑢𝑢 = 𝑣𝑣 and 0 otherwise, and 𝑚𝑚 = 1
2� ∑ 𝐴𝐴𝑖𝑖𝑖𝑖.𝑖𝑖𝑖𝑖  233 

Equation (9) is solved using the two-step iterative algorithm proposed by Blondel et al. (2008), 234 

also known as the Louvain method. The first step consists in optimizing the modularity by 235 

permitting only a local modification of communities; in the second step, the communities 236 

identified are pooled to assemble a new network of communities. High modularity networks are 237 

densely linked within communities but sparsely linked between communities. The algorithm 238 

stops when the highest modularity is achieved. The algorithm was implemented using the Brain 239 
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Connectivity Toolbox (BCT), provided by (Rubinov and Sporns, 2010), and is available 240 

at https://sites.google.com/site/bctnet/.  241 

2.6 Z-P space approach 242 

Following the approach proposed by Guimerà and Amaral (2005), we calculate for each node the 243 

participation coefficient 𝑃𝑃𝑖𝑖 and the within-module degree 𝑍𝑍𝑖𝑖, and plot all nodes onto the Z-P 244 

space. Both measures are calculated once the network communities have been determined 245 

(Guimerà and Amaral, 2005; Guimera et al., 2007). Guimerà et al. (2007) propose to divide the 246 

𝑍𝑍 − 𝑃𝑃 space into seven classes (R1 – R7) which express the different roles of the nodes (Table 247 

1). In the first step, the nodes are broadly categorized as hubs or non-hubs using the within-248 

module degree (𝑍𝑍). Nodes with 𝑍𝑍 ≥  2.5 are classified as community hubs and nodes with 𝑍𝑍 <249 

 2.5 as non-hubs. At the second level, the hub and non-hub nodes are further characterized using 250 

the participation coefficient. Hence, each node is assigned to one of these seven classes.  251 

 252 

Table 1.Definition and interpretation of R classes according to Guimerà et al. (2007), 253 

defining the role of each node. 254 

R-
Class  

Z P Remarks Characteristics of R class  

R1 <2.5 ≈ 0 ultra-peripheral nodes, i.e.,nodes 
with almost all their links within 
their community (P ≈0). 

representative nodes (almost 
all intramodular links) 

 

R2 <2.5 0< P ≤ 0.625 peripheral nodes, i.e.,node has at 
least 60% its links within the 
community. 

node has more intramodular 
links than intermodular links 

 

R3 <2.5 0.625< P≤ 0.80 satellite connectors, i.e.,nodes have 
half of its connection outside the 
community. 

node has more intermodular 
links than intramodular links 

 

R4 <2.5 P > 0.80 kinless nodes, i.e., nodes with a 
maximum of links (>70%)outside 
the community. 

wrongly assigned nodes  

https://sites.google.com/site/bctnet/
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R5 >2.5 P ≤ 0.30 provincial hubs,i.e.,hubs with the 
vast majority of links within their 
community. 

local centers, representative 
nodes if 𝑃𝑃 ≈ 0 

 

R6 >2.5 0.30 < P ≤ 0.75 connector hubs,i.e., hubs with 
atleast half of its links toother 
community. 

hybrid nodes (connecting two 
different communities) 

 

R7 >2.5 P > 0.75 
 

global hubs,i.e.,hubs with links 
homogeneously distributed among 
all community. 

global connector nodes hence 
cannot be assigned to the 
single community. 

 

 255 
Nodes in the classes R1 and R5 with 𝑃𝑃 ≈ 0 have almost all links within the own community. 256 

Since class R5 have provincial hubs (Table 1) which contain both intracommunity and 257 

intercommunity links, the limit on the participation coefficient (𝑃𝑃 ≈ 0) helps to identify nodes 258 

that have almost all intracommunity links. These nodes with almost all intracommunity links 259 

(𝑃𝑃 ≈ 0) are local centers in the region and can only be selected as a representative node of the 260 

community (Halverson and Fleming, 2015).  261 

Nodes in the classes R2 and R3 are peripheral and satellite connectors respectively (Table 1). 262 

Both the class contains hybrid non-hub nodes which generally connect two different 263 

communities. The only difference between R2 and R3 is that R3 nodes have more 264 

intercommunity links (outside of its own community). 265 

Similarly, R6 nodes represent the nodes that have many intercommunity links but are hubs. In 266 

the given community we interpret them as hybrid hubs which have a maximum connection 267 

outside of its own community. Kinless nodes (R4) have the greatest proportion of links outside 268 

the community and are interpreted as wrongly assigned nodes in the community. If there exist 269 

many R4 nodes in the community a reformation of the communities or reallocation of such nodes 270 

to appropriate community is suggested. The nodes in class R7 maintain homogeneous links with 271 

all the communities. We surmise that such nodes may not be clearly associated with a single 272 
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community hence termed as the global hubs or global connectors (nodes connecting many 273 

different climate sub-systems). 274 

The above characterization of nodes is important as it helps in understanding their specific roles 275 

in terms of non-hubs, hubs, local centers, hybrid nodes, global hubs. In the context of climate 276 

systems, local centers correspond to nodes which are important for local climate phenomena, 277 

while bridges correspond to nodes which connect different subsystem of climatology, leading to 278 

non-local interaction (teleconnections). 279 

 280 

Figure 2. Nodes of the sample network of Figure 1 plotted onto the Z-P-space. Nodes 1 and 6 (both encircled) 281 

are the representative stations for community 1 and 2, respectively. Nodes 4 and 5 in community 1 and 2, 282 

respectively, are the only hybrid nodes and are thus in the R2 class. All other nodes have only 283 

intracommunity links and are assigned to the R1 class. Many stations have the same values for Z and P and 284 

are thus on top of each other in the R1 class. Nodes 1 and 6 are the local center (𝑷𝑷 ≈ 𝟎𝟎)and are thus in the R5 285 

and R1 class respectively. 286 

Using the classification of Table 1, Figure 2 shows the 𝑍𝑍 − 𝑃𝑃 space for the sample network of 287 

Figure 1 and the assigned R classes. Node 1 is a hub in community 1, having all of its nodes 288 

within the community, and hence can be considered as a representative station. Node 4 of 289 

community 1 (non-hub) has intercommunity links and thus falls in the R2 class. For community 290 
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2, station 6 is a representative node with all links within the community, and the non-hub node 5 291 

has intercommunity links falling in class R2. There is no kinless node (R4 and R7) in both 292 

communities. 293 

If there exists a node fully unsynchronized to the other nodes in the network, i.e. there are no 294 

links to other nodes, the proposed 𝑍𝑍 − 𝑃𝑃 approached will detect this station given its unique 295 

characteristcis. This unsynchronized station will lie at the origin of 𝑍𝑍 − 𝑃𝑃 space and will fall in a 296 

community on its own. As an extreme example, one might imagine that in a meteorological sub-297 

region, characterized by fine-scale convective thunderstorms with sparse raingauge coverage, 298 

precipitation event synchronization across all raingauges in that sub-region would be poor and 299 

each stations would form a separate community.   300 

3. Model application 301 

The method was tested on a gridded rainfall dataset for two reasons: i) the availability and the 302 

access to raingauge data is limted, and ii) gridded datasets provide an effective platform to 303 

understand the precipitation dynamics. Owing to the assumptions underlying the spatial 304 

interpolation, the gridding process used to build the dataset might affect the relationships 305 

between nodes. However, these effects can be neglected considering the extent of the study area. 306 

The high-resolution (0.25° × 0.25°) daily gridded rainfall data (Pai et al., 2015) was developed 307 

by the Indian Meteorological Department (IMD) for a spatial domain of 66.5°E to 100°E and 308 

6.5°N to 38.5°N covering the mainland region of India. The gridded data was generated from the 309 

observed data of 6995 gauging stations across India using spatial interpolation for the period 310 

1901-2013. Several studies in the past using the same dataset have reported such as downscaling 311 

(Lakhanpal et al., 2017; Sehgal et al., 2016) and rainfall variability (Krishnamurthy and Shukla, 312 

2000). This shows that the data are highly accurate and capable of capturing the spatial 313 
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distribution of rainfall over the country. In this study, out of total 6995 grid stations, 4631 314 

stations were identified for which continuous rainfall data for 63 years (Jan 1951 to Dec 2013) 315 

was available without any missing values. 316 

The rainfall network is constructed (as explained in section 2.3) by extracting an event series 317 

from 4631 raingauges (Fig. 3), i.e., by applying a threshold we identify extreme rainfall events in 318 

the given time series (Agarwal et al., 2017; Rheinwalt et al., 2015). We define extreme events as 319 

precipitation that is greater than the 95th percentile at that station. The 95th percentile is a good 320 

compromise between having a sufficient number of events at each location and a rather high 321 

threshold to study heavy precipitation. Next, we compute the Q (Eq. 5) between each pair of 322 

4631 rainfall grid points. Applying a threshold (𝜃𝜃𝑖𝑖,𝑗𝑗
𝑄𝑄 = 95𝑡𝑡ℎ percentile) on the Q matrix (Eq. 5) 323 

yields an adjacency matrix (Eq.6), representing the connections in the rainfall network. In this 324 

study, we use an undirected network, meaning we do not consider which of the two synchronized 325 

events happened first, in order to avoid the possibility of misleading directionalities of event 326 

occurrences between rain gauges that are topographically close to one another. After formation 327 

of the rainfall network, we aimed to obtain a small set of communities representing relevant sub-328 

processes of the rainfall network. In this study, we apply Louvain algorithm (section 2.5) on the 329 

constructed network to unravel the community structure.  330 

The resultant community structure is the rainfall network mapped in Figure 3. 331 
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(a) 

 

(b) 

 

Figure 3. (a) Community structure of precipitation data in the rainfall network resulting from the Louvain 

algorithm. (b) Elevation map of the Indian continent. 

The obtained community structure (Fig.3) shows some similar patterns to those provided by the 332 

Indian Institute of Tropical Meteorology (Vinnarasi and Dhanya, 2016) and (Malik et al., 2016). 333 

It is also important to emphasize that the formation of the regions using complex networks is 334 

based on a cluster of actual connections, rather than on our traditional criteria of geographic 335 

proximity, nearest neighbors, regional patterns, and linear correlations.  336 

Table 2 shows the geographical and statistical interpretation of the resultant community which 337 

includes the mean, standard deviation, and coefficient of skewness of the precipitation 338 

distribution for each community. Higher mean precipitation shows a greater total amount of 339 

precipitation, a larger standard deviation shows a stronger variation of data for the collecting 340 

period, and a larger coefficient of skewness indicates more extreme (monthly) precipitation 341 

events (Hsu and Li, 2010). 342 



19 
 

Table 2. Summary of geographical and statistical analysis for each individual community. 343 

Communities formed by maximizing the modularity using Louvain algorithm. Elevation map for 344 

India is presented in the Fig.3b. 345 

C. 
No. 

Number 
of 
stations  

Monthly 
mean (mm) 

Stand. 
Deviati

on 
(mm) 

Skew
ness 

Remarks 

1 214 79.70 98.29 2.04 smallest community, eastern coastline, low 
elevation region, warm, humid climate regime 

2 876 76.30 104.45 2.16 mild elevation, semi-arid climate regime (south) 

3 1028 105.01 154.69 1.91 moderate elevation, equatorial grassland (south) 
semi-arid climate regime 

4 865 150.89 178.92 1.60 high elevation, subtropical humid climate regime 
(Himalayan foothills and northeast) 

5 433 48.26 79.39 2.71 moderate elevation, semi-arid climate regime 
(Central India) 

6 843 75.50 127.89 2.79 low elevation, northwest and western coastline, 
arid and warm, humid climate regime (northwest) 

7 372 66.26 85.41 2.48 very high elevation, alpine climate regime 

 346 

Considering statistical properties, community 4 (Fig.3), which covers almost all of the greenest 347 

and most mountainous regions of India (northeastern India), has the highest monthly mean 348 

(150.89 mm), the largest variation (178.92 mm) and low skewness (1.6) of precipitation in the 349 

region (Table 2). Meanwhile, community 5 (Fig.3), covering dry and lowland areas 350 

(northwestern India), shows the lowest monthly mean (48.26mm) with lower variation. 351 

Community 6 (western coastline) shows the greatest skewness along with high variability. One 352 

possible reason for the high variability and skewness could be that these regions are near to both 353 

coastlines and are low-lying areas with two different climate regimes (arid and humid). 354 

Community 3 (southeastern India) shows a high coefficient of skewness (1.91) and second high 355 

monthly rainfall (105.01mm) and variability (154.69mm). All the communities show the positive 356 

coefficient of skewness, which indicates precipitation with a long tail toward high values. 357 
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Community 7 (mountainous region) shows low monthly precipitation mean, moderate variability 358 

and high skewness. In South India, both communities 1 and 2 (Fig. 3) almost have similar 359 

rainfall characteristics but are differentiated by topological (elevation, land, coastline) features.  360 

Further, using a node-to-node connection approach (Guimerà et al., 2007; Guimerà and Amaral, 361 

2005) we explore the microscopic details of each individual station within the community. We fit 362 

all raingauges of the rainfall network in the  𝑍𝑍𝑍𝑍 space (Fig.4) according to the estimated network 363 

measures (Section 2.4) of the within-module degree (Z) and participation coefficient (P).  364 

 365 

Figure 4 Role-specific representation of node behavior in the 𝒁𝒁 − 𝑷𝑷 space (Section 2.6) plotted for each 366 

community (C1 to C7). Within-module degree (Z) differentiates between hubs and non-hubs and the 367 

participation coefficient (P) quantifies the percentage of intra-/inter-community links. Blue colored dots in Z-368 

P space in a particular community represent the raingauge station (node) of that particular community. The 369 

significance of each R class is explained in Section 2.6. Many stations have the same values for Z and P and 370 

are thus on top of each other in the different R class. 371 
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Figure 4 shows the Z-P space plot for each community (C1 to C7) separately. Table 3 shows the 372 

percentage of each class of stations in each community. From Fig. 4 and Table 3, we find that 373 

none of the communities has a kinless node (R4 class node),i.e., no wrongly assigned node. This 374 

explains the robustness of the method (edge-betweenness) used for clustering.  375 

It can be seen that all the communities (C1 to C6) have a dominance of hybrid nodes in their 376 

respective community except for community 7, which shows the dominance of nodes with intra-377 

community links. This observation falls along the expected lines, as the Indian sub-continent’s 378 

precipitation shows the vast variability in topography, climate diversity,etc. The results are quite 379 

different from those shown by Agarwal et al., 2017, for German regions. In Germany, the 380 

raingauge stations were mostly connected by intra-community links, indicating more 381 

homogeneity in the precipitation compared to Indian precipitation. 382 

As explained in Section 2.6, stations with the almost all (𝑃𝑃 ≈ 0) intra-community links can be 383 

considered a spatially representative station of the community. We argue that such stations have 384 

climatological properties (rainfall time series) that are representative of the other members of 385 

their respective communities (Halverson and Fleming 2015).This information has significant 386 

importance in big data analysis and uncertainty analysis, as the information from the entire 387 

community is available in the form of the representative station.  388 

Further analyzing the Z-P space, we see that the eastern coastline region (C1) to some extent 389 

shows good interconnectedness (high number of R1 and R2) and also does not show any hubs 390 

(R5 to R7) in the region. This suggests that rainfall in this region is more localized and does not 391 

show any long-range connections. This is in congruence with the general understanding that the 392 

eastern coastline region is dominated by the northeastern (NE) monsoonal rainfall while the rest 393 

of the country receives rainfall from southwestern (SW) monsoons (Jain et al., 2013). 394 
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The mild and moderate-elevation inland regions of India (C2, C3, C5,and C6) show negligible 395 

intracommunity links (R1) compared to other high-elevation regions (C4 and C7) and low-396 

elevation regions (C1).These mild and moderate-elevation regions (C2, C3, C5, and C6) are 397 

strongly dominated by hybrid stations (R3 and R6) sharing some common dynamics with other 398 

regions. For instance, C2 (Southeast) and C3 (Central-East) have very few nodes in the R1 class; 399 

the majority of nodes fall in R2 and a significant amount in R3 class stations. This shows that the 400 

southeastern and central-eastern regions of the country have short-range and long-range 401 

connections. A significant number of R6 class stations reveal that the long-range connections are 402 

prevalent over these regions. The ability to detect both short-range and long-range connections is 403 

one of the advantages of the complex network approach used in this study, compared to 404 

commonly used geostatistical methods which are based on the assumption of a semi-variogram 405 

having a decreasing correlation with increasing distance.  406 

Similarly, the western coastline (C6) of India is also dominated equally by R2 and R3 class 407 

stations representing short- and long-range connection dynamics in the region. On the contrary, 408 

the central-western region (C5) of India is strongly dominated by only R3 class-type stations 409 

having a maximum number of links outside the community. This suggests that central-western 410 

(C5) regions have no intra-community links to stations. The above observations fall along the 411 

expected lines since westerlies enter in India from the West and travel to an entirely different 412 

part. Because of a lack of sufficient orographic barriers, we do not see any localized rainfall in 413 

this region. 414 

The northeastern region of India (C4) shows a unique kind of pattern, with a significant number 415 

of intra-community links, inter-community links, connector hubs and global hubs. This region 416 

has a sufficient number of orographic barriers,which helps to accumulate more localized rainfall, 417 
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represented by short-range connections. Hence, some of the rainfall features in this area are 418 

regionally bound and short-range. This region also shows a significant number of inter-419 

community links owing to its long-range connections with the easterlies moisture movement 420 

from the C5 regions. 421 

The Himalayan region (C7) shows dominance of R1 class stations, representing a very high 422 

degree of interconnectedness in the region. In other words, it suggests that this region receives 423 

localized rainfall, having short-range connections. Also, it can be said from the results that this 424 

region features a different climatology characterized by seasonal snow and a colder climate than 425 

the rest of the regions. Furthermore, it is entirely possible that this region may have connections 426 

to regions beyond what is considered in the present study.  427 

From the above analysis, we infer that Z-P space is a useful tool to provide more insight 428 

into the qualitative and quantitative connections between the nodes within and outside a 429 

community. It also shows the strength of the connections between the communities and is useful 430 

in understanding how extreme events in one community affect the other regions. The physical 431 

reasoning for the classification of the nodes into seven classes is inline with the general 432 

understanding of the precipitation dynamics in India.  433 

Table 3. Summary of the total number of each type of R class stations in the induvial community. 434 

The significance of each R class is described in Section 2.6.  435 

C. 
No. 

Explanation of R class P(%)= Percentage of stations in particular R class 
in each community  

R1 R2 R3 R4 R5 R6 R7 

1 Eastern coastline, low-land region having no hubs, 
mostly dominated by intracommunity links and 
short-range connections 

33.2 61.7 5.1 0 0 0 0 

2 Mild-elevation inland region with connector hubs 
shows the dominance of both intra-community and 
inter-community links. 4.3 51.6 44.1 0 0 . 9 0 
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3 Eastern-central region with moderate elevation 
shows a lower number of intra-community links to 
stations.  0.9 59.8 39.3 0 0 . 7 0 

4 Northeastern region of India shows all kinds of 
connections. Intra-community, inter-community, 
hubs, non-hubs, global hubs, etc. 13.0 44.7 40.7 0 0 1.3 . 5 

5 No intra-community links, highly dominated by 
hybrid stations; community shows short-range 
connections. 0 14.5 85.5 0 0 0 0 

6 Negligible intra-community links, dominated by 
inter-community links and hybrid stations . 1 50.2 49.5 0 0 . 1 0 

7 No hubs, the community has all (ultra-) peripheral 
nodes that have links within the community, hence 
well isolated. 

78.5 18.3 3.2 0 0 0 0 

𝐏𝐏(%) = (𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒐𝒐𝒐𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑪𝑪
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑪𝑪) � × 𝟏𝟏𝟏𝟏𝟏𝟏 436 

4. Conclusion 437 

This study proposed a novel, complex, network-based approach for quantifying the role of a 438 

single (rainfall) station within homogeneous regions, which is of great interest in regionalization 439 

studies, estimating missing information, etc. The study used a network information-theoretical 440 

approach known as Z-P space for understanding the qualitative and quantitative aspects of the 441 

members of a community. The Z-P approach categorizes the members into different classes 442 

based on the relative roles they play in the community and their strength of connections within 443 

and outside the community. The utility of the method was demonstrated using a synthetic case 444 

and then applied to the real-world case of the Indian rainfall network. The entire Indian rainfall 445 

network was divided into seven communities, and each community was analyzed using the Z-P 446 

approach. The results from the Z-P space approach provided important information such as how 447 

the communities are connected within themselves and with others. It was observed that the high-448 

elevation, northern part of India was disconnected from other regions (communities). On the 449 

other hand, the southern peninsular region had strong intra-community links as well as inter-450 
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community links. It was also observed that the central and eastern parts of the country had many 451 

connecter hubs, indicating that these regions have long-range connections with other 452 

communities. The stations from the northeastern regions of the country, interestingly, have 453 

strong connections with other communities. The results of the study have significant implication 454 

in identifying key node locations in climate systems which play a major role in affecting the 455 

climate in the given community.  456 
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