English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features

Authors
/persons/resource/pjousset

Jousset,  P.
2.2 Geophysical Deep Sounding, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/reinsch

Reinsch,  Thomas
6.2 Geothermal Energy Systems, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/trond

Ryberg,  T.
2.2 Geophysical Deep Sounding, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Blanck,  Hanna
External Organizations;

Clarke,  Andy
External Organizations;

Aghayev,  Rufat
External Organizations;

Hersir,  Gylfi P.
External Organizations;

/persons/resource/janhen

Henninges,  J.
6.2 Geothermal Energy Systems, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mhw

Weber,  Michael
2.2 Geophysical Deep Sounding, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/lotte

Krawczyk,  C.M.
2.7 Near-surface Geophysics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

3351909.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., Krawczyk, C. (2018): Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. - Nature Communications, 9, 2509.
https://doi.org/10.1038/s41467-018-04860-y


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3351909
Abstract
Natural hazard prediction and efficient crust exploration require dense seismic observations both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. Here we demonstrate that dynamic strain determination is possible with conventional fibre-optic cables deployed for telecommunication. Extending recently distributed acoustic sensing (DAS) studies, we present high resolution spatially un-aliased broadband strain data. We recorded seismic signals from natural and man-made sources with 4-m spacing along a 15-km-long fibre-optic cable layout on Reykjanes Peninsula, SW-Iceland. We identify with unprecedented resolution structural features such as normal faults and volcanic dykes in the Reykjanes Oblique Rift, allowing us to infer new dynamic fault processes. Conventional seismometer recordings, acquired simultaneously, validate the spectral amplitude DAS response between 0.1 and 100 Hz bandwidth. We suggest that the networks of fibre-optic telecommunication lines worldwide could be used as seismometers opening a new window for Earth hazard assessment and exploration.