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Abstract1

The Gutenberg-Richter relation for earthquake magnitudes is the most famous empir-2

ical law in seismology. It states that the frequency of earthquake magnitudes follows an3

exponential distribution, which is found to be a robust feature of seismicity above the com-4

pleteness magnitude, independent whether global, regional, or local seismicity is analyzed.5

However, the exponent b of the distribution varies significantly in space and time which is6

important for process understanding and seismic hazard assessment; particularly because7

the Gutenberg-Richter b-value acts as proxy for the stress state and quantifies the ratio of8

large to small earthquakes. In our work we focus on the automatic detection of statistically9

significant temporal changes of the b-value in seismicity data. In our approach, we use10

Bayes factors for model selection and estimate multiple change-points of the frequency-11

magnitude distribution in time. The method is first applied to synthetic data showing its12

capability to detect change-points as function of the size of the sample and the b-value13

contrast. Finally, we apply this approach to examples of observational data sets for which14

previously b-value changes have been stated. Our analysis of foreshock- and aftershock15

sequences related to mainshocks, as well as earthquake swarms, shows that only a part of16

the b-value changes is found to be statistically significant.17
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Introduction18

The frequency of earthquake magnitudes m is usually well described by the Gutenberg-19

Richter relation20

logN(M) = a− bM, M ≥Mc, (1)

which declares that the number of earthquakes N with magnitude equal or greater than21

M decreases exponentially with M (Gutenberg and Richter, 1956). Here the lower cutoff22

Mc refers to the magnitude of completeness, i.e. all events M ≥ Mc are assumed to23

be recorded in the given catalog. The a-value describes the overall seismicity level in the24

region of interest. The Gutenberg-Richter b-value determines the ratio between large to25

small events, e.g. a b-value equal to one means that there are ten times more events with26

magnitude M = 2 than with magnitude M = 3. For b < 1, high magnitude events are27

more frequent, whereas b > 1 implies more small events. Thus the b-value is one of the28

key parameters for seismic hazard estimations.29

For the whole Earth or catalogs containing a huge number of events and covering a30

large area, the b-value is usually approximately one. Nevertheless strong local variations31

are reported with typical ranges 0.4 < b < 2.0 (Wiemer and Wyss, 2002). Laboratory32

experiments have shown that the b-value describing the size distribution of acoustic emission33

events decreases with differential stress (Scholz, 1968; Amitrano, 2003; Goebel et al., 2013)34

which seems to be in agreement with observations for earthquakes (Schorlemmer et al.,35

2005; Spada et al., 2013; Scholz, 2015). Therefore many studies suggested that temporal b-36

value changes might be precursory signals which can be useful for forecasting mainshocks,37
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as e.g. (Smith, 1981; Imoto, 1991; Nakaya, 2006; Nanjo et al., 2012). However, the38

statistical significance of such observed variations might be questionable, due to statistical39

fluctuations of limited sample sizes and binned data (Kamer and Hiemer, 2013).40

In our work, we therefore develop a Bayesian approach to detect statistically significant41

temporal changes of the frequency-magnitude distribution without any predefined binning42

of the data (see Section Method). For this purpose, we adapt a multiple change-point esti-43

mator recently developed for detecting seismicity rate changes (Fiedler et al., 2018). In an44

iterative approach, we use the Bayes factor for deciding whether or not change-points exist45

and estimate the change-points where required. The method is first applied to synthetic46

data showing its capability to detect real change-points (Section Test for synthetic data).47

As examples, we finally apply this approach to fore- and aftershock sequences as well as to48

swarm activity for which b-value changes have been previously claimed (Section Application49

to observations).50

Method51

In the case of an unbounded Gutenberg-Richter model, the probability density function for52

magnitudes M ≥Mc reads53

fMcβ(M) = β exp [−β(M −Mc)] , (2)

where β = ln(10)b represents the Gutenberg-Richter b-value. We assume that the com-54

pleteness magnitude Mc is known for the given region. For simplicity, we consider in the55

following only the variable, m = M −Mc, which is the difference between the event mag-56
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nitude and the completeness magnitude. Note that Mc can vary in space and time. This57

leads to58

fβ(m) = β exp (−βm) , m ≥ 0. (3)

Although the b-value is an unknown parameter to be estimated, some prior knowledge can59

be assumed. Estimated b-values for natural seismicity are usually less than 2 (Wiemer60

and Wyss, 2002), while b-values up to 3 have been sometimes also reported for induced61

seismicity (Bachmann et al., 2012; Lopez-Comino et al., 2017). Thus the overall b-value62

range can be assumed to be [0, 3].63

In our study we consider an observation period of [T0, T1] with N events at times64

T0 ≤ t1 < t2 < . . . < tN ≤ T1. Here mi is the magnitude occurring at time ti,65

i = 1, . . . , N . We assume the existence of one change-point after the kth observation66

(k = 1, . . . , N − 1). Thus we have k events with β1 in [T0, tk] and N − k events with β267

in (tk, T1].68

Let m = {m1, . . . ,mN} and θ = {β1, β2, k}. It can easily be shown that the mutual69

likelihood function is given by70

p(m | θ) = βk1 exp

(
−β1

k∑
i=1

mi

)
βN−k2 exp

(
−β2

N∑
l=k+1

ml

)
. (4)

In the case of no change-point the likelihood function reads as71

p(m | β0) = βN0 exp

(
−β0

N∑
i=1

mi

)
. (5)

Let p(βi) denote the prior density for βi with i = 0, 1, 2 and p(k) the prior density for the72

change-point index k. Assuming a priori independence of β1, β2 and k and using Bayes73
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theorem, we get the posterior densities74

p(θ | m) ∝ p(β1)p(β2)p(k)βk1 exp

(
−β1

k∑
i=1

mi

)
βN−k2 exp

(
−β2

N∑
i=k+1

mi

)
(6)

and75

p(β0 | m) ∝ p(β0)βN0 exp

(
−β0

N∑
i=1

mi

)
. (7)

In the following we use Eq. (6) and Eq. (7) for the calculation of the Bayes factors to76

determine whether or not change-points exist and then for the estimation of the (possible)77

change-points; i.e. in our approach we first select a suitable model and then estimate the78

position of the change-points.79

Model selection80

First we give a brief overview on the calculation of the Bayes factor which is defined by the81

ratio of the marginal or integrated likelihood for the two considered models. In our study82

M0 is a model without a change-point and M1 a model with one change-point, i.e.83

B01 =
p(m | M0)

p(m | M1)
. (8)

Apart from the goodness of fit, the complexity of the assumed model has to be taken into84

account in order to assess the most capable model describing the data and thus performing85

the estimation. The value of the Bayes factor quantifies the evidence of the supported86

model, e.g. small values for B01 can be interpreted as a decisive evidence against the87

hypothesis of no change-point (H0), compare Kass and Raftery (1995). We remark that88

Eq. (8) depends on the choice of the priors. Unfortunately it is not well-defined for improper89
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priors due to the marginalization paradox (Dawid et al., 1973). From Eq. (6) and Eq. (7)90

we get91

p(m | M0) =

∞∫
0

p(β)βN exp

(
−β

N∑
i=1

mi

)
dβ (9)

and92

p(m | M1) =
N−1∑
k=1

∞∫
0

∞∫
0

p(k)p(β1)p(β2)β
k
1 exp

(
−β1

k∑
i=1

mi

)

× βN−k2 exp

(
−β2

N∑
i=k+1

mi

)
dβ1 dβ2.

(10)

In the following we assume a uniform prior density for the Gutenberg-Richter b-values in the93

domain [0, βmax], where βmax denotes the upper cutoff, and we use a discrete uniformly94

distributed prior for k, i.e. p(k) = 1
N−1 . It is shown in the Appendix Derivation of the95

Bayes factor that the evaluation of Eq. (9) and Eq. (10) results in a Bayes factor B01 given96

by97

B01 =

βmax(N − 1)

[
N∑
i=1

mi

]−(N+1)

γ

(
N + 1, βmax

N∑
i=1

mi

)
N−1∑
k=1


[
k∑
i=1

mi

]−(k+1)

γ

(
k + 1, βmax

k∑
i=1

mi

)[
N∑

i=k+1

mi

]−(N−k+1)

γ

(
N − k + 1, βmax

N∑
i=k+1

mi

)
,

(11)

where γ denotes the incomplete gamma function (see Eq. A2).98

Estimation of change-points99

To estimate the location k of a change-point, we follow the approach of Raftery and Akman100

(1986) and Fiedler et al. (2018). The marginal posterior of k is calculated by integrating101

Eq. (6) with respect to β1 and β2. Assuming uniformly distributed prior densities for the102
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parameters β1, β2 and k (compare Section Model selection), we get103

p(k | m) ∝ β−2max
N − 1

βmax∫
0

βmax∫
0

βk1 exp

(
−β1

k∑
i=1

mi

)
βN−k2 exp

(
−β2

N∑
i=k+1

mi

)
dβ1 dβ2

=
β−2max
N − 1


[

k∑
i=1

mi

]−(k+1)

γ

(
k + 1, βmax

k∑
i=1

mi

)

×

[
N∑

i=k+1

mi

]−(N−k+1)

γ

(
N − k + 1, βmax

N∑
i=k+1

mi

) .

(12)

By maximizing Eq. (12) with respect to k we obtain the estimation k̂ for the change-point104

index.105

Multiple change-points106

In the previous subsections, we illustrated a method for the estimation of a single change-107

point and a foregoing model selection. This leads to the question how to handle a data108

set with several change-points. Therefore two different approaches are possible. On the109

one hand an extension of the existing methodology (compare with multiple change-point110

detection methods for seismicity rates e.g. in Fiedler et al. (2018) or Montoya and Wang111

(2017)) and on the other hand an iterative algorithm.The calculation of Bayes-factors for112

multiple change-points becomes quickly very costly, because the computation time scales113

until Nn with the number n of change-points. As an example, we provide the Bayes114

factor for two change-points in the Appendix Derivation of Bayes-factors and we also show115

an approach to estimate a fixed number of change-points (see Appendix Estimation of116

multiple change-points). However, based on tests (see Section Test for synthetic data) we117
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find that an iterative algorithm is at least as good as an algorithm based on higher order118

Bayes factors for model selection and reduces the numerical complexity significantly. For119

the iterative method we use the following greedy algorithm:120

i) Consider a data set [T0, T1] with N events at T0 ≤ t1 < t2 < . . . < tN ≤ T1.121

ii) Calculate the Bayes factor B01 (Eq. 11) for the investigated data set.122

iii) If the calculated Bayes factor is greater than 0.5, the model without a change-point123

is selected. Otherwise estimate the change-point index k̂ by means of maximizing124

Eq. (12).125

iv) If B01 < 0.5, set T̃1 = tk̂, N1 = k̂, T̃0 = tk̂+1 and N2 = N − k̂ and go to step126

i) for both resulting subsets [T0, T̃1] with N1 events and [T̃0, T1] with N2 events,127

independently.128

In each of the intervals between identified change-points as well as before the first and after129

the last one, the b-value is then estimated by the maximum likelihood value (Aki, 1965;130

Marzocchi and Sandri, 2003)131

b̂ =
1

ln(10)(m̄+ 0.5∆m)
(13)

with the corresponding estimated standard deviation b̂/
√
N . Here N is the number of132

events, m̄ is the mean value of m, and ∆m represents the binning interval of reported133

magnitudes which is typically 0.01 or 0.1 for real catalogs.134
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Evaluation and application135

The derived methodology from the previous section is for test and illustration purposes136

firstly applied to synthetic data. Subsequently, it is then applied to six exemplary observed137

data sets. According to prior observations that the b-value typically ranges from 0 to 3138

(see Section Method) and our test results (see Section Test for synthetic data), we set in139

all cases the cutoff value βmax = 3 ln(10) ≈ 6.9.140

Test for synthetic data141

We firstly analyze whether 0.5 as threshold of the Bayes-factor is appropriate to discriminate142

between real changes and random fluctuations. For this purpose, we generate sequences of143

N events with magnitudes taken from Eq. (3) with constant b-value. For given N and b,144

we analyze the Bayes factor for 1000 random sequences. We count the number N0 of cases145

with B < 0.5 and estimate the error probability by N0/1000. This procedure is repeated146

for b-values in the range between 0.8 and 1.2 and event sizes N between 10 and 5000.147

Figure 1 shows that the resulting estimated probabilities are independent of b with values148

below 0.08. The values systematically decrease for increasing N , where largest values are149

found for smallest samples sizes. For sample sizes around 100, the values scatter around150

the desired value of 0.05.151

In a next step, we analyze the detectability of change-points as function of the sample152

size and the b-value contrast. For this aim, we generate synthetic time series with a single153

change-point at the center of the sequence. The first N/2 events were randomly chosen154
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from Eq. 2 with a b-value of b1 and the second half with b2, where the mean b-value is 1.155

For a given b-value contrast ∆b = b2 − b1 and given sample size N , we generate 10,000156

sequences and count the number of cases N0 when a change-point is detected, i.e. when157

B01 < 0.5. The probability to detect the change-point is estimated by the fraction N0/N .158

The result is shown as contour lines in Figure 2a for ∆b between 0 and 1 and N between159

10 and 10,000. It is found that it is almost impossible to detect a moderate b-value change160

in sequences with less than 100 events. For example in the case of N = 100, a step161

of ∆b = 0.5 is only detected with statistical significance in half of the sequences. This162

situation improves significantly for N = 1000, when already a change of ∆b = 0.2 is163

detectable in 50% of the cases. Finally, a small change of ∆b = 0.1 is only detectable in164

big data sets consisting of approximately 10,000 events or more.165

The same testing environment is used to investigate the goodness of the estimated166

position k̂ of the change-point within the sequence of length N . For that purpose, we167

calculate the root-mean-square (rms) of the relative position k̂/N for those cases with168

B01 < 0.5. The result is shown in Figure 2b as function of ∆b and N . High precision is169

only found for larger ∆b- and N -values.170

Furthermore we analyze the sensitivity of our method with respect to the choice of the171

prior distribution. Due to the fact that we have a uniformly distributed prior in the range172

[0, bmax] with bmax = βmax/ ln(10), we investigate the detectability and the precision of173

the change-point depending on the upper interval limit bmax. Therefore we investigate a174

range from 1.5 to 4.5 for this value. Using the same methodology as shown in Figure 2,175

we show the results for three alternative values of ∆b with N = 1000 and generate 10,000176
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sequences for every parameter set. As illustrated in Figure 3, we only have a relatively weak177

dependency indicating that the main features are rather robust with regard to the choice178

of bmax. The root-mean-square error of the relative position of detected change-points179

remains almost constant (see Figure 3b). Nevertheless it is obvious that the detectability180

is slightly decreasing with increasing bmax (compare Figure 3a). Taking into account that181

Gutenberg-Richter b-values are usually less than three and that the loss of quality with182

respect to the detectability also for higher b-values is acceptable, we conclude that the183

choice of bmax = 3 is a good compromise for the a priori distribution.184

In a last test setup, we show a comparison of the results of our change-point detection185

method for four different cases with 0, 1, 2, or 12 change-points, respectively. In each186

case, we apply the method for 100 random sequences with a predefined b-value history.187

The magnitude versus time plot of one of these sequences is shown on top of each subplot188

in Figure 4. Some magnitude trends are visible but its significance is difficult to quantify189

by eye. The b-value histories reconstructed by our method are shown as gray lines for each190

of the 100 sequences on bottom of the subplots. These results can be compared to the191

true values which are shown as red lines in the same plots. We find that the reconstruction192

overall works well. In all cases, the estimated values scatter around the true ones, even for193

the quasi-continuous b-value increase in Figure 4d. For the case with 0, 1, and 2 change-194

points, we can compare our iterative procedure described in Section Multiple change-195

points, with the computationally more demanding calculation where B12 < 0.5 is used for196

deciding for two change-points, if B01 < 0.5. If yes, the two change-points are calculated197

simultaneously within the whole sequence. While this procedure takes significantly more198
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computation time, the results, which are shown by blue curves in Figure 4, indicate no199

improvement compared to the more efficient iterative procedure.200

Application to observations201

We now apply the method to real earthquake data, where b-value changes have been pre-202

viously reported. These sequences comprise two foreshock sequences and two aftershock203

sequences related to well-known mainshocks in Chile, US, and Japan, as well as two earth-204

quake swarms in Czech Republic. Our goal is to show exemplary applications for estimations205

of statistical significant b-value changes without detailed physical interpretation.206

Foreshock activity207

Some of the major earthquakes are preceded by foreshock activity. The detection of par-208

ticular features of these foreshocks, such as an anomalous b-value, would therefore offer a209

possibility to improve forecast abilities. Here we analyze two sequences which have been210

previously shown to have systematic precursory trends of the b-value.211

Iquique foreshock activity: On 1 April 2014, Northern Chile was struck by a magnitude212

8.1 earthquake following a protracted series of foreshocks. Besides accelerated foreshock213

activity, Schurr et al. (2014) found that the mainshock area was characterized by low b-214

values of the foreshock activity and that the b-value decreased prior to the event. We use215

the same data set to check the significance of this b-value decrease. The data set consists216

of 1107 foreshocks with M ≥ 3 occurred between latitude 19◦S and 21◦S and between217

longitude -72◦ and -70◦ in the 2000 days preceding the mainshock. As shown in Figure 5a,218
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we find no statistically significant change-points, while the b-value calculations in moving219

windows of 200 subsequent events suggests some systematic decrease. However, the b-220

value change is only of the order of 0.2. According to our synthetic test, a change-point221

with ∆b = 0.2 can be detected in a data set of approximately 1000 events only in less222

than half of the cases (see Figure 2a). Thus a b-value decrease might have occurred in223

this case, but the statistical significance is not clear.224

225

Tohoku foreshock sequence: The destructive 11 March 2011 Mw9.0 Tohoku earthquake226

was also found retrospectively to be preceded by a systematic decrease of the b-value of227

foreshocks in the source region (Nanjo et al., 2012). Here we use the Japan Meteorological228

Agency (JMA) earthquake catalog and select the M ≥ 3, which should be complete ac-229

cording to Nanjo et al. (2012), within latitude 37.7◦N and 39.0◦N and longitude 142.7◦ and230

144.0◦ in the 4000 days preceding the mainshock. The sample consists of 643 foreshocks.231

The application of the change-point estimation approach results in the detection of one232

change around 1000 days before the mainshock, when the b-value drops from approximately233

0.66 to 0.44 (see Figure 5b). This is in agreement with the previously observed decreasing234

trend. However, the continuous decrease suggested by the moving-window approach might235

be only a smearing effect of the constantly high b-value before 2000 days and a low b-value236

in the last three years prior to the mainshock, because of the low seismicity in-between.237
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Aftershock sequences238

Aftershocks are triggered by almost every larger earthquake in the vicinity of its rupture.239

The rate of these aftershocks usually decays in time according to the Omori-Utsu law,240

R(t) ∼ (c+t)−p (Utsu et al., 1995). While the exponent p is typically around 1 and almost241

independent of the mainshock magnitude, the c-value has been found to strongly depend242

on the mainshock magnitude (Shcherbakov et al., 2004). However, it has been recognized243

that earthquake catalogs are incomplete during periods of high activity, particularly in the244

first period after mainshocks (Kagan, 2004; Hainzl, 2016a), which leads to an apparent low245

b-value which recovers with time and a c-value which depends on the mainshock magnitude246

(Hainzl, 2016b). In the following, we demonstrate that data incompleteness can result in247

artificial change-points. For this goal, we do not correct for completeness immediately after248

large events.249

Landers aftershock sequence: The first analyzed example of such an aftershock se-250

quence is the sequence triggered of the well- known M7.3 Landers, California, mainshock251

occurred in 1992. We use the relocated earthquake catalog provided by the Southern252

California Earthquake Data Center (SCEC) (Hauksson et al., 2012) and select M ≥ 2253

events occurred within the first 1000 days after the mainshock within latitude 33.25◦N254

and 35.5◦N and longitude -117.5◦ and -115.5◦. The application of our approach for these255

15,800 selected aftershocks reveals 5 significant change-points and a systematic increase256

of the b-value from 0.25 to 1.2 within the first 12 days, while the b-value remains constant257

for the remaining time (see Figure 5c).258

Tohoku aftershock sequence: The second example stems from the aftershock activity259
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triggered by the 11 March 2011 M9.0 Tohoku. In contrast to the foreshock activity analyzed260

above for this event, the aftershocks are less concentrated around the hypocenter of the261

mainshock and we select therefore the M ≥ 3 aftershocks occurred within the wider262

region between latitude 35.0◦N and 40.0◦N and longitude 141◦ and 144.0◦ which leads263

to nearly 20,000 selected events within the first year after the mainshock. Our method264

also reveals in this case 5 significant change-points of the frequency-magnitude distribution265

and a systematic increase of the b-value from 0.20 to 0.85 within the first 80 days (see266

Figure 5d).267

In both examples, the observed b-value changes are likely related to the incompleteness268

of the catalog in the first period after the mainshock as discussed above. This is also269

indicated by the lack of small magnitude values in the lower left corner of the plots in270

Figure 5c,d.271

NW Bohemia swarms272

Episodic occurrence of spatially clustered earthquake swarms is well known in the region273

of West Bohemia/Vogtland, Central Europe, with the most intensive earthquake activity274

recorded in the years 1896–1897, 1903, 1908–1909, 1985–1986, 2000, and 2008 (Fischer275

et al., 2014). In contrast to mainshock-aftershock sequences, earthquake swarms are not276

dominated by a single event. Since 1994, the Novy Kostel area has been monitored by the277

local seismic network WEBNET, which provides high quality data. A detailed study of the278

swarm in the year 2000 indicated, among others, that the b-value decreased systematically279

within the initial swarm period which was interpreted as result of stress accumulation280
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(Hainzl and Fischer, 2002). Here we repeat this analysis for the 3696 (3133) events with281

M ≥ 0.3 occurred during the swarm in the year 2000 (2008). We find that in both cases,282

a statistically significant drop of the b-value occurred in the initiation phase of the swarm283

activity. While the b-value remained low afterwards in 2000, it recovers at the end of284

the swarm activity in the year 2008. Note that in the latter case, the continuous b-value285

increase suggested by the moving-window approach is again likely a smearing effect due to286

the fact that the windows still include events from the period with small b-value.287

Conclusions288

The main objective of this paper is to present an algorithm for the automatic detection289

of change-points of the Gutenberg-Richter b-value in seismicity data. We use a Bayesian290

algorithm to identify changes in time. While the detection of a single change-point is291

straightforward, we have a trade-off between accuracy and computational effort for models292

with more than one change-point. We have found that an iterative procedure detecting293

one change point after the other, is a feasible way to find multiple change-points with294

reasonable effort and sufficient accuracy. It is noteworthy that our method does not require295

any binning. In contrast, the traditional way to find b-value changes is based on moving296

windows with given size and time steps leading always to smearing effects. Calculations297

with synthetic data allow to constrain relations between data, parameters and statistical298

significances. For example, having an earthquake catalog with given size (say 1000 events)299

and a predefined error probability (say 5%), we can provide a minimum detectable b-value300
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contrast ∆b = b2 − b1 for this situation.301

The only assumption of our detection algorithm is the validity of the Gutenberg-Richter302

law with piecewise constant b-value. Additionally we use prior knowledge about the b-value303

as explained in Section Method and in Section Test for synthetic data. Because the b-value304

is estimated mainly from small earthquakes, potentially missing large events or fluctuations305

at the right tail of the distribution have almost no influence on the results. However, data306

errors at the completeness level, e.g. arising from overlapping seismograms in strongly307

clustered seismicity, might produce misleading results and should therefore be considered308

with care.309

Applying our method to various types of real seismicity like foreshock and aftershock310

sequences and swarm events, we detect changes of the b-value automatically, regardless of311

physical mechanisms or potential data artifacts. For the 2014 Iquique earthquake, a fore-312

shock sequence with decreasing b-value has been reported (Schurr et al., 2014). However,313

a re-evaluation of this case shows that the b-value contrast is too low to accept this change-314

point with reasonable significance, although the change might be real. On the other hand,315

examples of the aftershock sequences indicate that detected change-points, although sta-316

tistically significant, might not always indicate a change of the physical system state, but317

can be also be related to varying completeness levels in time. This is particularly important318

in periods of high seismic activity, when the detectability is decreased and earthquake cata-319

logs are typically missing small events (Kagan, 2004; Hainzl, 2016a). Because our method320

is only based on the magnitude difference, m = M −Mc, between the actual magnitude321

M of an earthquake and the local completeness magnitude Mc at the occurrence time of322
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the event, it can be simply applied to catalogs with time- and space-varying completeness.323

However, it requires a comprehensive analysis of the completeness level before any search324

and interpretation of b-value changes.325

Finally, we note that b-value changes are often considered to be precursory signals326

to large earthquakes. This hypothesis is, however, based on specific case studies so far.327

Our method aims at an automatic detection of such changes and provides a quantitative328

evaluation of the statistical significance. For this reason, we can expect that it contributes329

to the design of an objective testing scheme for this potential precursor.330

Data and Resources331

The aftershock data of the Landers earthquake are from the website332

http://scedc.caltech.edu/research-tools/alt-2011-dd-hauksson-yang-shearer.html, last ac-333

cessed March 15. 2016.334

The foreshocks and aftershocks of the Tohoku earthquake are taken from the JMA catalog335

from the website336

http://www.hinet.bosai.go.jp, last accessed August 28, 2018.337

The foreshock data of the Iquique mainshock and the swarm data are described in pub-338

lications of Schurr et al. (2014) and Fischer et al. (2014) and are received by contact-339

ing the first authors (Bernd Schurr, bernd.schurr@gfz-potsdam.de; Tomas Fischer, fis-340

cher@natur.cuni.cz).341

Figure 1, Figure 2, Figure 3 , Figure 4 and Figure 5 were made using the Gnuplot version342
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5.2.343

Simulations were made using the open source software package Python version 2.7.12.344
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Figure captions441

Figure 1442

The estimated probability to erroneously decide for a change-point given in the case of443

a Bayes-factor B01 < 0.5. The estimated probability is shown as function of the sample444

size and color-coded for different b-values of the Gutenberg-Richter distribution. Each445

point refers to the result for 1000 time series with randomly selected magnitudes from a446

stationary frequency-magnitude distribution.447

Figure 2448

The detectability and the precision of detected change-points as function of the number of449

events and the b-value difference in synthetic sequences. Contour lines are related (a) to450

the estimated probability that the change-point is detected and (b) the root-mean-square451

error of the relative position of detected change-points. The estimations are based on452

10,000 synthetic sequences for each parameter set. In all cases, the true change-point is453

located in the center of the sequence and the average b-value is 1; e.g. the first 500 events454

are sampled from a Gutenberg-Richter distribution with b1=0.8 and the second 500 events455

with b2 = 1.2 for the case of 1000 events with a b-value difference of 0.4.456

Figure 3457

Analysis of the sensitivity with respect to the prior choice: (a) The detectability and (b)458

the precision of the change point as function of the maximum b-value (βmax/ ln(10)) used459
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for the uniformly distributed prior in the interval [0, bmax]. The results are obtained for460

N = 1000 and three exemplary values of ∆b in the synthetic test setup as described in461

Figure 2.462

Figure 4463

Estimated b-values for four types of synthetic sequences including a different number of464

change-points. For each of them, the magnitude sequence of one example is shown on465

top, while the resulting b-value estimations for 100 different sequences are shown below as466

function of the event index. Gray solid lines refer to the iterative procedure using B01 and467

blue dotted lines refer to the procedure using additionally B12 to directly decide whether468

or not two change-points exists. The true b-values are shown in all cases by the red line.469

Figure 5470

Result of the b-value estimations as function of time for examples of observed seismicity:471

Foreshock sequences of (a) the M8.1 Iquique and (b) the M9.0 Tohoku mainshock; af-472

tershock sequences of (c) the M7.3 Landers and (d) the M9.0 Tohoku mainshock; and473

earthquake swarms in West Bohemia in the year (e) 2000 and (f) 2008. In all cases, the474

recorded magnitudes are shown by gray dots and our resulting b-value estimates are shown475

in red. For comparison, the maximum likelihood b-value estimate for a moving window of476

200 subsequent events with a step size of one are shown in blue. In all cases, the shaded477

area corresponds to plus/minus one standard deviation.478
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Figures479

Figure 1480

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10  100  1000  10000

e
rr

o
r 

p
ro

b
a

b
ili

ty

number of earthquakes

b=0.8

b=0.9

b=1.0

b=1.1

b=1.2

Figure 1: The estimated probability to erroneously decide for a change-point given in the case

of a Bayes-factor B01 < 0.5. The estimated probability is shown as function of the sample

size and color-coded for different b-values of the Gutenberg-Richter distribution. Each point

refers to the result for 1000 time series with randomly selected magnitudes from a stationary

frequency-magnitude distribution.
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Figure 2481
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Figure 2: The detectability and the precision of detected change-points as function of the number

of events and the b-value difference in synthetic sequences. Contour lines are related (a) to the

estimated probability that the change-point is detected and (b) the root-mean-square error of

the relative position of detected change-points. The estimations are based on 10,000 synthetic

sequences for each parameter set. In all cases, the true change-point is located in the center

of the sequence and the average b-value is 1; e.g. the first 500 events are sampled from a

Gutenberg-Richter distribution with b1=0.8 and the second 500 events with b2 = 1.2 for the case

of 1000 events with a b-value difference of 0.4.
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Figure 3482
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Figure 3: Analysis of the sensitivity with respect to the prior choice: (a) The detectability and

(b) the precision of the change point as function of the maximum b-value (βmax/ ln(10)) used

for the uniformly distributed prior in the interval [0, bmax]. The results are obtained for N = 1000

and three exemplary values of ∆b in the synthetic test setup as described in Figure 2.
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Figure 4483
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Figure 4: Estimated b-values for four types of synthetic sequences including a different number

of change-points. For each of them, the magnitude sequence of one example is shown on top,

while the resulting b-value estimations for 100 different sequences are shown below as function of

the event index. Gray solid lines refer to the iterative procedure using B01 and blue dotted lines

refer to the procedure using additionally B12 to directly decide whether or not two change-points

exists. The true b-values are shown in all cases by the red line.
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Figure 5: Result of the b-value estimations as function of time for examples of observed seismicity:

Foreshock sequences of (a) the M8.1 Iquique and (b) the M9.0 Tohoku mainshock; aftershock

sequences of (c) the M7.3 Landers and (d) the M9.0 Tohoku mainshock; and earthquake swarms

in West Bohemia in the year (e) 2000 and (f) 2008. In all cases, the recorded magnitudes

are shown by gray dots and our resulting b-value estimates are shown in red. For comparison,

the maximum likelihood b-value estimate for a moving window of 200 subsequent events with a

step size of one are shown in blue. In all cases, the shaded area corresponds to plus/minus one

standard deviation.

33



Appendix485

Appendix: Derivation of Bayes-factors486

Using a uniform prior for β within [0, βmax], i.e. p(β) = β−1max, and a discrete uniform prior487

distribution for the change-point position k, that is p(k) = 1
N−1 , Eq. (9) becomes488

p(m | M0) =

βmax∫
0

1

βmax
βN exp

(
−β

N∑
i=1

mi

)
dβ

=
1

βmax

[
N∑
i=1

mi

]−(N+1)

γ

(
N + 1, βmax

N∑
i=1

mi

)
.

(A1)

Here489

γ(l, c) =

c∫
0

xl−1 exp(−x) dx (A2)

denotes the incomplete gamma function. Further Eq. (10) becomes490

p(m | M1) =
β−2max
N − 1

N−1∑
k=1

βmax∫
0

βmax∫
0

βk1 exp

(
−β1

k∑
i=1

mi

)
βN−k2 exp

(
−β2

N∑
i=k+1

mi

)
dβ1 dβ2

=
β−2max
N − 1

N−1∑
k=1


[

k∑
i=1

mi

]−(k+1)

γ

(
k + 1, βmax

k∑
i=1

mi

)

×

[
N∑

i=k+1

mi

]−(N−k+1)

γ

(
N − k + 1, βmax

N∑
i=k+1

mi

) .

(A3)

Hence the resulting Bayes factor B01 is given by491

B01 =

βmax(N − 1)

[
N∑
i=1

mi

]−(N+1)

γ

(
N + 1, βmax

N∑
i=1

mi

)
N−1∑
k=1


[
k∑
i=1

mi

]−(k+1)

γ

(
k + 1, βmax

k∑
i=1

mi

)[
N∑

i=k+1

mi

]−(N−k+1)

γ

(
N − k + 1, βmax

N∑
i=k+1

mi

)
.

(A4)
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Similarly, the Bayes factor for two change-points B02 is derived by calculating p(m |492

M2) with the same prior assumptions for βi, i = 1, 2, 3 as in Eq. (A3). Further let493

k = {k1, k2} with k1 < k2 be the positions of the change-points and we assume that k is494

uniformly distributed over all possible partitions. Hence the prior density of k becomes495

p(k) =

[(
N − 1

2

)]−1
. (A5)

Therefore we get496

p(m | M2) =
2β−3max

(N − 1)(N − 2)

N−1∑
k1=1

N−1∑
k2=k1+1

βmax∫
0

βmax∫
0

βmax∫
0

βk11 exp

(
−β1

k1∑
i=1

mi

)
βk2−k12

× exp

−β2 k2∑
i=k1+1

mi

βN−k23 exp

−β2 N∑
i=k2+1

mi

 dβ1 dβ2 dβ3

=
2β−2max

(N − 1)(N − 2)

N−1∑
k1=1

N−1∑
k2=k1+1


[
k1∑
i=1

mi

]−(k1+1)

γ

(
k1 + 1, βmax

k1∑
i=1

mi

)

×

 k2∑
i=k1+1

mi

−(k2−k+1)

γ

k2 − k1 + 1, βmax

k2∑
i=k1+1

mi


×

 N∑
i=k1+1

mi

−(N−k2+1)

γ

N − k2 + 1, βmax

N∑
i=k2+1

mi


 .

(A6)

Using Eq. (A1), Eq. (A3) and Eq. (A6) we can calculate B02 and B12 by497

B02 =
p(m | M0)

p(m | M2)
(A7)

and498

B12 =
p(m | M1)

p(m | M2)
. (A8)
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Estimation of multiple change-points499

In the following we show the extension of our methodology from Section Estimation of500

change-points. We again consider an observation period of [T0, T1] with N events at501

times502

T0 ≤ t1 < t2 < . . . < tN ≤ T1. (A9)

Here mi is the magnitude occurring at time ti, i = 1, . . . , N . We assume the existence of503

n change-points at location504

k1, k2, . . . , kn ∈ {1, . . . , N − 1} (A10)

with n < N . Moreover in [T0, tk1 ] we have k1 events with Gutenberg-Richter value β1 and505

ki − ki−1 events in (tki−1
, tki ] with Gutenberg-Richter value βi for i = 2, . . . , n. Finally,506

in [tkn , T1] the number of events is N − kn with Gutenberg-Richter value βn+1 .507

Let m = {m1, . . . ,mN} and θ = {β1, . . . , βn+1, k1, . . . , kn}. It can easily be shown508

that the mutual likelihood function is given by509

p(m | θ) = βk11 exp

(
−β1

k1∑
i=1

mi

)
. . . βN−knn+1 exp

−βn+1

N∑
i=kn+1

mi


= βk11 exp

(
−β1

k1∑
i=1

mi

)
βN−knn+1 exp

−βn+1

N∑
i=kn+1

mi


×

n∏
j=2

β
kj−kj−1

j exp

−βj kj∑
l=kj−1+1

ml

 .

(A11)
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Assuming for simplicity now a flat prior, we calculate the marginal posterior density of510

k = {k1, . . . , kn} by integrating with respect to β1, . . . , βn+1.511

p(k | m) = c

∞∫
0

. . .

∞∫
0

βk11 exp

(
−β1

k1∑
i=1

mi

)
βN−knn+1 exp

−βn+1

N∑
i=kn+1

mi


×

n∏
j=2

β
kj−kj−1

j exp

−βj kj∑
l=kj−1+1

ml

 dβ1 . . . dβn+1

= c

[
k1∑
i=1

mi

]−(k1+1)

Γ(k1 + 1)

 N∑
i=kn+1

mi

−(N−kn+1)

Γ(N − kn + 1)

×
n∏
j=2

 kj∑
l=kj−1+1

ml

−(kj−kj−1+1)

Γ(kj − kj−1 + 1).

(A12)

We note that in Eq. (A12) c is a normalizing constant which ensures that the conditions512

for a probability density function is fulfilled.513
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