MT Repository

User manual

Scientific Technical Report STR19/06
Recommended citation:
DOI: http://doi.org/10.2312/GFZ.b103-19065

Supplementary datasets:
DOI: http://doi.org/10.5880/GIPP-MT.0001
Oliver Ritter, Gerard Muñoz, Roxana Barth, Kristina Tietze, Paula Rulff, Sophie Stephan

MT Repository

User manual

Scientific Technical Report STR19/06
MT Repository - user manual

Authors

Oliver Ritter, Gerard Muñoz, Roxana Barth, Kristina Tietze, Paula Rulff, Sophie Stephan

GFZ German Research Centre for Geosciences

Revision History

- 0.1 - April 2016
- 0.2 - February 2017 (major restructuring)
- 0.3 - March 2018 (inclusion of instrumentation.xml)
- 0.4 - April 2018 (introduction of the 2.0 versions of project.xml and sites.xml)
- 0.5 - October 2018 (introduction of the 2.0 versions of "emerald".xml, expansion of the "recorder".xml files)
- 0.6 - December 2018 (major rewrite and inclusion of report.html)
- 1.0 - April 2019 (Publication as Scientific Technical Report 19/06)

Table of Contents

- 1 Introduction
- 2 Quick guide (getting your data into a repository)
 - 2.1 General considerations - starting up
 - 2.2 Copying your data
 - 2.3 Finishing off - project.xml and instrument.xml
 - 2.4 Updating an existing project
3 The data repository
 3.1 XML (Extensible Markup Language)
 3.2 XSLT (Extensible Stylesheet Language Transformations)

4 Main entry to the repository (repository.xml file)

5 Folder structure of a project
 5.1 project.xml
 5.2 sites.xml, site folder(s), and time-series data
 5.3 transmitters.xml and transmitter folder(s)
 5.4 pictures.xml and pictures folder
 5.5 maps.xml and maps folder
 5.6 response.xml and response folder
 5.7 instrumentation.xml
 5.8 publications
 5.9 revision.xml and revision history
 5.10 report.xml and reportSnippets.xml

6 Predefined equipment and their recorder.xml files
 6.1 Earth data logger (EDL)
 6.2 SPAM4 system
 6.3 SPAM3 system
 6.4 SM25-RMT system
 6.5 CSEM transmitter
 6.6 Electric and magnetic sensors

7 Other files and folders
 7.1 Powershell scripts
 7.2 Time-series data formats
 7.3 Definition of data levels

8 References

List of Figures

- Folder structure of MT repository
- Folder tree of a site folder
- Data type folders of a site folder
- Data subfolders of a data type folder
- Frequency response of an induction coil magnetometer
1 Introduction

The MT repository contains geophysical data sets collected in field experiments from all over the world. The acronym MT stands for magnetotelluric, a geophysical method used to probe the Earth's deep interior for its electrical conductivity distribution through electromagnetic (EM) induction. MT is based on EM fields generated by natural processes in the Earth's atmosphere and magnetosphere. But the repository also contains data from Controlled Source Electromagnetic (CSEM) projects, for which man-made EM sources are used.

The principle form of data in the repository are time-series of EM field components acquired with heterogeneous sets of sensors, recording instruments, and sampling rates. It is the main purpose of this archive or repository to provide the links between the data and their physical meaning by means of meta-data. To achieve this, the repository is organized as a combination of data files and associated meta-data in a well defined folder (directory) structure, with the data files being sorted into subfolders. Meta-data are provided as XML (Extensible Markup Language) formatted file.

The MT repository was originally developed to archive data collected with instrumentation provided by the Geophysical Instrument Pool Potsdam (GIPP) of the GFZ - German Research Centre for Geosciences. GIPP instruments are provided to the international research community free of charge but with the obligation to archive and eventually publish the data. Therefore, the archive contains data of almost all projects carried out by the Geo-Electromagnetic and Magnetotelluric working groups of GFZ Potsdam, together with projects from external universities and organizations also using GIPP instruments.
Folder structure of the MT data repository. Data files and associated meta-data are sorted into subfolders. A web browser is used to navigate through the folder structure and to access the meta-data.

The contents of the entire data repository, including the meta-data, can conveniently be viewed and accessed using a web browser. This document is also optimized to be used with a web browser: Use the internal links to navigate through the document. To return to the original position of the text after following an internal link, use the back-key of your browser. Clicking the \[toc\] symbol will lead you to the table of contents, selecting the \[up\] symbol will bring you to the top of the current section.

We also provide exemplary data with this documentation to demonstrate the structure and organization of the repository. All files and folders of project **DEMO.2018** are published by Ritter et al. (2019) and can be downloaded from our GitLab server.

2 Quick guide (getting your data into a repository)

2.1 General considerations - starting up

- Clean your data: Keep only those data, which are useful for data processing. Remove data from test runs, with wrongly installed sensors, etc.

- Create a folder for your project, following the naming convention: *ShortNameOfProject.YEAR* (for example: **BARBERTON.2010**).

2.2 Copying your data

2.2.1 **SPAM4** data in **EMERALD** format

- If the data were collected with a **SPAM4 system**, they are already organized in the correct folder structure, i.e. .../site/adc/spam4/YYYYday/data-files (with day=day of the year, YYYY=year) and the data files are in **EMERALD format**. Copy the entire folder-tree with the times series data of all sites into the project folder.

- Optionally (but recommended) copy the map and picture files to the corresponding maps and picture folders. Use descriptive filenames rather than what was created by cameras or e.g. *map1.jpg* as the links in the *pictures.xml* and *maps.xml* files will show these names. You can change them later in the
corresponding .xml file by modifying the <info> tag.

- Once all data files have been copied you must create or supply the meta-data as .xml files. Typically you will use PowerShell script ArchiveCreateXMLs.ps1 to create the following files: project.xml, sites.xml, pictures.xml, maps.xml, instrumentation.xml, response.xml, publications.xml and for CSEM projects also transmitters.xml. These files contain useful and necessary information describing the data and give references to associated information in subfolders. Most of the generated .xml files are only templates which must be edited to provide relevant information, i.e. copy images of maps to the maps folder, then include respective tags in the maps.xml file.

- In each subfolder of a site, the script ArchiveCreateXMLs.ps1 also generates comment.xml and config.xml files. Edit comment.xml to provide additional information specific for that site. For known data types (e.g. SPAM4 and EDL, the script creates additional files automatically. config.xml lists all hardware configurations and recording times used for that particular site. Within the ../ts/adc subfolder, the script creates an inventory of all recorded data (e.g. spam4.xml).

2.2.2 SPAM4 data for Controlled Source EM projects

- For the receivers proceed as described above.

- For CSEM projects, the script ArchiveCreateXMLs.ps1 generates the file jobs.xml to provide additional transmitter specific information from the transmitter files.

2.2.3 EDL data in MINISEED format

- If the data are collected with another recording system, e.g. the EarthData logger (EDL), you must create an according folder structure for each site: ../site/ts/adc/edl. Alternatively use the Powershell script ArchiveMakeStructure.ps1. If the data are organized as daily records, create a subfolder for each day as YYYYdoy, with doy=day of the year and YYYY=year. Copy your time series data into the respective folders and repeat until the data of all sites are copied. See also the information provided below on the sites.xml files. Note, to archive EDL data, a preliminary .xtr/.xtrx file is required which was created in conjunction with the CASTLE sensor boxes and which contains information on station setup. This xtr/.xtrx file must reside in the ../ts/adc/edl folder.

- Optionally (but recommended) copy the map and picture files to the corresponding maps and picture folders. Use descriptive filenames rather than what was created by cameras or e.g. map1.jpg as the links in the pictures.xml and maps.xml files will show these names. You can change them later in the corresponding .xml file by modifying the <info> tag).

- To archive older data which were recorded in MINISEED format such as EDL/LMT/BURST, run ArchiveCreateXMLs.ps1 with the command line parameter -generateEmeraldAdc to create em-edl, em-spam3 or em-lmt folders within the ../ts/adc folder tree structure. These folders contain converted .raw and .xtrx-files in the most recent EMERALD format. Corresponding .xml files are created automatically.
• Note that MINISEED files do not contain coordinates. In this case, the conversion program used to generate the em-* files (see recorder.xml) reads the coordinates from the sites.xml file (which must have been created beforehand).

• To make sure the coordinates appear correctly in the .xtrx files, it can be necessary to first call ArchiveCreateXMLs.ps1 without parameter -generateEmeraldAdc. After having checked all site coordinates in sites.xml (possibly updating them with ArchiveUpdateSitesXML.ps1 using a coordinates file (.crd, see detailed help of script for more information), rerun ArchiveCreateXMLs.ps1, but now with the parameter -generateEmeraldAdc to convert the data. In this case, it is advisable to use the parameter -partialRun for the first call of ArchiveCreateXMLs.ps1 to avoid creating a partial set of data (the em-* data have not been created yet!) and therefore incomplete config.xml files. Rerun ArchiveCreateXMLs.ps1 (after making sure sites.xml contains the correct coordinates) without the -partialRun parameter.

2.2.4 SPAM3 data

• Follow the instructions for EDL data above. Make sure to run ArchiveCreateXMLs.ps1 with the command line parameter -generateEmeraldAdc to create em-spam3 folders within the .../ts/adc folder tree structure.
• The SPAM3 format files already contain the coordinates, therefore the three-step process described for the EDL data is not necessary.

2.2.5 SPAM4 data in old proprietary format

• Follow the instructions for EDL data above. Make sure to run ArchiveCreateXMLs.ps1 with the command line parameter -generateEmeraldAdc to create em-spam4 folders within the .../ts/adc folder tree structure.
• Depending on the firmware version used to record the data, the headers may or may not contain coordinates. If the SPAM4-headers contain the coordinates, proceed as described for _SPAM3_data (a single step with the parameter -generateEmeraldAdc is sufficient). If the headers do not include coordinate information, a three step process (one run with the parameter -partialRun, an intermediate call to ArchiveUpdateSitesXML.ps1 using a coordinates file, and a second run with the parameter -generateEmeraldAdc) is necessary.

2.3 Finnishing off - project.xml and instrument.xml

• Obtain the calibration files for all instruments used in the project. The calibration archive is administered by the GIPP-MT crew (contact Reinhard Klose). Calibration files (rspx) matching the timeframe of the project will be provided. These files should then be copied to the responses subfolder. Alternatively, it is also possible to proceed initially without the responses folder and use the instrumentation.xml file instead, which is created by the ArchiveCreateXMLs.ps1 script. In this case you will need to call the appropriate function manually (see description of ArchiveCreateXMLs.ps1 for details).
You will have to edit some of the .xml files to provide information that cannot be automatically generated, particularly important is the project.xml file. Refer to the detailed description of the .xml files in section 5 to see what information is needed.

If not done so already, copy/create the xslt folder with all .xslt files in the root of your repository (e.g. the same level as the project folders). If you double click on project.xml it should open as a html formatted webpage in your webbrowser, showing basic information on the project and links to your sites, maps, etc. Please note, it may be necessary to enable this functionality in your web browser (in Firefox: enter about:config, set security.fileuri.strict_origin_policy to false).

Use the Powershell script ArchiveCreateHTMLs.ps1 to create .html files for all corresponding .xml files, so that project meta data can be also browsed/obtained from .html files.

In case the script ArchiveCreateXMLs.ps1 does not work and error messages like incorrect encoding occur, call the Powershell script ArchiveUpdateEncoding.ps1. The Script changes the encoding of all existing .xml files to UTF-8.

2.4 Updating an existing project

Use Powershell script ArchiveCleanXMLs.ps1 to clean all or selected .xml files in case you want to redo an archive.

Select the project folder you want to update and copy its address. Open a Powershell console and change to this location.

Use the Powershell scripts ArchiveUpdateProjectXML.ps1 and ArchiveUpdateSitesXML.ps1 to update project.xml and sites.xml, e.g. from version 1.x to version 2.0 (or 2.1 respectively).

Edit the project.xml file to update any relevant information (particularly required information that was not included in the original (version 1.x) files, which cannot be retrieved automatically. Please refer to description in project.xml.

In projects for which the repository structure was created a long time ago, some of the newer .xml files can be missing (e.g. instrumentation.xml, response.xml or even config.xml in the site folders). In this case, use Powershell script ArchiveCreateXMLs.ps1 to create the missing .xml files; only missing files will be created, existing ones will remain unchanged.

It is also possible that the recorder data was not converted into EMERALD format, and therefore the em-* .xml files are missing. In this case, use PowerShell script ArchiveCreateXMLs.ps1, making sure to activate parameter -generateEmeraldAdc to convert the data and to create the corresponding .xml files.

Note that MINISEED or old SPAM4 data files do not contain coordinates. In this case, the conversion program used to generate the em-* files (see recorder.xml) reads the coordinates from the sites.xml file (which must have been created beforehand). Check first sites.xml for correct coordinates, then call ArchiveCreateXMLs.ps1. Missing coordinates can be added with ArchiveUpdateSitesXML.ps1 using a coordinates (.crd) file. See the detailed help of the script for more information.
• Check any newly created .xml files or existing ones for additional input required. For example you might want to include captions for your maps or change the names of the pictures for better readability.

• Delete any existing .html files (you can also use ArchiveCleanXMLs.ps1 and use PowerShell script ArchiveCreateHTMls.ps1 to)re-)create .html files for all corresponding .xml files. Then the project meta data can be also obtained from .html-files.

3 The data repository

The data repository is a collection of data files and associated meta data organized in a folder (or directory) tree structure. A repository consists of one or many projects and each project contains one or many sites. Information and data for each site are stored in subfolders containing time series data, which can be further subdivided into folders per day, etc

Details of the file and folder structure are given below. A number of tools (Powershell scripts) are available to help create and maintain this structure.

3.1 XML (Extensible Markup Language)

All meta-data are stored as plain ASCII files which are internally structured using the Extensible Markup Language (XML).

The characters making up an XML document are divided into markup and content. Strings that constitute markup usually begin with the character < and end with a >. Strings of characters that are not markup are content. A tag is a markup construct with start-tags <section>, end-tags </section> or empty-element tags <line-break />.

A logical document component begins with a start-tag and ends with a matching end-tag. The characters between the start- and end-tags, are the element's content, and may contain markup, including other elements, which are called child elements. An example of an element is <Greeting>Hello, world. </Greeting>.

Attributes are markup constructs consisting of name/value pairs that exists within a start-tag. In the example <step number="3">Connect A to B.</step>, the element step has the attribute number with the value 3. Everything between <!-- this --> is a comment.

For more information on XML please refer to: https://en.wikipedia.org/wiki/XML and references therein.
3.2 XSLT (Extensible Stylesheet Language Transformations)

XSLT (Extensible Stylesheet Language Transformations) is a language for transforming **XML** documents into other formats such as **HTML** for web pages. The original document is not changed; rather, a new document is created based on the content of an existing one. The **XSLT** processor (of a web browser) takes **XML** source documents, plus one or more **XSLT** style sheets, and processes them to produce an output document (e.g. in **.html** format).

To automatically apply an **XSL** transformation to an **XML** document on display, an **XML** style sheet processing instruction must be inserted into **XML**:

```xml
<?xml-stylesheet href="example2.xsl" type="text/xsl" ?>
```

In the present text there will be several examples of **xml** files (or snippets) and the associated representation in the browser (converted to **html** format). Note that any links shown in the **html** version are created by the corresponding **xslt** stylesheet assuming the underlying file and folder structure of the repository. Clicking on any link in these examples will not open any file or url.

4 Main entry to the repository (repository.xml file)

The main entry to the MT/CSEM data repository is an **.xml** file keeping track of all existing projects. For convenience we refer to it as **repository folder** but this data file can be anywhere on a computer which has access to the actual locations of the data, typically a file server (or several of them).

An exemplary **repository.xml** file could look like this:
But when viewing above XML file in your web browser, it should look like this:

Magnetotelluric Data Repository

Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Version: 2.00

Available projects:

--- 2018 ---

PROJECT1.2018: project description
host: computer_name - *status:* status information - *last modified:* dd-mm-yyyy

DEMO.2018: Exemplary project used for documentation
host: MT43 - *status:* Final - *last modified:* 30-10-2018

end of repository

The `<?xml-stylesheet` directive the `repository.xml` file refers to: `href="...path.../mtprojects.xslt"` for XSLT formatting; ...path... is a valid path on your computer, e.g. `/////mt42/MT_Projects/xslt` on a Windows system (mt42 is a computer name). Any relative paths are accepted but URLs (i.e. on a web server) are not permitted.
Please note, it may be necessary to enable this functionality in your web browser (in Firefox: enter about:config, set security.fileuri.strict_origin_policy to false).

The style sheet of the example above looks like this:

```xml
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:strip-space elements="name" />
  <xsl:template match="/">
    <html>
      <body>
        <p align="left" style="font-family:Calibri; font-size:24px; color:red">
          <b>Magnetotelluric Data Repository</b></p>
        <p align="left" style="font-family:Calibri; font-size:16px; color:Teal">
          Helmholtz Centre Potsdam<br>
          GFZ German Research Centre for Geosciences<br></p>
        <p align="left" style="font-family:Calibri; font-size:16px; color:black">
          Version: <xsl:value-of select="PROJECTS/VERSION" />
        </p>
        <hr/>
        <p align="justify" style="font-family:Calibri; font-size:14px; color:black">
          <xsl:for-each select="PROJECTS/years">
            ------ <xsl:value-of select="normalize-space(year)" /> ------
            <hr/>
          </xsl:for-each>
          <xsl:for-each select="project">
            <xsl:variable name="_host" select="host" />
            <xsl:variable name="_name" select="name" />
            <xsl:variable name="_status" select="status" />
            <xsl:variable name="_modified" select="modified" /> 
            <a>
              <xsl:attribute name="href">
                file:///MT_Projects/$_host/MT_Projects/$_name/project.xml
              </xsl:attribute>
              <xsl:value-of select="info" />
            </a>: "host: "<b><xsl:value-of select="_host" /></b>"<br>
            "host: "<b><xsl:value-of select="_name" /></b>"
          </xsl:for-each>
        </p>
      </body>
    </html>
  </xsl:template>
</xsl:stylesheet>
```
The exemplary project used for this documentation, called **DEMO.2018**, is a virtual project. Its sole purpose is to demonstrate the structure and organization of the repository. The data included may have been collected with real instruments and sensors but they are random snippets of larger data sets. All coordinates given are exemplary; they point to the location of the GFZ in Potsdam, Germany. All files and folders of **DEMO.2018** are published in Ritter et al. (2019) and can be downloaded from our GitLab server.

5 Folder structure of a project

To add a new project choose a name which follows the naming convention **NAME.YYYY**. It is a combination of a short name for the project and the year of data recording. In accordance with the exemplary **repository.xml** file above, we named the project folder **DEMO.2018**. In combination with the according **repository.xslt**, **repository.xml** is translated into **.html** format and all links displayed in the **repository.xml** file are resolved correctly, i.e. to open the file **project.xml** in folder **DEMO.2018**. If available (see **ArchiveCreateHTMLs.ps1**), you can open the **.html** files instead.

The project folder contains all data files together with the meta-data (**.xml** files). All data are organized in a predefined folder tree structure. The root of the tree or project folder will contain the following files and subfolders:

- **project.xml** - There is one **project.xml** file in each project folder to provide general information on that particular project.

- **sites.xml** - There is one **site.xml** file per project. For each recorded site of a project a unique site folder exists, usually made up of 4-digit site numbers. The data of each site is stored in subfolders under the according site names.

- **pictures.xml** - lists the contents of the **pictures** folder: photos of fieldwork, site locations, packing/cleaning, field office, group photos, data charts, etc.
- **maps.xml** - lists the contents of the *maps* folder: overview map of sites location, regional geology, or any other relevant information. For version 1.2 or later of the *maps.xml* file, the maps folder contains automatically created files *station map.html* and *station map.png* showing an overview of all sites found in the *sites.xml* file.

- **response.xml** - lists the contents in the *response* folder: response files (.rsp and .rspx formats) required for processing and a *responseinfo* file which lists all required response file.

- **instrumentation.xml** - provides a listing of used instruments for this project (types and IDs of data loggers, induction coils, electrodes, sensor boxes, etc.).

- **publications.xml** - contains relevant publications related to the project.

- **transmitters.xml** - provides an overview of all current transmitter locations used in a project (CSEM only).

- **scripts** folder: (optional) contains scripts used for data processing. This folder is useful if data processing results are to be reproduced at a later time.

Note, a Powershell script *ArchiveMakeStructure.ps1* is available to create this basic underlying folder tree structure.

5.1 project.xml

The *project.xml* file contains a number predefined mandatory and optional tags, which **must** be provided by the user. The information supplied in the *project.xml* file is essential for the integrity of the archive and a meaningful data publication. Please take the necessary time to properly describe your project. Please also see the comments in the listing below.

Versions:

- 1.00: Original definition.
- 1.10: Included project type.
- 1.20: Included GIPP number, grant numbers and allowed for several responsible scientist(s).
- 2.00: Active since February 2018. Organization in `<proj.section>` tags.

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="../xslt/project2.xslt"?>
<PROJECT>
  <VERSION>2.00</VERSION>
  <!--The following fields are all mandatory, please fill them in--> 
  <USER/>
  <proj.name></proj.name>
  <proj.type></proj.type>
  <proj.long.name>Enter project long name</proj.long.name>
  <proj.gipp.number>Enter GIPP number</proj.gipp.number>
  <proj.start.date>Enter project starting date</proj.start.date>
  <proj.end.date>Enter project end date</proj.end.date>
  <proj.country>Enter project country</proj.country>
  <proj.region>Enter project region</proj.region>
</PROJECT>
```
<ref.wgs84.lat.dec>Enter reference latitude</ref.wgs84.lat.dec>
<ref.wgs84.lon.dec>Enter reference longitude</ref.wgs84.lon.dec>
<ref.altitude.m>Enter reference altitude</ref.altitude.m>

<!--At least one keyword is mandatory, add more if needed or delete the second one-->

<proj.keyword>Keyword 1</proj.keyword>
<proj.keyword>Keyword 2 (copy or delete as necessary)</proj.keyword>

<!--At least one responsible scientist is mandatory, add more if you need. These will count as authors of the data report-->

<proj.resp.scientist>
 <name>Responsible scientist</name>
 <affiliation>
 <institute>Enter Institute</institute>
 <address>Enter address</address>
 </affiliation>
 <email>email@gfz-potsdam.de</email>
 <phone>Phone number</phone>
 <href>http://</href>
</proj.resp.scientist>

<!--The text is organized in several sections, marked by keywords. Some of them are mandatory others are optional.-->

<!--Each section contains one <header> tag, where you can write the title of a section. It may or may not coincide with the keyword.-->

<!--It also has one or more <text> tags. Write your text for the section here, one paragraph per tag.-->

<!--Abstract Section. Mandatory !-->

<proj.section keyword="abstract">
 <header>Abstract</header>
 <text>Enter the abstract</text>
</proj.section>

<!--Introduction Section. Mandatory !-->

<proj.section keyword="introduction">
 <header>Introduction</header>
 <text>Enter the introduction</text>
</proj.section>

<!--Experimental setup Section. This is optional, if omitted, a default text will be used in the report. -->

<!--Station locations Section. This is optional, if omitted, a default text will be used in the report. -->
Most of the predefined tags in the exemplary *project.xml* file above are self-explanatory. Some additional information is given below:

- **<VERSION>** The version number is used to keep track of changes to the structure of this file. It can help solving compatibility issues, e.g. if new tags are defined or existing tags are renamed at a later time. For new projects use the version number as specified in the example above. The current Version is 2.0. Older version files can be updated with the script *ArchiveUpdateProjectXML.ps1*.

- **<proj.name>** Short name for the project. Must be identical to the name of the project folder, e.g. in the format *Project.Year*.

- **<proj.type>** Predefined project types are: *MT*, *CSEM* or *RMT*

- **<proj.long.name>** The complete name (not acronym) of the project

- **<proj.gipp.number>** The grant number provided by the Geophysical Instrument Pool Potsdam (GIPP) for the project. It can also be found at the GIPP website.

- **<proj.start / end.date>** The project start and end dates refer to data collection in the field.

- **<proj.country / region>** The geographical context of the project.

- **<ref.wgs84.lat.dec / lon.dec> / <ref.altitude.m>** Reference coordinates of the project (central point or a relevant reference: nearby city, important geological feature, etc)

- **<proj.resp.scientist>** At least one responsible scientist or principle investigator of the project should be named and contact details should be specified.

- **<proj.keyword>** At least one keyword is mandatory. You can include more if necessary. Use single words or very short sentences for the keywords.

- **<proj.section keyword="...">** The project description provided in the *project.xml* file is organized as a series of sections identified by keywords, such as *abstract*, *introduction*, etc. Each section contains one <header> tag, where you can define the title of the section. It may or may not coincide with the keyword. Sections also have one or more <text> tags. Write one paragraph per <text> tag. The text in these sections will be displayed through the stylesheet and forms the backbone for the *report.xml*. Mandatory project sections are *abstract* and *introduction*, while *setup*, *locations*, *instrumentation*, *config*, *transmitters*, *quality*, *processing*, and *references* are optional. If omitted, a default text will be displayed in *report.xml*. These default text blocks can be empty; they are defined in template file *reportSnippets.xml* which resides in the *xslt* subfolder:

 - **<proj.section keyword="abstract">** Mandatory. A concise description or summary of the project (e.g. the abstract of your proposal). The information supplied could include area of research, geographical description, main objectives, geodynamic context, etc.

 - **<proj.section keyword="introduction">** Mandatory. A more detailed introduction to the project.
Optional. A short description of the instrumental setup, station distribution (grids, profiles, ...), etc. Per default, all maps in the maps.xml file with the attribute figure set to a number are included as figures in this section, make sure to provide proper captions for them (this includes the automatically generated stationMap.png - see maps.xml - and any other maps in maps.xml that have a number in the @figure attribute). Additionally, a time frame for the experiment is given also per default.

Optional. A list or table with the locations of all the sites. Per default, the report generator includes a short sentence introducing the table and the list of locations obtained from the sites.xml file.

Optional. A short description of the instruments and sensors used. Commonly used types are predefined in the reportSnippets.xml template file. Note, you do not need to worry about serial numbers, they will be collected automatically from the data (instrumentation.xml).

Optional. A short description of the overall recording configuration: frequency bands, writing schedule (e.g. 10 min every 1h, continuous 1h files, ...). Note, you don’t need to worry about details as they are collected from the data (config.xml tables for each site). A summary will be created as an appendix in the report.xml.

Optional (no default). Only for CSEM projects - locations, distribution, and particularities of the current transmitters.

Optional (no default). A short description of the data quality. You can comment on noise sources, affected frequency bands, ...

Optional (no default). A short description of the processing steps used in the project: digital filters, the parameters for the robust stacking, etc.

Mandatory. References to any citations in your text. Could include citations to maps (e.g. in maps.xml). Follow the convention for BibXML which is also used for the publications.xml. References to the EMERALD format and the Wittstock remote reference site are already included (simply delete the Wittstock references if irrelevant). You can simply supply a doi and use Powershell script ArchiveUpdateProjectXML.ps1 to convert the doi into a full reference.

Introduce the project participants according to their role (copy or delete fields as necessary). Supplying names of participants in the project is useful for future reference: to obtain information on the project, particularities of the fieldwork, or simply to acknowledge help in the field. In updated projects, all the participants will have the three roles listed, just delete those which do not apply.

For participating scientists. These count as authors for the report. Include affiliation just like for responsible scientists.

For participants in the fieldwork (scientists excluded). They will be mentioned in the acknowledgments.
For other types of participation. They will be neither authors or included in the acknowledgements.

Cooperation partners. List the institution(s) that participated in the project (other than the main institution, usually GFZ). You can include a web reference in the tag <href>.

Web resources. List all the websites related to the project (GFZ project website, international project websites, etc.). Make sure to include the links in the tag(s) <href>.

Funding agencies. List all the funding agencies including personal, expedition, etc. Make sure to include the grant number for a proper reference in the report.

Make sure the reference to the associated xslt file can be resolved. Note, only relative paths can be used, e.g. href="..//xslt/project.xslt". If everything is ok, the project.xml file will be translated to .html and look like this in your web browser:

Details of project DEMO.2018

(Demonstration project to document the MT repository)

GIPP Number: 000000

Abstract

The MT repository contains geophysical data sets collected with electromagnetic (EM) experiments. The acronym MT stands for magnetotelluric, a geophysical method used to probe the Earth's deep interior for its electrical conductivity distribution through EM induction. MT is based on EM fields generated by natural processes in the Earth's atmosphere and magnetosphere. But the repository also contains data from Controlled Source Electromagnetic (CSEM) projects. The principle form of data in the repository are time-series of EM field components acquired with heterogeneous sets of sensors, recording instruments, and hugely variable sampling rates. It is the main purpose of this archive to provide the links between the data and their physical meaning by means of meta-data. To achieve this, the repository is organized as a combination of data files and associated meta-data in a well defined folder (directory) structure.

The MT repository was originally developed to archive data collected with instrumentation provided by the Geophysical Instrument Pool Potsdam (GIPP) of the German Research Centre for Geosciences - GFZ. GIPP instruments are provided to the (inter)national research community free of charge but with the obligation to archive and eventually publish the data. Therefore, the archive contains data of almost all projects carried out by the Geo-Electromagnetic and Magnetotelluric working groups of GFZ Potsdam, together with projects from external universities and organisations also using GIPP instruments.

The project at hand, called DEMO 2018, is a virtual project. Its sole purpose is to demonstrate the structure and organization of the repository. The data included may have been collected with real instruments and sensors but they are random snippets of larger data sets. All coordinates given are exemplary; they point to the location of the GFZ in Potsdam, Germany.

Follow this link to view available MT sites.
Follow this link to view available maps.
Follow this link to view all available response files.
Follow this link to view a summary of all instruments used in the project.
Follow this link to view related publications (papers, conference abstracts, academic theses, etc.)
Follow this link to view the revision history of the project report.

Field experiment:

Country: Germany, Region: Brandenburg
Field work lasted from 18.10.2018 to 18.10.2018
Reference latitude: 52.383015
Reference longitude: 13.064130
Reference altitude [m]: 92.10
Overview map of all sites.

Keywords:

Archive, MT repository, Demonstration, Example

Responsible scientist(s):

GFZ - STR 19/06.
DOI: 10.2312/GFZ.b103-19065
Other participating scientists:

- Ute Weckmann, German Research Center for Geosciences - GFZ
- Kristina Tietze, German Research Center for Geosciences - GFZ

Introduction

Welcome to the data repository of the MT component of the Geophysical Instrument Pool Potsdam. This Magnetotelluric (MT) and Controlled Source Electromagnetic (CSEM) data repository is organized as a combination of data files and associated meta-data. All files are stored in a specific folder (directory) structure, with the data files and meta-data being sorted into sub-folders. All meta-data are provided as XML (Extensible Markup Language) formatted files.

It is straightforward to access the repository. When selecting (clicking on) any of the xml- files or their html- formatted counterparts, its contents opens in a web-browser window. Internal links lead the way to all other parts of the repository and the back-key of the web-browser returns to the original position.

As mentioned before, this particular project serves as a practical demonstration example. The data may originate from a variety of instruments and locations around the world. For simplicity, all site locations were modified to show around the GFZ campus (Telegrafenberg) in Potsdam, Germany.

The file you are currently looking at (project.xml) contains the meta-data describing the project. It is perhaps the most important document of a project and it is this file which requires thorough attention of the project’s responsible scientists. project.xml also forms the basis for report.xml, a comprehensive compilation of all information found in the repository for a particular project. For a detailed description of the data repository, please refer to Ritter et al. (2018) and references therein.

Over the years numerous colleagues actively participated in the effort developing this data repository and even more in collecting data sets. For the purpose of this demonstration project, the names of the more substantial contributors appear randomly under various headings such as “Responsible scientists, Participant in the fieldwork, etc.”

Experimental setup and schedule

Since this is but a virtual experiment, there is no meaningful experimental setup. Expected useful information in this section would include:

- Magnetotelluric data were collected between MONTH YEAR and MONTH YEAR along a XX km long profiles / a XX km wide and YY km wide grid.
- Data were recorded with RECORDER-TYPE instruments, and SENSOR-TYPE sensors. Data recording lasted typically for XX days per station.

Data acquisition settings

Recording modes of the instruments used for the demo range from high to low frequency and vary from site to site to illustrate how the various data types are organized. Some of the data were recorded in proprietary data formats according to the instruments used. But all data sets are also available in the EMER ALD format (Ritter et al., 2015), the reference format for storing time-series in the repository. Please browse the repository for a detailed description of instruments and sensors used.

Participants in the fieldwork:

- Paula Rulff
- Roxana Barth

Other project participants:

- Reinhard Klose
- Sophie Stephan

We acknowledge contributions from the following funding agencies:

- German Research Center for Geosciences - GFZ

Further web resources:

MT component of the GIPP

GFZ - STR 19/06.
DOI: 10.2312/GFZ.b103-19065

5 Folder structure of a project

20/67
The .html formatted output includes the links to additional meta data files, such as sites.xml, maps.xml, pictures.xml and, if available, to publications.xml.

The reference latitude and longitude values of the project become clickable as they can be used to show the overall location of the project with the interactive map generated in the maps folder.

Information on participating scientists and involved cooperation partners are optional but very desirable information. As before, any links to web resources or email addresses will be resolved and opened in additional web-browser windows (or tabs).

5.2 sites.xml, site folder(s), and time-series data

project.xml makes a reference to sites.xml and one sites.xml file exists in each project folder.

The file sites.xml contains information on all sites of a project, their coordinates and available data sets.

Versions:

- 1.00: Original definition.
- 2.00: Changed the hardwired data types to dynamically adopted tags, depending on the equipment used for the project. Introduction of data levels (0=primary time series data from instruments, 1=processed time series data).
- 2.10: No changes in the xml file but style sheet file sites2.1.xslt is used to link in interactive maps.

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='..//xslt/sites2.1.xslt'?>
<SITES>
  <VERSION>2.10</VERSION>
  <proj.name>DEMO.2018</proj.name>
  <USER>Gerard Muñoz</USER>
  <site id="001">
    <name>0001</name>
    <start.date>2008-04-20</start.date>
    <end.date>2008-04-22</end.date>
    <wgs84.lat.dec>52.3808</wgs84.lat.dec>
    <wgs84.lon.dec>13.0655</wgs84.lon.dec>
    <altitude.m>91.5000</altitude.m>
    <rot.to.Magnetic.North>0.00</rot.to.Magnetic.North>
    <declination>0.00</declination>
    <data level="0">
      <burst>true</burst>
      <edl>true</edl>
      <lmt>false</lmt>
      <spam3>false</spam3>
      <spam4>false</spam4>
      <em-edl>true</em-edl>
      <em-lmt>false</em-lmt>
      <em-spam3>false</em-spam3>
      <em-spam4>false</em-spam4>
    </data>
  </site>
</SITES>
```
sites.xml (the file above) is used in combination with sites.xslt, which resides in the xslt folder to generate html formatted output (make sure to properly specify the path in sites.xml using the <?xml-stylesheet> tag):

MT sites recorded for DEMO.2018

Overview map of all sites

For available data files, please follow the links in the columns of the different data levels.

<table>
<thead>
<tr>
<th>Site</th>
<th>Start date</th>
<th>End date</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
<th>Declination</th>
<th>burst</th>
<th>edl</th>
<th>ltd</th>
<th>spam3</th>
<th>spam4</th>
<th>em-edl</th>
<th>em-lmt</th>
<th>em-spam3</th>
<th>em-spam4</th>
<th>raw</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>2008-04-20</td>
<td>2008-04-22</td>
<td>52.3808</td>
<td>13.0655</td>
<td>91.5000</td>
<td>0.00</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>0002</td>
<td>2006-04-21</td>
<td>2006-04-27</td>
<td>52.3792</td>
<td>13.0627</td>
<td>86.6000</td>
<td>0.00</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>0003</td>
<td>1997-06-07</td>
<td>1997-06-08</td>
<td>52.3768</td>
<td>13.0665</td>
<td>78.9000</td>
<td>0.00</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>0004</td>
<td>2011-12-03</td>
<td>2011-12-07</td>
<td>52.3805</td>
<td>13.0619</td>
<td>88.3000</td>
<td>0.00</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>0005</td>
<td>2015-09-17</td>
<td>2015-09-19</td>
<td>52.3830</td>
<td>13.0641</td>
<td>92.10</td>
<td>0.00</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

- Clicking on the site name will open up the configuration file for that site (see config.xml)
- Clicking on either latitude or longitude will show the location of this particular site on an interactive map generated in the maps folder. Coordinates are given as decimal numbers and are specified in the WGS84 coordinate frame.
- Altitudes of sites are given in meters above sea-level.
- The last columns of the table indicate available data files. The level-x headings refer to the corresponding data levels. Available data files are listed according to their formats. In the example above spam4 indicates data recorded with SPAM4 instruments, while raw would point to data stored in the EMERALD format, which may have been filtered.

5.2.1 Site subfolders

There is one site folder for each site. Each site folder typically contains a comment.xml and a config.xml file and the following subfolders:

- prcs: contains (interim) processing results (optional).
- tf: contains transfer function results (optional, level-2 data).
- ts: contains time series data. Mandatory. This is the most fundamental part of the data archive. Times series data are further subdivided into:
• **adc**: data as generated by the recording devices *(level-0 data)*, typically in a vendor specific data format. It can also contain the recorder specific data converted into **EMERALD** format without changes.

• **raw**: time series data in **EMERALD** data format. Apart from reformatting, additional digital filters, re-scaling, or re-sampling may have been applied when compared to the (original) time series *(level-1 data)*.

5.2.2 site/config.xml

There is one **config.xml** file in each site subfolder. The **config.xml** files provides a summary of the recording configuration of the site: sampling frequency for each band, scheduled recording times, filter settings, sensors used, etc.

Internally the **config.xml** files are structured into **runs**. Each run corresponds with a particular set of instruments or hardware settings. If, for example, inductions coils were switched between low frequency (LF) and high frequency (HF) modes, their frequency response changes (see **response.xml**). Therefore, they count as different instruments, which shows in **config.xml** as another run.

For each run the **config.xml** files provide a table with a detailed description of the sampling frequency and the instruments used. The information is given for each channel and includes IDs and settings of data loggers, sensor boxes, and sensors. The header of the table summarizes the recording periods for which this particular configuration was active.

Versions:

- **1.00**: Original definition. Initially only SPAM4 and SB4 sensor boxes were supported and were hardwired into the hardware configuration.
- **2.00**: The logger, sensor box, and sensor are stored in a corresponding tag with the device number as an attribute.
- **2.10**: Stub version: It is used only in cases when one or more files include several sites (e.g. synchronized time series). Then **config.xml** includes a `<Site>` tag for each site. Within each site, the organization is the same as in the other versions. Backwards compatible with the stylesheet **config2.xslt**.

The contents of an exemplary **config.xml** file could look like this:

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../../xslt/config2.xslt'?>
<XTR>
  <VERSION>2.00</VERSION>
  <ScriptDate Version="2.32">15.02.2018</ScriptDate>
  <RunTime>18.10.2018</RunTime>
  <Run id="001">
    <HardwareConfiguration>
      <Project>DEMO.2018</Project>
      <SiteNumber>1</SiteNumber>
      <Channel id="001">
        <Name>Bx</Name>
        <DipoleLength/>
        <HorizontalOrientation>0.000000</HorizontalOrientation>
        <VerticalOrientation>0.000000</VerticalOrientation>
      </Channel>
    </HardwareConfiguration>
  </Run>
</XTR>
```
<Channel id="002">
 <Name>By</Name>
 <DipoleLength />
 <HorizontalOrientation>90.000000</HorizontalOrientation>
 <VerticalOrientation>0.000000</VerticalOrientation>
 <StaticGain>0.00000125</StaticGain>
 <Logger number="25">EDL</Logger>
 <SBx number="65">CASTLE</SBx>
 <Sensor number="136">Metronix_Coil-----TYPE-006_LF</Sensor>
</Channel>

<Channel id="003">
 <Name>Bz</Name>
 <DipoleLength />
 <HorizontalOrientation>0.000000</HorizontalOrientation>
 <VerticalOrientation>-90.000000</VerticalOrientation>
 <StaticGain>0.00000125</StaticGain>
 <Logger number="25">EDL</Logger>
 <SBx number="65">CASTLE</SBx>
 <Sensor number="24">Metronix_Coil-----TYPE-005_LF</Sensor>
</Channel>

<Channel id="004">
 <Name>Ex</Name>
 <DipoleLength>55.600000</DipoleLength>
 <HorizontalOrientation>0.000000</HorizontalOrientation>
 <VerticalOrientation>0.000000</VerticalOrientation>
 <StaticGain>-0.001</StaticGain>
 <Logger number="25">EDL</Logger>
 <SBx number="12">CASTLE</SBx>
 <Sensor number="0">TelluricElectrode-TYPE-AgAgCl</Sensor>
</Channel>

<Channel id="005">
 <Name>Ey</Name>
 <DipoleLength>57.500000</DipoleLength>
 <HorizontalOrientation>90.000000</HorizontalOrientation>
 <VerticalOrientation>0.000000</VerticalOrientation>
 <StaticGain>-0.001</StaticGain>
 <Logger number="25">EDL</Logger>
 <SBx number="12">CASTLE</SBx>
 <Sensor number="0">TelluricElectrode-TYPE-AgAgCl</Sensor>
</Channel>

</HardwareConfiguration>

<RecordingMode id="001">
 <FrequencySettings>
 <SamplingFrequency>50.00 Hz</SamplingFrequency>
 <LowPass>0.00 s</LowPass>
 </FrequencySettings>
</RecordingMode>
<HighPass>0.00 s</HighPass>
</FrequencySettings>
</RecordingPeriod>
 <PeriodStart>19 Apr 2008 (110) 00:00:00</PeriodStart>
 <PeriodStop>21 Apr 2008 (112) 00:29:59</PeriodStop>
 <For>30 min</For>
 <Every>24h</Every>
 <Continuous>False</Continuous>
</RecordingPeriod>
<TimeWindow id="0001">
 <StartSec>1208563200</StartSec>
 <StartuSec>0</StartuSec>
 <StopSec>1208564999</StopSec>
 <StopuSec>980000</StopuSec>
 <StartDate>2008-04-19_00-00-00.000000</StartDate>
 <StopDate>2008-04-19_00-29-59.980000</StopDate>
 <Duration>30.00 min</Duration>
 <XTRFile>em-edl\2008110\0001_SR0000050Hz000_LP0000000s000_HP0000000s000_D2008110_T000000.XTRX</XTRFile>
</TimeWindow>
<TimeWindow id="0002">
 <StartSec>1208649600</StartSec>
 <StartuSec>0</StartuSec>
 <StopSec>1208651399</StopSec>
 <StopuSec>980000</StopuSec>
 <StartDate>2008-04-20_00-00-00.000000</StartDate>
 <StopDate>2008-04-20_00-29-59.980000</StopDate>
 <Duration>30.00 min</Duration>
 <XTRFile>em-edl\2008111\0001_SR0000050Hz000_LP0000000s000_HP0000000s000_D2008111_T000000.XTRX</XTRFile>
</TimeWindow>
<TimeWindow id="0003">
 <StartSec>1208736000</StartSec>
 <StartuSec>0</StartSec>
 <StopSec>1208737799</StopSec>
 <StopuSec>980000</StopuSec>
 <StartDate>2008-04-21_00-00-00.000000</StartDate>
 <StopDate>2008-04-21_00-29-59.980000</StopDate>
 <Duration>30.00 min</Duration>
 <XTRFile>em-edl\2008112\0001_SR0000050Hz000_LP0000000s000_HP0000000s000_D2008112_T000000.XTRX</XTRFile>
</TimeWindow>
</RecordingMode>
<RecordingMode id="002">
 <FrequencySettings>
 <SamplingFrequency>500.00 Hz</SamplingFrequency>
 <LowPass>0.00 s</LowPass>
 <HighPass>0.00 s</HighPass>
 </FrequencySettings>
</RecordingPeriod>
The .html formatted version of config.xml is obtained using the corresponding .xslt stylesheet:

The .html formatted version of config.xml is obtained using the corresponding .xslt stylesheet:

Comments, Hardware Configurations and Recording Modes

Project: DEMO.2018
Site number: 1 - Comments

Run: 001

GFZ - STR 19/06.
DOI: 10.2312/GFZ.b103-19065

GFZ - STR 19/06.
DOI: 10.2312/GFZ.b103-19065
A recording period is described as follows:

- Start Date (Day of Year) Start Time - End Data (Day of Year) End Time (file length), e.g.
 - 23 Sep 2015 (266) 11:00:00 - 24 Sep 2015 (267) 23:12:24 (continuous 1h)
 - 25 Sep 2015 (268) 12:00:00 - 26 Sep 2015 (269) 06:09:59 (For 10min every 1h)

- The meaning of the recording intervals is as follows:
 - continuous 1h - a set of data files each recorded continuously for one hour. There are no time gaps between the data files, with the exception of the first and last data file which may not last for the full hour.
 - For 10 min every 1h - a 10-min long file was recorded every hour.
 - If a recording consists only of one file, the recording period is just the duration of the file and the word "once".

The `config.xml` file contains a link to the `comment.xml` and for each sensor a link to the corresponding `.rspx` file (see `response.xml`).

5.2.3 site/comment.xml

There is one `comment.xml` file in each site subfolder. The `comment.xml` file provides additional information for this particular site, for example like this:

Versions:

- 1.00: Original definition.
5.2.4 site/ts/adc/recorder.xml

Actually, a file named recorder.xml file does not exist as recorder is synonymous for a piece of equipment (see chapter 6). Examples of existing recorder.xml files would be spam4.xml or em-spam3.xml. The recorder.xml files are located in the .../ts/adc folder. The exemplary files (.xml and .html) shown in this section reflect the files associated to data in EMERALD format, for other types of recorder.xml files (e.g. spam3.xml or edl.xml) refer to the recorder types in chapter 6.

The EMERALD format forms the basis for all data exchange and ensures that older data sets can be read (in future) or converted to other data formats. Only the SPAM4 instruments write the data directly in EMERALD format. For other recording equipment, the ts/adc folders typically contain an ts/adc/recorder subfolder together with an associated .../ts/adc/em-recorder subfolder. The former contains the data in the vendor specific data format of a recording device, while the latter holds data which were converted (1:1) into the EMERALD format.

The .../ts/adc/recorder folder contains the time-series data, which can be sorted into daily subfolders (for EMERALD and EDL type data) or not (for SPAM3 or older SPAM4 type data):

```
Subfolders of ts/adc and ts/raw folders
```

The naming convention for the daily data folders is YYYYddd, where YYYY is the year of recording, ddd specifies
the day of the year when the data were collected (starting with 1 at January 1st and ending with 365/366 at December 31st). The example shows data collected with a SPAM4 system, which are already written in the EMERALD type format for time series (as .raw / .xtrx files).

Contrary to the config.xml files, the EMERALD type recorder.xml files (from version 2.0 of Oct 2018) are organized according to their frequency settings: sampling frequency, low pass and high pass filters. Following the definition of the EMERALD format each data file contains only continuous sets of samples. New files can be created if desired, e.g. to organize the data as files of one hour length, but any gaps in the data requires a new file to be written.

Below is an exemplary spam4.xml file in EMERALD format (.xml source and the according .html web browser representation via .xslt stylesheet). Both files have been edited to contain fewer time windows for the sake of simplicity. For the complete files, check the DEMO.2018 project folders. All EMERALD type recorder.xml files (e.g. em-edl.xml, em-spam3.xml, etc.) have the same structure.

Versions:

- 1.00: Original definition. Files were organized into runs (or days).
- 1.50: Used temporarily to store EMERALD-type SPAM4 data. There is no actual version 1.50 of the EMERALD-type recorder.xml files. This version is therefore only included for completeness.
- 1.60: The tag <FILENAME> was added to distinguish the files from the content, since the root tag is <EMERALD> for all of them. This tag was also added to spam4.xml but has been now discontinued.
- 2.00: The run nodes were removed (together with hardware information). Runs are sorted according to the frequency settings. A link to the config.xml file was added in the stylesheet to easily obtain the hardware configuration.

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../../../../xslt/emerald2.xslt'?>
<EMERALD>
  <VERSION>2.00</VERSION>
  <PROJECT>DEMO.2018</PROJECT>
  <SITE>0005</SITE>
  <USER>Gerard Muñoz</USER>
  <DATE>Thu, 18 Oct 2018 12:59:50</DATE>
  <FILENAME>spam4.xml</FILENAME>
  <XTR2XML>ArchiveCreateXML.ps1</XTR2XML>
  <frequency.settings>
    <sampl.rate>-500.000000</sampl.rate>
    <lp>-200.000000</lp>
    <hp>0.000000</hp>
    <file.identifier>
      <file.names>
        <name>2015260/0005_LP00200Hz_HP00000s_D2015260_T120000.RAW</name>
        <xtrname>2015260/0005_LP00200Hz_HP00000s_D2015260_T120000.XTRX</xtrname>
      </file.names>
      <year>2015</year>
      <day>260</day>
      <time.window id="001">
        <start>1442491200</start>
        <startms>1580</startms>
        <stop>1442491799</stop>
      </time.window>
    </file.identifier>
  </frequency.settings>
</EMERALD>
```
Emerald files for site 0005 in DEMO.2018

File created by Gerard Muñoz at Thu, 18 Oct 2018 12:59:50 using ArchiveCreateXML.ps1

For a summary of the recording settings, check the config.xml file.

● Frequency settings

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>sampling rate</th>
<th>low-pass filter</th>
<th>high-pass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-500.000000</td>
<td>-200.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Year 2015 Day 260 - RAW and XTR files: 2015260/0005_LP00200Hz_HP00000s_D2015260_T120000.RAW and 2015260/0005_LP00200Hz_HP00000s_D2015260_T120000.XTRX

Time windows:

<table>
<thead>
<tr>
<th>no</th>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Thu, 17 Sep 2015 12:00:00</td>
<td>Thu, 17 Sep 2015 12:09:59</td>
<td>599</td>
</tr>
</tbody>
</table>

● Frequency settings

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>sampling rate</th>
<th>low-pass filter</th>
<th>high-pass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50.000000</td>
<td>-20.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Year 2015 Day 260 - RAW and XTR files: 2015260/0005_LP00020Hz_HP00000s_D2015260_T120000.RAW and 2015260/0005_LP00020Hz_HP00000s_D2015260_T120000.XTRX

Time windows:
Note, clicking the link to a particular data or meta data file will download that file.

In section 6 we provide more information on predefined recording devices and the associated \textit{recorder.xml} files. Below is a summary in alphabetical order:

- **Earth Data logger (EDL).** MINISEED data format.
 - edl: usually continuous data streams of broad-band recordings, in combination with induction coils.
 - lmt: usually continuous data streams with low sampling rates, in combination with fluxgate magnetometers.
 - burst: repeated recordings of short segments of continuous data recorded with high sampling rates, in combination with induction coils.

- **SPAM3 recorders.** Proprietary data format (see \textit{spam3.xml}). Superseded by the SPAM4 data loggers (~2010). Usually used for broadband recordings in combination with induction coils. Data are stored as continuous streams of low-pass or band-pass filtered time series.

- **SPAM4 recorders.** Initially data was written in a proprietary format. After a major firmware upgrade in 2012 EMERALD-type data files are written. Usually used for broadband recordings in combination with induction coils. Data are stored as continuous streams of low-pass (or band-pass) filtered time series. For reference, if both a \textit{spam4.xml} and \textit{em-spam4.xml} file are present, data was recorded in old proprietary format (spam4) and later converted into EMERALD format; if only a \textit{spam4.xml} file is present, data was recorded natively in EMERALD format. Looking into the .xml files also reveals more information about the formats. For instance, the old spam4 format has the tag \texttt{<SPAM4>} associated, while the spam4 data in EMERALD format has the tag \texttt{<EMERALD>} associated.

- **SM25 recorders.** Proprietary data format (see \textit{sm25.xml}). The SM25 loggers are used to collect data at high frequencies (10 kHz - 1000 kHz), so-called Radio Magnetotelluric (RMT) applications. Data are stored as segments of low-pass filtered time series.

Note, all of the above data formats can be converted into the most recent version of the EMERALD format. The corresponding \textit{recorder.xml} file uses then the prefix \texttt{em-}, e.g. \texttt{em-spam3}.

5.2.5 raw.xml - processed time series

The \textit{raw.xml} file summarizes all the level 1 data (found in any of the data subfolders of .../ts/raw). It is subdivided according to the data folders (called \texttt{<RAWDIRS>}) and within it, ordered by sampling frequency. Since the files in the raw folder are in EMERALD format, each file corresponds to a single time window.

Versions:

- 1.00: Original definition. The xml files were organized into raw folders (\texttt{<RAWDIRS>}) and into runs (or days).
- 2.00: The run structure (and hardware information) was removed. The files are now sorted according to
the frequency settings.

This is how the raw.xml file and its associated browser view could look like:

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../../../../xslt/raw2.xslt'?>
<RAW>
  <VERSION>2.00</VERSION>
  <PROJECT>DEMO.2018</PROJECT>
  <SITE>0002</SITE>
  <USER>Gerard Muñoz</USER>
  <DATE>Thu, 18 Oct 2018 13:20:51</DATE>
  <XTR2XML>ArchiveCreateXML.ps1</XTR2XML>
  <RAWDIRS id="001">
    <raw.dir>.\lmt</raw.dir>
    <file.identifier id="001">
      <name>0002_SR0000002Hz000_LP0000002s000_HP0000000s000_D2006111_T000006.RAW</name>
      <xtrname>0002_SR0000002Hz000_LP0000002s000_HP0000000s000_D2006111_T000006.XTRX</xtrname>
      <sampl.rate>-2.000000</sampl.rate>
      <lp>2.000000</lp>
      <hp>0.000000</hp>
      <time.window id="001">
        <start>1145577606</start>
        <startms>0</startms>
        <stop>1146182393</stop>
        <stopms>500000</stopms>
        <start.date>Fri, 21 Apr 2006 00:00:06</start.date>
        <stop.date>Thu, 27 Apr 2006 23:59:53</stop.date>
      </time.window>
    </file.identifier>
    <file.identifier id="002">
      <name>0002_SR0000004s000_LP0000016s000_HP0000000s000_D2006111_T000054.RAW</name>
      <xtrname>0002_SR0000004s000_LP0000016s000_HP0000000s000_D2006111_T000054.XTRX</xtrname>
      <sampl.rate>4.000000</sampl.rate>
      <lp>16.000000</lp>
      <hp>0.000000</hp>
      <time.window id="001">
        <start>1145577654</start>
        <startms>0</startms>
        <stop>1146182342</stop>
        <stopms>0</stopms>
        <start.date>Fri, 21 Apr 2006 00:00:54</start.date>
        <stop.date>Thu, 27 Apr 2006 23:59:02</stop.date>
      </time.window>
    </file.identifier>
    <file.identifier id="003">
      <name>0002_SR0000032s000_LP0000128s000_HP0000000s000_D2006111_T000718.RAW</name>
      <xtrname>0002_SR0000032s000_LP0000128s000_HP0000000s000_D2006111_T000718.XTRX</xtrname>
      <sampl.rate>32.000000</sampl.rate>
      <lp>128.000000</lp>
    </file.identifier>
  </RAWDIRS>
</RAW>
```
EMERALD type RAW time series data for site 0002 in project DEMO.2018

File created by Gerard Muñoz at Thu, 18 Oct 2018 13:20:51 using ArchiveCreateXML.ps1

For a summary of the recording settings, check the config.xml file.

Listing data directory: .\lmt

Listing of RAW / XTR files for this run:

001.) .\lmt/0002_SR0000002Hz000_LP0000002s 000_HP0000000s 000_D2006111_T000006.RAW and .\lmt/0002_SR0000002Hz000_LP0000002s 000_HP0000000s 000_D2006111_T000006.XTR

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
<th>sampling rate:</th>
<th>low-pass filter:</th>
<th>high-pass filter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri, 21 Apr 2006</td>
<td>Thu, 27 Apr 2006</td>
<td>604787</td>
<td>-2.000000</td>
<td>2.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

002.) .\lmt/0002_SR0000004s 000_LP0000016s 000_HP0000000s 000_D2006111_T000054.RAW and .\lmt/0002_SR0000004s 000_LP0000016s 000_HP0000000s 000_D2006111_T000054.XTR

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
<th>sampling rate:</th>
<th>low-pass filter:</th>
<th>high-pass filter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri, 21 Apr 2006</td>
<td>Thu, 27 Apr 2006</td>
<td>604688</td>
<td>4.000000</td>
<td>16.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

003.) .\lmt/0002_SR0000032s 000_LP0000128s 000_HP0000000s 000_D2006111_T000718.RAW and .\lmt/0002_SR0000032s 000_LP0000128s 000_HP0000000s 000_D2006111_T000718.XTR

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
<th>sampling rate:</th>
<th>low-pass filter:</th>
<th>high-pass filter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri, 21 Apr 2006</td>
<td>Thu, 27 Apr 2006</td>
<td>603904</td>
<td>32.000000</td>
<td>128.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

The file names of the RAW / XTR(X) files in the ts/raw/recorder subfolders can vary quite significantly since there have been a number of naming conventions for the EMERALD files, however the raw.xml file structure remains the same.

The folder structure of the ts/raw/recorder folder can also vary. While the vast majority of projects have all the level-1 data directly in the corresponding recorder subfolder of the ts/raw folder, for some projects this recorder folder can be further subdivided into daily folders (either following the YYYYddd - Year in 4 digits plus day of the year in 3 digits - naming convention of the EMERALD type data folders or a now obsolete ddd naming convention -only the day of the year in 3 digits-). In any case, the complete path of the data files is shown in the raw.xml file (and browser representation or .html file).
5.3 transmitters.xml and transmitter folder(s)

Current transmitters are used for controlled source EM projects. The transmitters.xml file provides an overview of the locations and settings of all transmitters used in a CSEM project. The file can be created manually but there are also Powershell scripts available to generate or modify the transmitters.xml file. If applicable, the script ArchiveCreateXMLs.ps1 fills the transmitters.xml file with information found in .xml files which were created by the Metronix CSEM transmitter, so called ADU header files. The corresponding time series data files are stored in the .../ts/adc/aduxtr folder (see below). Additional information such as contact resistances, positions and depths of steel rods, or wire layout can be edited using ArchiveEditTransmitterXML.ps1.

Versions:

- 1.00: Original definition.
- 2.00: The data inclusion tags were reorganized into data levels, similar to the sites.xml file.

A typical transmitters.xml file could look like this:

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../xslt/transmitters.xslt'?>
<TRANSMITTERS>
  <VERSION>1.00</VERSION>
  <proj.name>PROJECT1.2015</proj.name>
  <USER>User Name</USER>
  <transmitter id="001">
    <name>Transmitter ID (4 digit number)</name>
    <start.date></start.date>
    <end.date></end.date>
    <wgs84.lat.dec>Position of Data Logger (usually close to grounding electrode)</wgs84.lat.dec>
    <wgs84.lon.dec>0.00</wgs84.lon.dec>
    <altitude.m>0.00</altitude.m>
    <rot.to.Magnetic.North>0.00</rot.to.Magnetic.North>
    <declination>0.00</declination>
    <adc>
      <adutrx>true</adutrx>
      <spam4trx>true</spam4trx>
      <spam4cc>true</spam4cc>
      <raw>false</raw>
    </adc>
    <TransmitterSetup>
      <SteelRods>
        <I1>
          <wgs84.lat.dec>Position of steel rod at end of wire 1</wgs84.lat.dec>
          <wgs84.lon.dec>Position of steel rod at end of wire 1</wgs84.lon.dec>
          <wgs84.altitude.m>Position of steel rod at end of wire 1</wgs84.altitude.m>
          <depth.m>Depth of steel rod 1</depth.m>
          <contactResistance>Contact resistance of steel rod 1 in Ohm</contactResistance>
        </I1>
        <I2>
          <wgs84.lat.dec>Position of steel rod at end of wire 2</wgs84.lat.dec>
        </I2>
      </SteelRods>
    </TransmitterSetup>
  </transmitter>
</TRANSMITTERS>
```
Position of steel rod at end of wire 2

Position of steel rod at end of wire 2

Depth of steel rod 2

Contact resistance of steel rod 2 in Ohm

Position of steel rod at end of wire 3

Position of steel rod at end of wire 3

Depth of steel rod 3

Contact resistance of steel rod 3 in Ohm

Position of grounding steel rod

Position of grounding steel rod

Depth of grounding steel rod

Contact resistance of grounding steel rod

Wire 1

Wire 2

Wire 3

Ground
• All <wgs84.lat/long/altitude> values are given as decimal numbers.
• The <wires> tag is used to specify the field layout of the wires used to inject electrical currents into the ground. Usually the cables cannot be laid out as perfectly straight lines but follow roads or have to avoid infrastructure. Dipole or tri-pole configuration can be described with the <grounToIx> tags. <trackpoint> tags and are used to define the actual geometry of each wire. These tracking points are usually obtained by walking along the cables and sampling position with a handheld GPS device.

There is one transmitter folder for each transmitter and each transmitter folder typically contains subfolders for the time series data, similar to the site folder(s) structure. Depending on the recording system, the following naming convention applies for folders residing in .../ts/adc and .../ts/raw:

• adutrx: data recorded with the Metronix ADU recorder installed on the transmitter trailer.
• spam4trx: data recorded with the SPAM4 system installed on the transmitter trailer.
• spam4cc: data recorded with current clamps and an external SPAM4 system.

5.3.1 transmitter/jobs.xml

There is one jobs.xml file in each transmitter subfolder. The jobs.xml file provides an overview of all current transmissions carried out for a particular transmitter installation.

Versions:

• 1.00: Original definition.
• <PROJECT> and <TRANSMITTER> tags must match the definitions given in project.xml and transmitters.xml.
• <USER> Name of user who was present at or responsible for the transmitter during field operation.
• <adufile> ADU header file (see above), which is expected to reside in subfolder .../ts/ad/adc/adutrx
• <BaseFrequency> and <Polarisation> are decimal numbers, <Iterations> is an integer.
• <Waveform> Waveform of the transmitted signal. Defined values are: DefaultRect

5.3.2 transmitter/comment.xml

There is one comment.xml file in each transmitter subfolder. The comment.xml file provides additional information for this particular transmitter installation. It is completely analogous to the comment.xml file for the receivers and MT sites for MT projects.

5.4 pictures.xml and pictures folder

The pictures.xml file provides a listing of available photos or screenshots which are relevant for the project. File formats of images (bitmaps) should be supported by web browsers, e.g. .png, .jpg, .gif, etc.
Versions:

- 1.00: Original definition.

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='..//xslt/pictures.xslt'?>
<PICTURES>
  <VERSION>1.00</VERSION>
  <proj.name>DEMO.2018</proj.name>
  <USER>Gerard Muñoz</USER>
  <pic id="1">
    <info>group foto</info>
    <file>pic.jpg</file>
  </pic>
  <pic id="2">
    <info>landscape</info>
    <file>img.jpg</file>
  </pic>
  <pic id="3">
    <info>site xxx</info>
    <file>photo.jpg</file>
  </pic>
  <pic id="4">
    <info>screenshot of processing site xxx</info>
    <file>processing_site_xxx.jpg</file>
  </pic>
</PICTURES>
```

- Use the `<info>` tags to supply a descriptive figure caption.
- Make sure the `<proj.name>` tag matches the definition in `project.xml`.

When viewing above `pictures.xml` in your web browser, it should look like this:

Listing of available pictures for project: test.2011

Please follow the links ...
- group foto
- picture
- site xxx
- screenshot of processing site xxx

Pictures folder

The image files reside in the `pictures` subfolder of the project folder. Relevant photos could include site locations, packing containers, group photos, data charts, etc. All picture files must be copied directly to the `pictures` subfolder, since other subfolders are not read by `ArchiveCreateXMLs.ps1`. Make sure to ask the photographer and people shown on pictures for permission before including them.

5.5 maps.xml and maps folder
maps.xml provides a listing of relevant maps for a project. ArchiveCreateXMLs.ps1 creates automatically two maps from the coordinates listed in sites.xml: one static map called stationMap.png to be used as a figure in the report. An interactive map called stationMap.html can be accessed via the links in sites.xml file. It is possible to zoomed in and out and also to follow links to the config.xml files. Users can still add additional maps (e.g. geological maps, GMT topo maps) to be included in the report or just for reference. Use image (bitmap) file formats supported by web browsers, e.g. .JPG/.JPEG, .TIFF, .GIF, .BMP, .PNG. Make sure that image resolution is acceptable. For maps intended to be included in the report provide a figure number in the figure attribute of the <map> tag and a relevant figure caption in the <caption> tag.

Versions:

- 1.00: Original definition.
- 1.10: Added the <caption> tag for specifying a figure caption. This figure caption will be used in report.xml.
- 1.20: Added the @figure attribute. If set to false a particular figure will be omitted from the report, while a number is used as the figure number in report.xml.

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='..//xslt/maps.xslt'?>
<MAPS>
  <VERSION>1.20</VERSION>
  <proj.name>DEMO.2018</proj.name>
  <USER>Gerard Muñoz</USER>
  <map id="1" figure="false">
    <info>Interactive station map</info>
    <file>station map.html</file>
    <caption>Interactive map with all MT station locations.</caption>
  </map>
  <map id="2" figure="1">
    <info>Station map</info>
    <file>station map.png</file>
    <caption>Location of the MT stations (blue dots).</caption>
  </map>
</MAPS>
```

Maps folder

The map (image) files reside in the maps subfolder of the project folder. Relevant images could include profiles, geological overview, tectonic features, etc. Use the <info> tag to provide a descriptive name for the map (per default they will get names like Map 1, Map 2, etc.) and the <caption> tag to write a figure caption that can be used in the report.

5.6 response.xml and response folder

Many sensors used for magnetotelluric mesurements have a response in amplitude and phase which depends on frequency and which must be considered when processing the data. A typical example are induction coil
magnetometers. The response.xml file provides a listing of all required response files for the project.

Versions:

- 1.00: Original definition.

An example is shown below:

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='./xslt/response.xslt'?>
<RESPONSE>
  <VERSION>1.00</VERSION>
  <proj.name>DEMO.2018</proj.name>
  <USER>Paula Rulff</USER>
  <response id="1">
    <file type="RSPX">Metronix_Coil-----TYPE-005_LF-ID-000022</file>
  </response>
  <response id="2">
    <file type="RSPX">Metronix_Coil-----TYPE-005_LF-ID-000023</file>
  </response>
  <response id="3">
    <file type="RSPX">Metronix_Coil-----TYPE-005_LF-ID-000024</file>
  </response>
</RESPONSE>
```

Response folder

The files with the frequency responses of the sensors reside in the response subfolder of the project folder. The contents of these files is in XML format and the files have the extension .rspx. Older versions of these files may also exist with the extensions .rsp; they are organized as simple ASCII tables.

Note that the response.xml file will only include all rsp(x) files that are present in the response folder when ArchiveCreateXMLs.ps1 is called. In order to obtain the necessary response files you must contact the GiPP team and provide a list of the necessary sensors and time frame. The list of all instruments used in the project can be obtained automatically through the instrumentation.xml file (see below).

5.7 instrumentation.xml

instrumentation.xml provides a listing of all used instruments in the project: Types and IDs of data loggers, coils, electrodes and sensor boxes. The information is compiled from all of the config.xml files from all sites subfolders.

Versions:

- 1.00: Original definition.

A typical instrumentation.xml file looks like this:
<INSTRUMENTATION>
 <VERSION>1.00</VERSION>
 <proj.name>DEMO.2018</proj.name>
 <USER>Gerard Muñoz</USER>
 <Instrument type= "Logger">
 <Loggers id="1" name= "SPAM4">
 <Logger id="1">35</Logger>
 <Logger id="2">62</Logger>
 </Loggers>
 <Loggers id="2" name= "EDL">
 <Logger id="1">1</Logger>
 <Logger id="2">25</Logger>
 </Loggers>
 <Loggers id="3" name= "SPAM III">
 <Logger id="1">30</Logger>
 </Loggers>
 </Instrument>
 <Instrument type= "SensorBox">
 <SensorBoxes id="1" name= "SP4">
 <SensorBox id="1">3</SensorBox>
 <SensorBox id="2">111</SensorBox>
 <SensorBox id="3">127</SensorBox>
 </SensorBoxes>
 <SensorBoxes id="2" name= "CASTLE">
 <SensorBox id="1">4</SensorBox>
 <SensorBox id="2">12</SensorBox>
 <SensorBox id="3">65</SensorBox>
 </SensorBoxes>
 </Instrument>
 <Instrument type= "Sensor">
 <Sensors id="1" name= "AgAgCl electrode" />
 <Sensors id="2" name= "Metronix Coil MFS05">
 <Sensor id="1">22</Sensor>
 <Sensor id="2">23</Sensor>
 <Sensor id="3">24</Sensor>
 <Sensor id="4">27</Sensor>
 </Sensors>
 <Sensors id="3" name= "Metronix Coil MFS06">
 <Sensor id="1">126</Sensor>
 <Sensor id="2">134</Sensor>
 <Sensor id="3">136</Sensor>
 <Sensor id="4">238</Sensor>
 <Sensor id="5">400</Sensor>
 <Sensor id="6">439</Sensor>
 </Sensors>
 <Sensors id="4" name= "Metronix Coil MFS07">
 <Sensor id="1">123</Sensor>
 </Sensors>
 <Sensors id="5" name= "Pulz fluxgate">
 <Sensor id="1">11</Sensor>
 </Sensors>
 </Instrument>
</INSTRUMENTATION>
In the web browser, the instrumentation file appears as:

Summary of all instruments used in project: DEMO.2018

The following SPAM4 loggers were used:
- 35
- 62

The following EDL loggers were used:
- 1
- 25

The following SPAM III loggers were used:
- 30

The following SP4 sensor boxes were used:
- 3
- 111
- 127

The following CASTLE sensor boxes were used:
- 4
- 12
- 65

AgAgCl electrodes were used

The following Metronix Coil MFS05 sensors were used:
- 22
- 23
- 24
- 27

The following Metronix Coil MFS06 sensors were used:
- 126
- 134
- 136
- 238
- 400
- 439

The following Metronix Coil MFS07 sensors were used:
- 123

The following Pulz fluxgate sensors were used:
- 11

5.8 publications.xml

The file *publications.xml* contains relevant publications related to the project. The format of *publications.xml* follows the definitions for the BibTeX- format (see e.g. https://en.wikipedia.org/wiki/BibTeX). Bibliography items can be of the usual types, e.g. *article, book, phdthesis*, etc, and include fields such as *author, journal,*
volume, etc. But instead of the TeX/LaTeX style of commands, e.g. \bibitem, the organisation of the bibliography files is in XML format, sometimes referred to as BibXML.

While it is possible to enter a complete publication list (bibitems) per hand, it is usually more convinient to add publications using the PowerShell script ArchiveAddPublication.ps1, if the publication has a doi, or ArchiveQueryPublication.ps1, if the publication can be found in the database of the GFZ library.

Some of the <bibitem> objects may still contain additional tags labelled <project>. This feature is now obsolete as usage and organization of publications.xml was changed during the development. Initially only one (huge) publications.xml file existed for the entire archive, which contained all <bibitem> entries for all projects. This file (together with the <project> tags) was extremely difficult to maintain and is now obsolete. Instead one publications.xml file exists for each project.

Versions:

- 1.00: Original definition.

A typical entry in publications.xml could look like this:

```xml
<bibitem type = "article">
  <author> <lastname>Becken</lastname> <firstname>Michael</firstname></author>
  <author> <lastname>Ritter</lastname> <firstname>Oliver</firstname></author>
  <author> <lastname>Bedrosian</lastname> <firstname>Paul A.</firstname></author>
  <author> <lastname>Weckmann</lastname> <firstname>Ute</firstname></author>
  <journal>Nature</journal>
  <volume>480</volume>
  <issue>7375</issue>
  <title>Correlation between deep fluids, tremor and creep along the central San Andreas fault</title>
  <pages>87-90</pages>
  <year>2011</year>
  <url>http://www.nature.com/nature/journal/v480/n7375/full/nature10609.html</url>
</bibitem>
```

When viewing publications.xml in your web browser (remember that a corresponding stylesheet is needed) it might look like this:

PUBLICATIONS related to project ELSAF.2008

Journal articles

Conference papers

Tietze, K., Ritter, O., Egbert, G., 2014. 3D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions with ModEM and its application to a 250-site MT array data set from the San Andreas fault, California, in: 22nd EM Induction Workshop, Weimar, Germany, August 24-30, 2014, Weimar (Germany).

Theses

Each project contains a `revision.xml` file which describes the revision history of the report. The tag `<last.modified>` indicates when any one of the `xml` files relevant for the report was last modified (even if it does not create a new revision).

Each revision is then listed in the `<revision>` nodes. Revisions numbers 0.X indicate draft (pre-publication) versions, revision 1.0 is reserved for the first published version of the report. Higher numbers indicate new releases of the publication, e.g. to accommodate new information or corrections. If `revision.xml` contains version numbers higher than 1.0, a section with the revision history will appear in the report.

Versions

- 1.00: Original definition

This is how the `revision.xml` file looks like:

```xml
<REVISIONS>
  <VERSION>1.00</VERSION>
  <proj.name>DEMO.2018</proj.name>
  <USER>Gerard Muñoz</USER>
  <last.modified>20.11.2018</last.modified>
  <revision id="001">
    <revision.number>0.00</revision.number>
    <user>Gerard Muñoz</user>
    <date>20.11.2018</date>
    <text>Work in progress</text>
    <text>Create tag with version 1.0 and text "First publication version" when the project is ready for publication</text>
  </revision>
</REVISIONS>
```

Revision history for project: DEMO.2018

- 0.00 - Gerard Muñoz - 20.11.2018:
 Work in progress
 Create tag with version 1.0 and text "First publication version" when the project is ready for publication

5.10 report.xml and reportSnippets.xml

Reports accompanying data publications typically follow a well-defined organisation. Sections could include, for example, abstract or summary, introduction, experimental setup and schedule, station and transmitter locations, used instrumentation, and available data sets. When considering the wealth of information available in the MT repository data, such a report can be assembled in a semi-automatic way from the existing meta data.

In this respect `report.xml` does not add much new information to the repository. Instead it is a compilation of all the information provided in the `xml` files above, which forms the basis for the data publications.
Typically `report.xml` is created using the PowerShell script `ArchiveCreateReport`. In addition to the information from the repository, the report requires headers sections, text blocks describing default information, etc. This kind of information is stored in the `reportSnippets.xml` file which resides in the `util` folder as it contains useful information for all projects. Please modify this file with care.

When converted into html format using `ArchiveCreateHTMLs` the `report.html` file can be read into a word processing program (e.g. Microsoft Word) for additional editing or further converted into pdf format. This (edited) report constitutes the basis of the STR (Scientific Technical Report) which accompanies the data publications.

Versions:

- **1.00:** The file `report.xml` is nothing but a compilation of all other `xml` files related to the project (and it is actually deleted after conversion into HTML), therefore each report section has the version number of the `xml` file forming it.

6 Predefined equipment and their `recorder.xml` files

In the following sections we provide a description of some of the hardware mentioned above. Particularly, we describe the recording equipment and their respective `recorder.xml` files.

As already mentioned, common basis for data exchange are time-series data in the EMERALD format. Therefore, for each site one or more data subfolders exist in the `../ts/adc` tree with associated `recorder.xml` files. The current EMERALD format (with `.xtrx` files) is directly written by the SPAM4 systems since 2012.

Older versions of the SPAM4 system and any other types of equipment record the time-series data in a vendor specific format (or an outdated version of the EMERALD format). But keeping these data in the repository is desirable as they represent the original recordings. They can always be referred to if in doubt of the converted data. Typically, these data are binary files. To enhance their readability, meta-data are supplied as associated `.xml` files.

To accomodate the data of these other recording devices in the repository the `../ts/adc` folders can contain subfolders which are named accordingly. Subfolders can be empty if respective equipment was not used at that site, or they can be completely absent. In the figure below the `../ts/adc` folder contains the subfolders `edl`, `lmt`, and `spam3`, which hold the time series data. Respective `xml` files exist for each one of the recording device subfolders. Since there is no `spam3.xml` file, the `spam3` data folder is empty. `edl.xml` + `burst.xml` and `lmt.xml` describe data recorded with an Earth Data logger (EDL). The `em-edi` folder contains data EDL data converted one-to-one into EMERALD format.
The adc (and raw) subfolders contain .xml files describing the data files for various recording devices (edl, lmt, spam3).

Known formats of such (sometimes outdated) recorder files are summarized below:

6.1 EDL data logger

The Earth Data Logger (EDL, EARTH DATA, U.K.) is a digital recording system predominantly designed for seismic applications. To provide the necessary interface electronics for MT sensors, the EDL loggers are typically used in combination with the CASTLE preconditioning units of the Geophysical Instrument Pool Potsdam. These Sensor-Boxes provide necessary high-impedance amplifiers for electric field recordings and a range of analogue high- and low-pass filters to match typical MT applications.

EDL loggers are available as 3 and 6 channel systems, the latter is normally used for MT applications. EDL systems are GPS synchronized and based on 24-bit analogue to digital converters featuring sampling rates between 1 Hz and 1 kHz.

6.1.1 edl.xml, burst.xml, lmt.xml

edl.xml, burst.xml, lmt.xml are associated .xml files for data recorded in MINISEED format. The three recorder files all have the same format as their names only indicate differing recording modes. Broad band MT recordings are often split into continuous sampling modes and a so-called burst modes, in which only discontinuous time segments are recorded, typically at higher sampling rates. In case a *burst.xml* file exists,
the edl.xml file will only contain references to .sec files and the burst.xml only to .pri files. In case there is no burst.xml, the edl.xml file contains references to .pri files. The lmt.xml file, which describes long period MT data sampled at very low rates, contains references to .pri files in any case.

The data subfolders can also be related to data converted from the proprietary format of the recording device into EMERALD format. In this case the subfolders follow the naming convention em-recorder. For example, the subfolder em-edl contains EDL data converted into EMERALD format. In this case the ts/adc folder would also contain an em-edl.xml file.

Converted data files in em-recorder subfolders contain the exact same information as the original files; they are therefore considered level-0 data.

Versions (apply to all edl-type xml files):

- 1.00: Original definition.

The example below shows the (simplified) contents of an edl.xml file:

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../../../../xslt/edl.xslt'?>
<EDL>
  <VERSION>1.00</VERSION>
  <PROJECT>DEMO.2018</PROJECT>
  <SITE>0001</SITE>
  <USER>Gerard Muñoz</USER>
  <DATE>Thu, 18 Oct 2018 12:59:26</DATE>
  <XTR2XML>ArchiveCreateXML.ps1</XTR2XML>
  <RUN id="001">
    <run.identifier>R002</run.identifier>
    <channel.identifier id="001">
      <name>Bx</name>
      <line.len>0.0</line.len>
      <horiz.rot>0.00</horiz.rot>
      <vert.rot>0.00</vert.rot>
      <static.gain>-0.0000006250</static.gain>
      <sensor.name>Metronix MFS05/06</sensor.name>
      <sensor.number>238</sensor.number>
    </channel.identifier>
    <channel.identifier id="002">
      <name>By</name>
      <line.len>0.0</line.len>
      <horiz.rot>90.00</horiz.rot>
      <vert.rot>0.00</vert.rot>
      <static.gain>-0.0000006250</static.gain>
      <sensor.name>Metronix MFS05/06</sensor.name>
      <sensor.number>136</sensor.number>
    </channel.identifier>
    <channel.identifier id="003">
      <name>Bz</name>
      <line.len>0.0</line.len>
      <horiz.rot>0.00</horiz.rot>
      <vert.rot>-90.00</vert.rot>
  </RUN>
</EDL>
```
As before, the edl.xml file is accompanied by an xslt style sheet (see: <?xml-stylesheet type="text/xsl" href="../xslt/edl.xslt" ?>). In your web browser the contents of edl.xml may therefore look like this:

```xml
<static.gain>-0.0000006250</static.gain>
<sensor.name>Metronix MFS05/06</sensor.name>
<sensor.number>24</sensor.number>
</channel.identifier>

<channel.identifier id="004">
  <name>Ex</name>
  <line.len>55.6000</line.len>
  <horiz.rot>0.00</horiz.rot>
  <vert.rot>0.00</vert.rot>
  <static.gain>0.0000025000</static.gain>
  <sensor.name>Ag/AgCl Electrode</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<channel.identifier id="005">
  <name>Ey</name>
  <line.len>57.5000</line.len>
  <horiz.rot>90.00</horiz.rot>
  <vert.rot>0.00</vert.rot>
  <static.gain>0.0000025000</static.gain>
  <sensor.name>Ag/AgCl Electrode</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<file.identifier>
  <file.names>
    <edl.file>
      <name>/110/e6025080419000000.sec0</name>
      <name>/110/e6025080419000000.secl</name>
      <name>/110/e6025080419000000.sec2</name>
      <name>/110/e6025080419000000.sec3</name>
      <name>/110/e6025080419000000.sec4</name>
    </edl.file>
  </file.names>
  <sampl.rate>-50.00</sampl.rate>
  <lp>-12.50</lp>
  <hp>0.00</hp>
  <time.window id="001">
    <start>1208559600</start>
    <startms>0</startms>
    <stop>1208561399</stop>
    <stopms>980000</stopms>
    <start.date>Fri, 18 Apr 2008 23:00:00</start.date>
    <stop.date>Fri, 18 Apr 2008 23:29:59</stop.date>
  </time.window>
</file.identifier>
</RUN>
</EDL>

As before, the edl.xml file is accompanied by an xslt style sheet (see: <?xml-stylesheet type="text/xsl" href="../xslt/edl.xslt" ?>). In your web browser the contents of edl.xml may therefore look like this:
The exemplary *edl.xml* file description contains a lot of information useful for subsequent reprocessing of the data, including but not limited to sensors used, lengths of electric dipoles, start- and stop times of the recordings.

The *edl.xml* files are organized as *runs*; each *run* corresponds to a particular hardware setting. Within a *run*, there can be one or more continuous time windows with defined frequency settings (sampling rate, low pass and high pass filters). The time-series data are stored as MINISEED formatted files (file extensions: *.*pri or *.*sec).

### 6.2 SPAM4 data logger

S.P.A.M.-systems are short-period automatic magnetotelluric instruments developed since 1980 by Graham Dawes at the University of Edinburgh. In 2003, Oliver Ritter initiated development of the fourth generation of the instruments in cooperation between GFZ Potsdam and the University of Edinburgh, which was released in 2009.

Generally, a S.P.A.M. Mk IV or SPAM4 systems consist of three principal components:

- Sensors such as induction coils and electrodes.
- Sensor-box for analogue signal preconditioning.
- System-box which contains the analogue-to-digital converters, GPS synchronisation and a miniature personal computer for data storage and processing.
The overall frequency range of the system is from ~10 kHz (max. 25 kHz sampling rate) to DC. The SPAM4 analogue section provides software-controlled amplification with variable gains. There are a range of low- and high-pass filters in the analogue signal path which can be combined to match the sampling rates and sensors used. The last stage of the analogue signal path is the analogue-to-digital conversion. SPAM4 uses a 24-Bit sigma-delta converter. All subsequent data processing is digital.

The time-series data can be continuously filtered and decimated. Low-pass and high-pass corner frequency settings are variable. Any low-pass filtered time series can subsequently be high-pass filtered, to generate band-pass filtered data streams. All data streams can be stored as low-pass filtered time series. Many combinations are possible and all time series are continuous streams of data.

### 6.2.1 spam4.xml

Since 2012 the SPAM4 loggers write data in the EMERALD format. While the format of the .raw files has not changed since release of the SPAM4, there were several changes with respect to file name convention and the associated .xtr / .xtrx files. Therefore, the appearance of the ts/adc/spam4 folders can vary quite significantly between projects. For a summary of the file names and their description, check the documentation of the EMERALD format.

In addition, the folder structure has also experienced some changes. Prior to 2012, when the SPAM4 system wrote data in proprietary format the ts/adc/spam4 did not have any subfolder and all the data files from all recording days and all frequency bands were located directly in the spam4 folder. Nowadays data files are organized in daily subfolders.

**Versions:**

- 1.00: Initial and still active definition.

As a (now discontinued) branch, the following versions were temporarily used:

- (1.50) Temporary solution to store (with the associated spam4.1.5.xslt stylesheet) metadata of SPAM4 data in EMERALD format. Since the SPAM4 loggers write data directly in the EMERALD format they no longer use this xml file (but the recorder.xml files in the EMERALD format).
- (1.60) The <FILENAME> tag was added for analogy with the EMERALD-type em-recorder.xml files. This version number is also discontinued.

An exemplary (simplified) spam4.xml file (and associated browser representation):

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../../../../xslt/spam4.xslt'?>
<SPAM4>
 <VERSION>1.00</VERSION>
 <PROJECT>DEMO.2018</PROJECT>
 <SITE>0004</SITE>
 <USER>Gerard Muñoz</USER>
 <DATE>Thu, 18 Oct 2018 12:59:48</DATE>
 <XTR2XML>ArchiveCreateXML.ps1</XTR2XML>
 <RUN id="001">
 <run.identifier>002</run.identifier>
 </RUN>
</SPAM4>
```
<channel.identifier id="001">
  <name>Bx</name>
  <line.len>0.0</line.len>
  <horiz.rot>0.000000</horiz.rot>
  <vert.rot>0.000000</vert.rot>
  <static.gain>0.00000125</static.gain>
  <sensor.name>Metronix_Coil-----TYPE-006_LF-ID-000134.RSPX</sensor.name>
  <sensor.number>134</sensor.number>
</channel.identifier>

<channel.identifier id="002">
  <name>By</name>
  <line.len>0.0</line.len>
  <horiz.rot>90.000000</horiz.rot>
  <vert.rot>0.000000</vert.rot>
  <static.gain>0.00000125</static.gain>
  <sensor.name>Metronix_Coil-----TYPE-006_LF-ID-000400.RSPX</sensor.name>
  <sensor.number>400</sensor.number>
</channel.identifier>

<channel.identifier id="003">
  <name>Bz</name>
  <line.len>0.0</line.len>
  <horiz.rot>90.000000</horiz.rot>
  <vert.rot>0.000000</vert.rot>
  <static.gain>0.0000015625</static.gain>
  <sensor.name>Metronix_Coil-----TYPE-007_LF-ID-000123.RSPX</sensor.name>
  <sensor.number>123</sensor.number>
</channel.identifier>

<channel.identifier id="004">
  <name>Ex</name>
  <line.len>64.900000</line.len>
  <horiz.rot>0.000000</horiz.rot>
  <vert.rot>0.000000</vert.rot>
  <static.gain>-0.001</static.gain>
  <sensor.name>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSPX</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<channel.identifier id="005">
  <name>Ey</name>
  <line.len>65.200000</line.len>
  <horiz.rot>90.000000</horiz.rot>
  <vert.rot>0.000000</vert.rot>
  <static.gain>-0.001</static.gain>
  <sensor.name>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSPX</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<file.identifier>
  <file.names>
    <name>L004F7B0.002_031211_120000</name>
  </file.names>
  <sampl.rate>-500.000000</sampl.rate>
  <lp>-200.000000</lp>
  <hp>0.000000</hp>
</file.identifier>
SPAM4 files for site 0004 in DEMO.2018

File created by Gerard Muñoz at Thu, 18 Oct 2018 12:59:48 using ArchiveCreateXML.ps1

Run ID: 002

Channel information:

<table>
<thead>
<tr>
<th>name</th>
<th>line.len</th>
<th>horiz.rot</th>
<th>vert.rot</th>
<th>static.gain</th>
<th>sensor.name</th>
<th>sensor.no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx</td>
<td>0.0</td>
<td>0.0000000</td>
<td>0.000000</td>
<td>0.00000125</td>
<td>Metronix_Coil----TYPE-006_LF-ID-000134.RSPX</td>
<td>134</td>
</tr>
<tr>
<td>By</td>
<td>0.0</td>
<td>90.000000</td>
<td>0.000000</td>
<td>0.00000125</td>
<td>Metronix_Coil----TYPE-006_LF-ID-000400.RSPX</td>
<td>400</td>
</tr>
<tr>
<td>Bz</td>
<td>0.0</td>
<td>0.0000000</td>
<td>90.000000</td>
<td>0.0000015625</td>
<td>Metronix_Coil----TYPE-007_LF-ID-000123.RSPX</td>
<td>123</td>
</tr>
<tr>
<td>Ex</td>
<td>64.900000</td>
<td>0.0000000</td>
<td>0.000000</td>
<td>-0.001</td>
<td>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSPX</td>
<td>0</td>
</tr>
<tr>
<td>Ey</td>
<td>65.200000</td>
<td>90.000000</td>
<td>0.000000</td>
<td>-0.001</td>
<td>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSPX</td>
<td>0</td>
</tr>
</tbody>
</table>

SPAM4 file(s): L004F7B0.002_031211_120000

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>sampling rate</th>
<th>low-pass filter</th>
<th>high-pass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-500.000000</td>
<td>-200.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Time windows:

<table>
<thead>
<tr>
<th>no</th>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Sat, 03 Dec 2011 12:00:00</td>
<td>Sat, 03 Dec 2011 12:09:59</td>
<td>599</td>
</tr>
</tbody>
</table>

SPAM4 file(s): L004F7B1.002_061211_120000

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>sampling rate</th>
<th>low-pass filter</th>
<th>high-pass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50.000000</td>
<td>-20.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Similar to the `config.xml` files, the `spam4.xml` (and the `spam3.xml` files) are organized in runs. A run consists of a particular hardware configuration. Switching the coils, for example, between high frequency -HF- and low frequency -LF- modes, counts as different hardware setups, since the calibration needed for the coils differs. Each run consists of one or more files and for each file one (in both the SPAM3 and SPAM4 systems) or more (in the SPAM3 system) time windows can be defined.

With the firmware update in 2012, the SPAM4 loggers not only write native EMERALD format data, but also subdivide the `ts/adc/spam4` folder into daily sub-folders, which contain the `raw` / `xtr(x)` files. The naming convention for the daily data folders is YYYYddd, where YYYY is the year of recording, ddd specifies the day of the year when the data were collected (starting with 1 at January 1st and ending with 365/366 at December 31st). For an example of an EMERALD type `recorder.xml` file (which applies to the EMERALD format `spam4.xml` see above).

### 6.3 SPAM3 data logger

S.P.A.M. Mk. III systems (or SPAM3 for short) were developed by Graham Dawes between 1990 and 1995 at the University of Edinburgh, UK. They were superseeded by the SPAM4 systems in 2009. SPAM3 operated as a networked instrument. This network consisted of sensors with distributed analogue and digital processing and control units. Networks could be very simple, e.g. a standard 5-component MT configuration, or very complex systems, limited only by the availability of SPAM3-modules. The network communication was based on digital data transfer via cables, and all devices on the network were synchronised. The computational heart of SPAM3 was the **transputer**, a microprocessor with built in parallel processing. Parallel execution of processes allowed frequency bands to be generated digitally and concurrently, at that time an important improvement over existing instruments.

SPAM3 supported a range of sensors: electrodes, magnetometers and seismometers. Sensors were attached via CASTLE sensor-boxes. They provided general signal preconditioning, power supply for active sensors and high impedance amplifiers for electric field recordings. The highest sampling rate of the SPAM3 systems was 8 KHz using 16-bit analogue to digital converters.

#### 6.3.1 spam3.xml

**Versions:**

- 1.00: Original definition.

An exemplary (simplified) `spam3.xml` file is shown below:

```xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='../../../../xslt/spam3.xslt'?>
```
<run identifier="H01" />

<channel identifier id="001">
  <name>Bx</name>
  <line.len>0.0</line.len>
  <horiz.rot>0.0</horiz.rot>
  <vert.rot>0.0</vert.rot>
  <static.gain>0.0000012500</static.gain>
  <sensor.name>Metronix_Coil-----TYPE-005_BB-ID-000024.RSP</sensor.name>
  <sensor.number>24</sensor.number>
</channel.identifier>

<channel identifier id="002">
  <name>By</name>
  <line.len>0.0</line.len>
  <horiz.rot>90.0</horiz.rot>
  <vert.rot>0.0</vert.rot>
  <static.gain>0.0000012500</static.gain>
  <sensor.name>Metronix_Coil-----TYPE-005_BB-ID-000023.RSP</sensor.name>
  <sensor.number>23</sensor.number>
</channel.identifier>

<channel identifier id="003">
  <name>Bz</name>
  <line.len>0.0</line.len>
  <horiz.rot>0.0</horiz.rot>
  <vert.rot>-90.0</vert.rot>
  <static.gain>0.0000012500</static.gain>
  <sensor.name>Metronix_Coil-----TYPE-005_BB-ID-000027.RSP</sensor.name>
  <sensor.number>27</sensor.number>
</channel.identifier>

<channel identifier id="004">
  <name>Ex</name>
  <line.len>57.6000</line.len>
  <horiz.rot>0.0</horiz.rot>
  <vert.rot>0.0</vert.rot>
  <static.gain>-0.00000500000</static.gain>
  <sensor.name>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSP</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<channel identifier id="005">
  <name>Ey</name>
  <line.len>55.9000</line.len>
  <horiz.rot>90.0</horiz.rot>
  <vert.rot>0.0</vert.rot>
  <static.gain>-0.00000500000</static.gain>
  <sensor.name>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSP</sensor.name>
</channel.identifier>
<sensor.number>0</sensor.number>
</channel.identifier>
<file.identifier>
<file.names>
 <name>003BPC01.H01</name>
</file.names>
<sampl.rate>-1024.00</sampl.rate>
<lp>-256.00</lp>
<hp>-32.00</hp>
<time.window id="001">
 <start>865742504</start>
 <startms>90820</startms>
 <stop>865742508</stop>
 <stopms>964844</stopms>
 <start.date>Sun, 08 Jun 1997 04:01:44</start.date>
 <stop.date>Sun, 08 Jun 1997 04:01:48</stop.date>
</time.window>
<time.window id="002">
 <start>865742544</start>
 <startms>62500</startms>
 <stop>865742551</stop>
 <stopms>936524</stopms>
 <start.date>Sun, 08 Jun 1997 04:02:24</start.date>
 <stop.date>Sun, 08 Jun 1997 04:02:31</stop.date>
</time.window>
<time.window id="003">
 <start>865742590</start>
 <startms>62500</startms>
 <stop>865742597</stop>
 <stopms>936524</stopms>
 <start.date>Sun, 08 Jun 1997 04:03:10</start.date>
 <stop.date>Sun, 08 Jun 1997 04:03:17</stop.date>
</time.window>
<time.window id="004">
 <start>865742636</start>
 <startms>62500</startms>
 <stop>865742643</stop>
 <stopms>936524</stopms>
 <start.date>Sun, 08 Jun 1997 04:03:56</start.date>
 <stop.date>Sun, 08 Jun 1997 04:04:03</stop.date>
</time.window>
</file.identifier>
</RUN>

<RUN id="002">
<run.identifier>S01</run.identifier>
</RUN>
<sensor.number>24</sensor.number>
</channel.identifier>

<channel.identifier id="002">
  <name>By</name>
  <line.len>0.0</line.len>
  <horiz.rot>90.00</horiz.rot>
  <vert.rot>0.00</vert.rot>
  <static.gain>0.0000012500</static.gain>
  <sensor.name>Metronix_Coil----TYPE-005_BB-ID-000023.RSP</sensor.name>
  <sensor.number>23</sensor.number>
</channel.identifier>

<channel.identifier id="003">
  <name>Bz</name>
  <line.len>0.0</line.len>
  <horiz.rot>0.00</horiz.rot>
  <vert.rot>-90.00</vert.rot>
  <static.gain>0.0000012500</static.gain>
  <sensor.name>Metronix_Coil----TYPE-005_BB-ID-000027.RSP</sensor.name>
  <sensor.number>27</sensor.number>
</channel.identifier>

<channel.identifier id="004">
  <name>Ex</name>
  <line.len>57.6000</line.len>
  <horiz.rot>0.00</horiz.rot>
  <vert.rot>0.00</vert.rot>
  <static.gain>-0.0000500000</static.gain>
  <sensor.name>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSP</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<channel.identifier id="005">
  <name>Ey</name>
  <line.len>55.9000</line.len>
  <horiz.rot>90.00</horiz.rot>
  <vert.rot>0.00</vert.rot>
  <static.gain>-0.0000500000</static.gain>
  <sensor.name>TelluricElectrode-TYPE-AgAgCl-ID-000000.RSP</sensor.name>
  <sensor.number>0</sensor.number>
</channel.identifier>

<file.identifier>
  <file.names>
    <name>003BPC01.S01</name>
  </file.names>
  <sampl.rate>-64.00</sampl.rate>
  <lp>-16.00</lp>
  <hp>-4.00</hp>
  <time.window id="001">
    <start>865659470</start>
    <startms>78125</startms>
    <stop>865741600</stop>
    <stopms>62500</stopms>
    <start.date>Sat, 07 Jun 1997 04:57:50</start.date>
    <stop.date>Sun, 08 Jun 1997 03:46:40</stop.date>
  </time.window>
</file.identifier>
The *html* formatted version looks like this:

**SPAM3 files for site 0003 in DEMO.2018**

File created by Gerard Muñoz at Thu, 18 Oct 2018 12:59:44 using ArchiveCreateXML.ps1

**Run ID: H01**

Channel information:

<table>
<thead>
<tr>
<th>name</th>
<th>line.len</th>
<th>horiz.rot</th>
<th>vert.rot</th>
<th>static.gain</th>
<th>sensor.name</th>
<th>sensor.no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00000012500</td>
<td>Metronix_Coil-----TYPE-005_BB-ID-000024.RSP</td>
<td>24</td>
</tr>
<tr>
<td>By</td>
<td>0.0</td>
<td>90.00</td>
<td>0.00</td>
<td>0.00000012500</td>
<td>Metronix_Coil-----TYPE-005_BB-ID-000023.RSP</td>
<td>23</td>
</tr>
<tr>
<td>Bz</td>
<td>0.0</td>
<td>0.00</td>
<td>-90.00</td>
<td>0.00000012500</td>
<td>Metronix_Coil-----TYPE-005_BB-ID-000027.RSP</td>
<td>27</td>
</tr>
<tr>
<td>Ex</td>
<td>57.6000</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00005000000</td>
<td>TellurisElectrode-TYPE-AgAgCl-ID-000000.RSP</td>
<td>0</td>
</tr>
<tr>
<td>Ey</td>
<td>55.9000</td>
<td>90.00</td>
<td>0.00</td>
<td>-0.00005000000</td>
<td>TellurisElectrode-TYPE-AgAgCl-ID-000000.RSP</td>
<td>0</td>
</tr>
</tbody>
</table>

**SPAM3 file(s):** 003BPC01.H01

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>sampling rate</th>
<th>low-pass filter</th>
<th>high-pass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1024.00</td>
<td>-256.00</td>
<td>-32.00</td>
</tr>
</tbody>
</table>

Time windows:

<table>
<thead>
<tr>
<th>no</th>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Sun, 08 Jun 1997 04:01:44</td>
<td>Sun, 08 Jun 1997 04:01:48</td>
<td>4</td>
</tr>
<tr>
<td>002</td>
<td>Sun, 08 Jun 1997 04:02:24</td>
<td>Sun, 08 Jun 1997 04:02:31</td>
<td>7</td>
</tr>
<tr>
<td>003</td>
<td>Sun, 08 Jun 1997 04:03:10</td>
<td>Sun, 08 Jun 1997 04:03:17</td>
<td>7</td>
</tr>
<tr>
<td>004</td>
<td>Sun, 08 Jun 1997 04:03:56</td>
<td>Sun, 08 Jun 1997 04:04:03</td>
<td>7</td>
</tr>
</tbody>
</table>

**Run ID: S01**

Channel information:

<table>
<thead>
<tr>
<th>name</th>
<th>line.len</th>
<th>horiz.rot</th>
<th>vert.rot</th>
<th>static.gain</th>
<th>sensor.name</th>
<th>sensor.no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00000012500</td>
<td>Metronix_Coil-----TYPE-005_BB-ID-000024.RSP</td>
<td>24</td>
</tr>
<tr>
<td>By</td>
<td>0.0</td>
<td>90.00</td>
<td>0.00</td>
<td>0.00000012500</td>
<td>Metronix_Coil-----TYPE-005_BB-ID-000023.RSP</td>
<td>23</td>
</tr>
<tr>
<td>Bz</td>
<td>0.0</td>
<td>0.00</td>
<td>-90.00</td>
<td>0.00000012500</td>
<td>Metronix_Coil-----TYPE-005_BB-ID-000027.RSP</td>
<td>27</td>
</tr>
<tr>
<td>Ex</td>
<td>57.6000</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00005000000</td>
<td>TellurisElectrode-TYPE-AgAgCl-ID-000000.RSP</td>
<td>0</td>
</tr>
<tr>
<td>Ey</td>
<td>55.9000</td>
<td>90.00</td>
<td>0.00</td>
<td>-0.00005000000</td>
<td>TellurisElectrode-TYPE-AgAgCl-ID-000000.RSP</td>
<td>0</td>
</tr>
</tbody>
</table>

**SPAM3 file(s):** 003BPC01.S01

Frequency band information (negative in [Hz], positive in [s], 0=OFF):

<table>
<thead>
<tr>
<th>sampling rate</th>
<th>low-pass filter</th>
<th>high-pass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-64.00</td>
<td>-16.00</td>
<td>-4.00</td>
</tr>
</tbody>
</table>

Time windows:

<table>
<thead>
<tr>
<th>no</th>
<th>start.date</th>
<th>stop.date</th>
<th>duration [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Sat, 07 Jun 1997 04:57:50</td>
<td>Sun, 08 Jun 1997 03:46:40</td>
<td>82130</td>
</tr>
</tbody>
</table>

Note, the file structure is basically the same as the *spam4.xml* file shown before.
6.4 SM25-RMT instrument

The M-K5-SM25 is a 5-channel radiomagnetotelluric data logger build by St. Petersburg State University and the company Microkor, also based in St. Petersburg. This system allows acquisition of three orthogonal magnetic field components and of two orthogonal horizontal electric field components. The system includes compact induction coils covering a frequency range between 1 kHz and 1000 kHz. The amplifiers for the electric field sensors support grounded dipoles (5-10 m) or capacitive-coupled electric field lines (10-20 m). Data are recorded in three frequency bands: D1 with a frequency range of 1-10 kHz and a sampling rate of 39 kHz, D2 with a frequency range of 10-100 kHz and a sampling rate of 312 kHz, and D4 with a frequency range of 100-1000 kHz and a sampling rate of 2496 kHz. Band D3 with a frequency range of 10-300 kHz and a sampling rate of 832 kHz is not working properly and therefore not used.

6.4.1 sm25.xml

The sm25.xml files are organized in a similar way as the spam-type xml files. A run is characterized by a particular hardware configuration, typically a certain frequency band with according sampling rate and filter settings. The time-series data of a run is stored in a binary file in a proprietary format. A run can contain one or several time windows.

6.5 Current transmitter (Metronix TXM-22)

The Metronix TXM-22 transmitter is used in connection with the TXB-07 transmitter controller to generate electromagnetic source signals suitable for controlled source applications such as Controlled Source Electromagnetics (CSEM).

It operates in a wide frequency range between 0.001 Hz up to 8,192 Hz. The output current is adjustable up to a maximum of +/-40A. The nominal output voltage is +/-560V. The TXM-22 is powered by a 50/60Hz, 3-phase, 400V motor generator. In order to unleash the full capabilities a generator of min. 40kVA should be used.

The output currents can be fed into 3 electrodes, offering the possibility to rotate the current vector in any direction. The TXB-22 uses a pulse-width modulation (PWM) to generate the output signals in a range of wave forms such as sine wave, square wave, triangle, saw-tooth or PRBS.

The transmitter is synchronized by GPS and can be programmed using a laptop which is connected by LAN or W-LAN.

6.5.1 transmitter.xml

The transmitter.xml files are described in the corresponding sections above.
6.6 Electric and magnetic sensors

Sensors are devices to measure electric or magnetic fields, typically as continuous analogue signals. Sensors are often attached to the data loggers using sensor boxes. As only digitized data is stored, the sensors do not produce data per se, and consequently do not have associated recorder.xml files. Instead instrument responses are needed to convert any recorded voltages into physically meaningful values. Typically the instrument responses are obtained by calibration measurements. The response files of all the sensors used in a project are stored in the responses folder and summarized in the responses.xml file (see above).

6.6.1 Induction coils

The induction coil magnetometers MFS-05/06/07/10 (METRONIX, Germany) are designed to measure variations of the Earth’s magnetic field over a wide frequency band (broadband sensor). The sensor coil consists of a highly permeable ferrite core with several thousand copper turns and the magnetometer contains electronics for pre-amplification of the sensor signal. Since induction coil sensors do not measure the magnetic field directly but its time derivative, their response is highly frequency dependent. The MFSxx sensors cover wide frequency ranges: from approximately 1 mHz to 8 kHz for the MFS06, 1 mHz to 1 kHz for the MFS05, 0.01 Hz to 50 kHz for the MFS07, and 1 mHz to 1 kHz for the MFS10.

Typical amplitude and phase response of the MFS06 induction coil sensor. The nominal amplitude response is approximately 800 mV/nT for frequencies above 4 Hz; for lower frequencies it follows a 1/f behaviour. The sensor can be operated in the so-called high- and low- frequency modes, which have different frequency responses (red
7 Other files and folders

7.1 Powershell scripts

PowerShell is a task automation and configuration management framework from Microsoft, consisting of a command-line shell and associated scripting language. Initially a Windows component only, known as Windows PowerShell, it was made open-source and cross-platform in 2016 with the introduction of PowerShell Core.

A number of Powershell scripts have been written to help organize, construct, and maintain the MT repository. Below we summarize briefly their functionality. Please contact GIPP-MT for further information.

7.1.1 ArchiveMakeStructure.ps1

Creates the default folder structure for processing and archiving of MT stations, CSEM receivers and CSEM transmitters. To be called from the project folder at the top of the structure tree.

**Example:** ArchiveMakeStructure.ps1 -Site 1

Creates the folder structure for MT site number 1.

7.1.2 ArchiveCreateXMLs.ps1

The main script to create a MT repository. It generates a number of .xml files containing the metadata of the project. Some of the .xml files are associated with the entire project, others are associated with each of the sites in the project.

The script only creates the basic structure, the general information as well as the map, picture and response files have to be added by the user.

The script is executed from the project folder (top of the tree) and it will search through the project structure to identify available data types. The script calls other external scripts and programs to generate the corresponding xtr files.

If some xml files to be created exist already, they are skipped (not overwritten).

Created xml files include:
- **project.xml**: general information about the project and links to all other .xml files.
- **maps.xml**: map(s) relevant for the project.
- **pictures.xml**: pictures relevant for the project.
- **sites.xml**: a table listing all sites of the project folder with information about recording times, coordinates, and type(s) of available data. Includes links to the configuration.xml files and data type files.
- **transmitters.xml**: a table listing all transmitters of the project with information about recording times, coordinates, and type(s) of available data. Includes links to jobs.xml files and data type files.
- **response.xml**: a listing of all calibration files (.rspx) found in the associated response folder.
- **instrumentation.xml**: a listing with all serial numbers of all instruments used in the project.
- **publications.xml**: contains references to publications relevant for the project.

For each site one or more of the following files are created:

- **comment.xml**: user comments, information relevant for a particular site.
- **recorder.xml**: The .../ts/adc site-subfolders contain more subfolders which are named after recording devices. One subfolder exists for each data type. If data are converted into EMERALD format, they are stored in a subfolder called *em-*"data type" with the corresponding .xml files.
- **raw.xml**: optional. If time-series data is present in the raw folder, this file contains a listing of these data (converted into EMERALD format).
- **config.xml**: see script ArchiveCreateConfigXML.ps1 for more details.

For each transmitter one or more of the following files are created:

- **jobs.xml**: information on schedule, form, and duration of transmitted EM signals.
- **adutrx/spam4/spam4trx.xml**: transmitter data, one subfolder for each data type.

**Example:** ArchiveCreateXMLs.ps1 -project DEMO.2018 -user "Oliver Ritter" -projectType MT -log

Creates the xml files for the magnetotellurics project DEMO.2018 and a log file is written. The user is Oliver Ritter.

**Example:** ArchiveCreateXMLs.ps1 -project PROJECT1.2015 -user "Kristina Tietze" -projectType CSEM

Creates all the xml files for the Controlled Source Electromagnetic (CSEM) project PROJECT1.2015 (including the transmitter-related files). The user is Kristina Tietze.

For additional details on the use of the ArchiveCreateXMLs.ps1 script in practice, see the Quick guide.

### 7.1.3 ArchiveUpdateSitesXML.ps1

The script reads file sites.xml from the location specified by the -Path parameter and updates the format to version 2.1.

It can also be used to edit a sites.xml file, e.g. to modify start and stop times, or coordinates. Missing coordinates can be supplied using a .crd file or by reading the information from the .xtr files. For older data types (edl, lmt, spam3) the .xtr files contain no coordinates, therefore a .crd file is needed.
Example: ArchiveUpdateSitesXML.ps1 -Path .

Updates the sites.xml file in the working folder into version 2.1.

7.1.4 ArchiveUpdateProjectXML.ps1

The script reads the file project.xml from the location specified by the -Path parameter and updates the format to version 2.0.

project.xml should still be edited manually to add any missing information.

7.1.5 ArchiveEditTransmitterXML.ps1

7.1.6 ArchiveCreateConfigXML.ps1

Script creates a config.xml file for a station's time of recording, including information on instruments, sampling frequencies, recording intervals, and hardware modes.

To be called from the project folder (top of tree). Note, the script is internally called for each site by ArchiveCreateXMLs.ps1.

7.1.7 ArchiveCleanXMLs.ps1

Running this script can be necessary if something went wrong in the process of creating the archive structure. It deletes all or part of the .xml files describing the project in the archive. It can also delete .html files or data file (EMERALD format).

Example: ArchiveCleanXMLs.ps1 -project

Deletes the xml files associated to the project (not the site related).

Example: ArchiveCleanXMLs.ps1 -data -emData

Deletes the xml files associated to each site and the generated EGERALD format data as well. The project related xml files (project.xml, sites.xml, maps.xml, etc.) are kept.

The script is executed from the project folder (top of the tree).

7.1.8 ArchiveCreateHTMLs.ps1

The script creates .html files for all corresponding .xml files, so that all of the project's meta data can be also obtained from .html files. The path to .xslt files with the xslt stylesheets is required for the conversion. The .html files are particularly useful if the repository is to be exported as all internal links are maintained.
Note the script requires the command line transformation utility (msxsl.exe) on your computer, e.g. the *util* directory.

The script is executed from the project folder (top of the tree).

**Example:** ArchiveCreateHTMLs.ps1 -xsltPath ..\xslt

Converts all .xml files in the current project structure into .html by using the stylesheets located in the xslt folder at the same level of the project folder.

### 7.1.9 ArchiveUpdateEncoding.ps1

This script changes the encoding of all xml files in the folder specified by the parameter -Path into UTF-8. This is necessary for the conversion to HTML and to ensure compatibility. If xml files were previously created with other encodings, they must be changed. If you are creating a new project structure (and associated xml files) from scratch this is not necessary, as all scripts create UTF-8 files.

### 7.1.10 Other scripts

Some of the MT projects contain *scripts* subfolders with Powershell scripts used to process the recorded data. This subfolder is optional. The main idea behind this is to ensure that any stored data can be reprocessed, even at much later times.

### 7.2 Time-series data formats

#### 7.2.1 EMERALD format

The acronym EMERALD was supposed to stand for ElectroMagnetic Equipment, Raw data And Locations Database. What survived over the years was the EMERALD processing, a set of computer programs to analyse MT time series data, and the EMERALD file format for storing MT data.

EMERALD data files typically come in pairs of two files with the same name but differing file name extensions, sometimes called RAW and XTR files. XTR (extract) files are plain ASCII files, which can be read and modified with text editors. RAW files or more generally, EMERALD-type data files are in most cases binary and used to store all kind of magnetotelluric (MT) data such as time series, cross- and auto spectra and calibration data. The EMERALD-type data files store data in matrix form (any number of channels), but do not contain any description of the data. This information is stored in the according .xtr file.

In 2015 the original .xtr files were replaced by a modernized version based on the Extensible Markup Language (XML). The new files have the extension .xtrx.

A brief summary of all the naming conventions is given here:
Old format (without version number). This old format is a legacy of the old DOS times, when file names could only have 8 characters and extensions 3 characters. In order to pack as much information as possible in only 8 characters a hexadecimal codification and an implicit $2^n$ decimation scheme was adopted (which is still used by the EMERALD MT processing scheme).

An example of this naming convention could be: 01H4FA01.XTR. In this case 01 corresponds to the last two digits of the site number (it could be 001 but also 201); H4F corresponds to the filter settings: H means that the frequencies are in Hz, 4 translates into $2^4 = 16$, i.e. the low pass filter is set to 16Hz, and F means there was no high pass filter applied; A represents the time window (i.e. this file contains the first continuous recording of the run at the site), subsequent time windows would get B, C, etc.; finally 01 represents the first run (a particular hardware setup).

This old naming convention is nowadays only found in the ts/raw/ subfolders of some projects before 2010.

XTR(X) Version 1.0: This format was adopted when Windows allowed larger filenames and to convert SPAM4 data into the EMERALD format. The filenames contained similar information but now without any encoding. Initially the long file names were used with the .xtr files but they were later adopted to the .xtrx files.

An example of this naming convention could be: 0001_LP00016Hz_HP00000s_R001_W001.XTR. This file name reflects exactly the same information as the file before: site 001, low pass filter of 16Hz, no high pass filter (conventionally written as Os), first run and first time window.

XTRX Version 1.1: This naming convention was adopted to include actual times of measurement instead of counting Runs or Windows. In this naming convention, the fields run (R001) and window (W001) were substituted by time information in the form of day and time.

For example, a file following the 1.1 naming convention could be: 0001_LP00016Hz_HP00000s_D2018300_T114800.XTRX. This indicates that the data for site 001 was measured with a low pass filter of 16Hz and no high pass filter. Recording started at 11:48:00 on the 27th of October of 2018 (day 300 of the year).

XTRX Version 1.2: This naming convention expands the previous version by extending the length of the fields for the low and high pass filters to 7 digit floating points with 3 decimals. Also, the sampling rate appears in the file names in addition to the low and high pass filters.

An example of this naming convention could be: 0001_SR0000064Hz000_LP0000016Hz000_HP0000000s000_D2018300_T114800.XTRX. It corresponds to the exact same information as in the previous example but now with more significant digits and the sampling rate of 64.00Hz is explicity shown in the file name.

The EMERALD format for magnetotelluric data is described in detail in Ritter et al. (2015):

7.2.2 MINISEED format
In **MINISEED** format, the time-series data are usually sorted as individual channels (*.pri / *.sec) into daily subfolders (format `ddd`, with `ddd`=day of the year). Magnetotelluric sensors are connected to EDL recorders via sensor boxes. If **CASTLE sensor boxes** of the GIPP were used, additional information on the site set-up (sensors, dipole lengths, etc) can be found in the respective EMERALD-type `.xtr`/.`xtrx` files.

For more information on the MINISEED format see:


### 7.3 Definition of data levels

- **level-0 data**: data as generated by the recording device. Data files are typically in a proprietry binary format.
- **level-1 data**: data were converted into **EMERALD** format, possibly as a one-to-one copy of the level-0 data. Alternatively additional time-series processing, such as digital filtering, de-trending, or re-scaling may have been applied.
- **level-2 data**: MT transfer function data after, typically generated by robust, remote-reference processing of the data in the frequency domain.

### 8 References

