English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment

Authors
/persons/resource/dahle

Dahle,  C.
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/murboeck

Murböck,  Michael
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/flechtne

Flechtner,  Frank
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dobslaw

Dobslaw,  H.
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/michalak

Michalak,  G.
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/hneum

Neumayer,  Karl
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/abrik

Abrykosov,  Oleh
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/areinh

Reinhold,  Anton
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/koenigr

König,  R.
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/sulzbach

Sulzbach,  Roman
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/foer

Förste,  C.
1.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

4598895.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., Förste, C. (2019): The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. - Remote Sensing, 11, 18, 2116.
https://doi.org/10.3390/rs11182116


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_4598895
Abstract
Time-variable gravity field models derived from observations of the Gravity Recovery and Climate Experiment (GRACE) mission, whose science operations phase ended in June 2017 after more than 15 years, enabled a multitude of studies of Earth’s surface mass transport processes and climate change. The German Research Centre for Geosciences (GFZ), routinely processing such monthly gravity fields as part of the GRACE Science Data System, has reprocessed the complete GRACE mission and released an improved GFZ GRACE RL06 monthly gravity field time series. This study provides an insight into the processing strategy of GFZ RL06 which has been considerably changed with respect to previous GFZ GRACE releases, and modifications relative to the precursor GFZ RL05a are described. The quality of the RL06 gravity field models is analyzed and discussed both in the spectral and spatial domain in comparison to the RL05a time series. All results indicate significant improvements of about 40% in terms of reduced noise. It is also shown that the GFZ RL06 time series is a step forward in terms of consistency, and that errors of the gravity field coefficients are more realistic. These findings are confirmed as well by independent validation of the monthly GRACE models, as done in this work by means of ocean bottom pressure in situ observations and orbit tests with the GOCE satellite. Thus, the GFZ GRACE RL06 time series allows for a better quantification of mass changes in the Earth system.