Originally published as:

DOI: http://doi.org/10.1002/2014JB011141
No effect of water on oxygen self-diffusion rate in forsterite

Hongzhan Fei1,2, Michael Wiedenbeck3, Daisuke Yamazaki2, and Tomoo Katsura1

1 Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany, 2 Now at Institute for Study of the Earth’s Interior, Okayama University, Misasa, Japan, 3 Helmholtz Centre Potsdam, Potsdam, Germany

Abstract We systematically measured oxygen self-diffusion coefficients (D_{O}) in forsterite along b crystallographic axis at a pressure of 8 GPa and temperatures of 1600–1800 K, over a wide range of water content (C_{H2O}) from <1 up to ~800 weight ppm. The experimental results suggest that D_{O} \propto (C_{H2O})^{0.05\pm0.06} \approx (C_{H2O})^{0}. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the C_{H2O} dependence of silicon self-diffusion rate is also very small, the effect of water on olivine rheology is not significant by assuming the diffusion controlled creep mechanism.

1. Introduction

Water is thought to play an essential role in dynamical processes in the Earth’s interior. A number of studies have reported a significant influence for water on the physical properties of mantle minerals, e.g., electrical conductivity (Karato, 1990; Yoshino et al., 2009), elastic moduli (Jacobsen et al., 2008), creep rates (Karato et al., 1986; Karato and Jung, 2003; Mei and Kohlstedt, 2000a, 2000b), atomic diffusivity (Costa and Chakraborty, 2008; Hier-Majumder et al., 2005; Shimojuku et al., 2010; Wang et al., 2004), and deformation fabric (Jung and Karato, 2001). In the case of rheological properties, it was believed that even several tens of weight ppm of water could enhance creep rates in olivine by orders of magnitude (Karato et al., 1986; Mei and Kohlstedt, 2000a, 2000b). However, because of the technical difficulty in deformation experiments, the effect of water on olivine rheological properties may have been misunderstood (Fei et al., 2013). It is necessary to examine the results from deformation experiments independently.

High-temperature creep in minerals is believed to be controlled by self-diffusion of the slowest species [Frost and Ashby, 1982; Weertman, 1999], which is silicon in the case of olivine [Costa and Chakraborty, 2008; Houlier et al., 1990]. Thus, the creep rate can be estimated from the silicon self-diffusion coefficients (D_{Si}). In contrast to deformation studies, Fei et al. [2013] demonstrated only a very small effect of water on olivine rheology based on D_{Si}. A water content (C_{H2O}) exponent of only 1/3 was found for D_{Si}, which is strikingly lower than 1.2 suggested by previous deformation experiments [Hirth and Kohlstedt, 2003; Karato and Jung, 2003].

Oxygen is the second slowest diffusion species with a similar diffusion rate as silicon in most mantle minerals [Costa and Chakraborty, 2008; Dobson et al., 2008; Shimojuku et al., 2009]. It is thus expected that oxygen diffusion may also play an essential role in the creep of olivine. Costa and Chakraborty [2008] investigated the effect of water on oxygen self-diffusion coefficients (D_{O}) in olivine. By comparing the results measured at 2 GPa and C_{H2O} of 30–50 weight ppm with those determined at ambient pressure under dry conditions [Dohmen et al., 2002], they concluded that even ~45 weight ppm of water could enhance D_{O} by 1 order of magnitude. However, as pointed out by Fei et al. [2013], comparison of experimental results obtained at ambient pressure and at high pressures could lead to misinterpretations because different experimental setups have different error sources. In order to clarify the effects of water on D_{O} experiments should be conducted with the same setup over a wide range of C_{H2O} under constant pressure and temperature conditions.

In this study, we systematically measured D_{O} in a forsterite single crystal at 8 GPa, 1600–1800 K, and over a wide range of C_{H2O} from <1 up to ~800 weight ppm. Our results show that water has no significant effect on D_{O} under upper mantle conditions.

2. Methods

The experimental approach in this study is the same as that in our previous study [Fei et al., 2013]. Here we briefly describe our procedures.
Previous oxygen self-diffusion studies show almost the same values of D_O between natural olivine [Gérard and Jaoul, 1989; Ryerson et al., 1989] and iron-free forsterite [Jaoul et al., 1980], suggesting that the effect of iron on D_O is insignificant under upper mantle conditions. Therefore, a synthetic iron-free forsterite (Mg_2SiO_4) single crystal with Fe concentration of only ~2 weight ppm was used as the starting material. The major impurity in the crystal is ~80 weight ppm of Ir determined by laser ablation inductively coupled plasma–mass spectrometry (ICP-MS) [Fei et al., 2012]. Since no anisotropy of oxygen self-diffusion rate was found in forsterite or natural olivine [Costa and Chakraborty, 2008; Jaoul et al., 1980], the D_O along the b crystallographic direction were measured in this study.

Disks of forsterite were cored parallel to the b axis from a single crystal, sealed in Pt capsules with talc + brucite water source and graphite + enstatite (or enstatite + gold) buffer, and preannealed at 1600 K and 8 GPa in a multianvil apparatus at the University of Bayreuth using the cell assembly shown in Figure 1. The annealing durations were about 50~70 h which was long enough to achieve the water equilibrium in the crystal based on the hydrogen diffusion coefficient in forsterite [Demouchy and Mackwell, 2003]. The water in the recovered samples was measured by Fourier transform infrared (FT-IR) spectroscopy using unpolarized light along the b axis, and the $C_{\text{H}_2\text{O}}$ were calculated from the infrared spectra using Bell et al.’s [2003] calibration. Crystals with various $C_{\text{H}_2\text{O}}$ ranging from <1 to ~800 weight ppm (Table 1) were obtained after this preannealing by controlling the ratio of water source to the graphite/gold + enstatite (or enstatite + gold) buffer.

The water-doped samples were mechanically polished perpendicular to the b axis by diamond powder (0.25 μm grain size). Because a high-defect concentration layer (~200 nm) on the surface might be formed by this mechanical polish [Pinilla et al., 2012] that may affect the apparent diffusion coefficients, sample surfaces were sequentially polished in an alkaline colloidal silica solution for 3~12 h which is sufficiently long to remove the mechanically damaged layer [Ito and Ganguly, 2006] and were then deposited with about 500 nm thick amorphous films with a chemical composition of 18O-enriched Mg_2SiO_4. The thin films have uniform thickness and 18O/16O ratio (~0.05) examined by secondary ion mass spectrometry (SIMS) profiles from two positions on one sample with thin-film deposition but without high temperature treatment.

Each thin-film deposited sample was annealed again at 8 GPa, 1600 or 1800 K for diffusion using exactly the same experimental setup, and water dopant as that used in the corresponding water-doping experiment. For the samples with $C_{\text{H}_2\text{O}} < 1$ weight ppm (below the detection limit of FT-IR), experiments were performed using the same procedures as described above but without water source. The recovered samples remain as single crystals because of the protection by graphite/gold powder at high pressure.

The samples were slightly polished by 100~200 nm in the alkaline colloidal silica solution to reduce the surface roughness after diffusion annealing [Fei et al., 2012]. The water content in each sample was examined again using FT-IR, the isotopic profiles were obtained from the CAMECA IMS-6f SIMS at the Helmholtz Centre Potsdam, and the depths of SIMS craters were measured by a 3-D confocal microscope at the University of Bayreuth. Examples of the isotope profile and SIMS crater are shown in Figures 2a and 2b, respectively.

Figure 1. Cell assembly for the high-pressure experiments. Stepped LaCrO$_3$ heater was used to generate high temperature. The coated thin film for diffusion couple (red) and the thermocouple junction locate at the two LaCrO$_3$ steps to minimize the temperature measurement uncertainty. The water source located at the bottom of the Pt capsule to avoid the reaction between forsterite and talc + brucite, whereas free water released from talc + brucite could pass through the graphite powder confirmed by the homogenous $C_{\text{H}_2\text{O}}$ distributions in the crystals after annealing.
<table>
<thead>
<tr>
<th>Run No.</th>
<th>T (K)</th>
<th>t (h)</th>
<th>C_{H2O}^c (weight ppm)</th>
<th>C_{H2O}^d (weight ppm)</th>
<th>C_{H2O}^e (weight ppm)</th>
<th>$c_1 \times 10^{-2}$</th>
<th>$c_\infty \times 10^{-3}$</th>
<th>$4D_{O}'t$ (nm2)</th>
<th>δ (nm)</th>
<th>Rs (nm)</th>
<th>$L^2(Rs)$ (nm2)</th>
<th>D_O (m2/s)</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5045-a</td>
<td>1600</td>
<td>21</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>2.5</td>
<td>2.7</td>
<td>1.8×10^5</td>
<td>714</td>
<td>48</td>
<td>4.9 $\times 10^3$</td>
<td>5.9 $\times 10^{-19}$</td>
<td>C + En</td>
</tr>
<tr>
<td>S5045-b</td>
<td>1600</td>
<td>21</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>2.5</td>
<td>2.7</td>
<td>1.8×10^5</td>
<td>479</td>
<td>28</td>
<td>2.7 $\times 10^3$</td>
<td>2.4 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3390-a</td>
<td>1600</td>
<td>41</td>
<td>242</td>
<td>237</td>
<td>17</td>
<td>1.8</td>
<td>2.1</td>
<td>1.8×10^6</td>
<td>416</td>
<td>28</td>
<td>2.7 $\times 10^3$</td>
<td>1.7 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3390-b</td>
<td>1600</td>
<td>41</td>
<td>242</td>
<td>237</td>
<td>17</td>
<td>1.8</td>
<td>2.1</td>
<td>1.8×10^6</td>
<td>416</td>
<td>28</td>
<td>2.7 $\times 10^3$</td>
<td>1.7 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3389-a</td>
<td>1600</td>
<td>9</td>
<td>248</td>
<td>230</td>
<td>15</td>
<td>1.9</td>
<td>2.1</td>
<td>2.2×10^5</td>
<td>587</td>
<td>47</td>
<td>4.7 $\times 10^3$</td>
<td>2.6 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3389-b</td>
<td>1600</td>
<td>9</td>
<td>248</td>
<td>230</td>
<td>15</td>
<td>1.9</td>
<td>2.1</td>
<td>2.2×10^5</td>
<td>587</td>
<td>47</td>
<td>4.7 $\times 10^3$</td>
<td>2.6 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3394-a</td>
<td>1600</td>
<td>20</td>
<td>248</td>
<td>230</td>
<td>15</td>
<td>1.9</td>
<td>2.1</td>
<td>2.2×10^5</td>
<td>587</td>
<td>47</td>
<td>4.7 $\times 10^3$</td>
<td>2.6 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3394-b</td>
<td>1600</td>
<td>20</td>
<td>248</td>
<td>230</td>
<td>15</td>
<td>1.9</td>
<td>2.1</td>
<td>2.2×10^5</td>
<td>587</td>
<td>47</td>
<td>4.7 $\times 10^3$</td>
<td>2.6 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>V724-a</td>
<td>1600</td>
<td>18</td>
<td>183</td>
<td>114</td>
<td>146</td>
<td>1.9</td>
<td>2.1</td>
<td>3.0×10^5</td>
<td>899</td>
<td>53</td>
<td>5.7 $\times 10^3$</td>
<td>1.2 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>V724-b</td>
<td>1600</td>
<td>18</td>
<td>183</td>
<td>114</td>
<td>146</td>
<td>1.9</td>
<td>2.1</td>
<td>3.0×10^5</td>
<td>899</td>
<td>53</td>
<td>5.7 $\times 10^3$</td>
<td>1.2 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3507-a</td>
<td>1600</td>
<td>7</td>
<td>805</td>
<td>810</td>
<td>12</td>
<td>2.2</td>
<td>2.1</td>
<td>1.0×10^6</td>
<td>960</td>
<td>59</td>
<td>6.6 $\times 10^3$</td>
<td>2.7 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3507-b</td>
<td>1600</td>
<td>7</td>
<td>805</td>
<td>810</td>
<td>12</td>
<td>2.2</td>
<td>2.1</td>
<td>1.0×10^6</td>
<td>960</td>
<td>59</td>
<td>6.6 $\times 10^3$</td>
<td>2.7 $\times 10^{-18}$</td>
<td>C + En</td>
</tr>
<tr>
<td>H3509-a</td>
<td>1800</td>
<td>5</td>
<td>1485</td>
<td>1485</td>
<td>12</td>
<td>13</td>
<td>1.0</td>
<td>1.5×10^6</td>
<td>1472</td>
<td>164</td>
<td>4.0 $\times 10^3$</td>
<td>1.6 $\times 10^{-18}$</td>
<td>En</td>
</tr>
<tr>
<td>H3509-b</td>
<td>1800</td>
<td>5</td>
<td>1485</td>
<td>1485</td>
<td>12</td>
<td>13</td>
<td>1.0</td>
<td>1.5×10^6</td>
<td>1472</td>
<td>164</td>
<td>4.0 $\times 10^3$</td>
<td>1.6 $\times 10^{-18}$</td>
<td>En</td>
</tr>
<tr>
<td>H3509-c</td>
<td>1800</td>
<td>15</td>
<td>1485</td>
<td>1485</td>
<td>12</td>
<td>13</td>
<td>1.0</td>
<td>1.5×10^6</td>
<td>1472</td>
<td>164</td>
<td>4.0 $\times 10^3$</td>
<td>1.6 $\times 10^{-18}$</td>
<td>En</td>
</tr>
<tr>
<td>H3509-c</td>
<td>1800</td>
<td>15</td>
<td>1485</td>
<td>1485</td>
<td>12</td>
<td>13</td>
<td>1.0</td>
<td>1.5×10^6</td>
<td>1472</td>
<td>164</td>
<td>4.0 $\times 10^3$</td>
<td>1.6 $\times 10^{-18}$</td>
<td>En</td>
</tr>
</tbody>
</table>

aThe c_1, c_∞, $4D_{O}'t$, and δ are obtained by the least square fitting in equation (1). The Rs is the standard deviation of surface height as shown in Figure 2b measured by the 3-D confocal microscope. The $L^2(Rs)$ is calculated from Rs using the relationship of $L(Rs)$ and Rs shown in Figure 3 obtained from zero-time runs. The run no. with the same starting but different endings (e.g., V720-a and V720-b) indicate different SIMS profiles measured on the same sample. The large scatterings of D_O in H3509 and H3507 are probably caused by the large fitting uncertainties of c_1 and δ in these runs.

bSample coated with ~100 nm ZrO$_2$ films on the 18O-enriched films. We performed several diffusion experiments on samples coated with an additional ZrO$_2$ film to protect the isotopically enriched film following the technique introduced by Costa and Chakraborty [2008]. The ZrO$_2$-coated and non-ZrO$_2$-coated samples show almost the same D_O. The presence of ZrO$_2$ thin film thus does not affect D_O in forsterite at high pressure. This is also the case for silicon diffusion confirmed in our previous studies [Fei et al., 2012, 2013].

cWater content before diffusion annealing measured by FT-IR.

dWater content after diffusion annealing measured by FT-IR.

eAnomalously high C_{H2O} by SIMS because of the low vacuum condition for this sample (~10$^{-6}$ Pa for S5045, whereas <5 $\times 10^{-7}$ Pa for the others).

18O-enriched films. We performed several diffusion experiments on samples coated with an additional ZrO$_2$ film to protect the isotopically enriched film following the technique introduced by Costa and Chakraborty [2008]. The ZrO$_2$-coated and non-ZrO$_2$-coated samples show almost the same D_O. The presence of ZrO$_2$ thin film thus does not affect D_O in forsterite at high pressure. This is also the case for silicon diffusion confirmed in our previous studies [Fei et al., 2012, 2013].

fGraphite + enstatite buffer.

gEnstatite buffer.
Since the diffusion length is comparable with the thickness of thin film in this study, the apparent diffusion coefficients were obtained by fitting the SIMS data to the finite-medium diffusion equation [Zhang, 2008],

\[\frac{c(x)}{c_\infty} = \frac{c_1 - c_\infty}{2} \left(\frac{\text{erf} \left(\frac{x + \frac{\delta}{2\sqrt{D_0}t}}{\sqrt{4D_0t}} \right) + \text{erf} \left(\frac{\delta - x}{\sqrt{4D_0}t} \right)}{\sqrt{4\pi D_0t}} \right) \]

(1)

where \(c(x) \) is the observed abundance of \(^{18}\text{O} \) by SIMS, \(c_1 \) and \(c_\infty \) are the initial abundances of \(^{18}\text{O} \) in the thin film and in the substrate, respectively, \(x \) is the distance from the surface, \(t \) is the annealing time, \(D_0 \) is the apparent diffusion coefficient, and \(\delta \) is the extended source width [Zhang, 2008].

Because the coated thin film is compressed at high pressure, and the sample surface is slightly polished after diffusion by roughly 100–200 nm, it is impossible to know the exact values of \(\delta \) for each sample, and therefore, the \(\delta \) together with \(c_1 \), \(c_\infty \), and \(4D_0t \) listed in Table 1 were obtained by the least squares fitting in equation (1). The fitting value of \(c_1 \) ranges from \(0.5 \times 10^{-2} \) to \(3.5 \times 10^{-2} \), and \(\delta \) from 55 to 1472 nm. We also tried to fix \(c_1 \) at \(0.5 \times 10^{-2} \) and at \(3.5 \times 10^{-2} \) for the fitting, or fix \(\delta \) by assuming 0 or 200 nm thick layer was polished away after diffusion, and the \(4D_0t \) has almost no difference (within a factor of 1.5) though the \(\delta \) value varies inversely with \(c_1 \) significantly. Therefore, even though the exact values of \(\delta \) and \(c_1 \) are unknown, their effects on the uncertainty of \(D_0 \) are small.

Due to the slow diffusion rate of oxygen, the length of the oxygen diffusion profile is usually less than a couple of microns. The apparent diffusion profiles could thus be contributed by many factors, e.g., the surface roughness [Fei et al., 2012], the SIMS convolution [Dohmen et al., 2002], and so on. In order to correct these uncertainty sources, we conducted a series of zero-time diffusion experiments, in which the samples were
crater, the \(L(Rs) \) was obtained from the calibration in Figure 3, and \(D_0 \) is calculated from \(4D_0't \) using the calibration \(4D_0't = 4D_0't - L^2(Rs) \) [Fei et al., 2012].

3. Results and Discussion

The water contents in the samples measured before and after diffusion are almost the same, suggesting a constant \(C_{H_2O} \) during diffusion annealing (Table 1 and Figure 4a). Besides, in order to examine the homogeneity of \(C_{H_2O} \) in the crystals, FT-IR spectra were also taken on the cross section of the sample V720, showing that the \(C_{H_2O} \) has homogenous distribution in the crystals (Figure 4b) [Fei et al., 2013]. In addition, the infrared spectra only give average \(C_{H_2O} \) values along the thick samples, whereas the SIMS oxygen diffusion profiles were located only within several microns of the sample surfaces. Therefore, in addition to the \(^{16}O \) and \(^{18}O \) profiles, the \(^1H \) profile was also measured concurrently by SIMS (Figure 4c), the \(^1H \) concentration rapidly decreases to a constant value within a depth of \(\sim 100 \) nm, whereas the major part of the \(^{18}O \) profiles for determination of \(D_0 \) locates at \(>100 \) nm depth. Thus, the \(H \) concentration is not reduced or increased in the regions where the oxygen diffusion profiles were obtained. The high \(H \) concentration near the surface within \(100 \) nm is probably because of the water absorbed during the chemical polish after diffusion [Fei et al., 2012]. Furthermore, we compared the water content measured by FT-IR ([H\(_2O \)]\(^{IR} \)) in the bulk crystals with those by SIMS ([H\(_2O \)]\(^{SIMS} \)) near the sample surfaces where \(O \) diffusion profiles were obtained (Table 1). As shown in Figure 4d, \(C_{H_2O}^{SIMS} \) is linearly proportional to \(C_{H_2O}^{IR} \) when the water content is above the detection limit of SIMS. Thus, the \(C_{H_2O} \) measured by FT-IR reflect the \(C_{H_2O} \) values where the oxygen diffusion coefficients were measured. Although the absolute values of \(C_{H_2O}^{SIMS} \) is slightly higher than \(C_{H_2O}^{IR} \), which we attribute to the lack of calibration, it does not affect the conclusion that water cannot enhance oxygen self-diffusion rate in forsterite (note that the \(C_{H_2O} \) detection limit of SIMS is typically at the level of tens of weight ppm [Rhede and Wiedenbeck, 2006], and therefore, \(C_{H_2O}^{SIMS} \) remains constant when less than tens of weight ppm in Figure 4d).

The fitted parameters of \(c_t, c_{ww}, \delta \), and \(4D_0't \) in equation (1) are listed in Table 1, and results of \(D_0 \) are plotted in Figure 5. The data points of \(D_0 \) scattered by \(\sim 0.8 \) orders of magnitude, which is probably caused by the temperature uncertainty in the multianvil experiments (usually considered to be \(\pm 50 \) K, which would lead to the scattering of \(D_0 \) as large as \(0.7 \) orders of magnitude). The values of \(D_0 \) at \(1600 \) K are equivalent within experimental errors regardless of \(C_{H_2O} \) in the present range. The \(D_0 \) values are fitted to the Arrhenius equation,

\[
D_0 = A_0C_{H_2O} \exp \left(-\frac{\Delta H}{RT} \right)
\]

where \(A_0 \) is the preexponential factor, \(C_{H_2O} \) is the water content in weight ppm, \(r \) is the \(C_{H_2O} \) exponent, \(R \) is the ideal gas constant, \(T \) is the absolute temperature, and \(\Delta H \) is the activation enthalpy. The \(A_0, r, \) and \(\Delta H \) are found to be \(10^{-5.9\pm1.4} \) m\(^2\)/s, \(0.05\pm0.06 \), and \(370\pm60 \) kJ/mol (the error bars are given at the 1 standard
deviation level) by the least squares fitting, respectively. The \(C_{\text{H}_2\text{O}} \) exponent for \(D_O \) is nearly zero, which means water has no significant effect on the oxygen self-diffusion rate in forsterite.

Since diffusion experiments were carried out only at two temperature conditions, the uncertainty of activation enthalpy determined in this study is thus large. By comparing the absolute values, the \(\Delta H \) under wet conditions determined in this study (370 kJ/mol) is slightly higher than those under ambient pressure and dry conditions (~270–340 kJ/mol [Andersson et al., 1989; Dohmen et al., 2002; Gérard and Jaoul, 1989; Jaoul et al., 1980; Ryerson et al., 1989]), and

Figure 4. Water contents in the samples. (a) \(C_{\text{H}_2\text{O}} \) varies from <1 up to ~800 weight ppm measured by FT-IR. The \(C_{\text{H}_2\text{O}} \) before and after diffusion are essentially the same. (b) Homogenous \(C_{\text{H}_2\text{O}} \) in the crystal. (c) Constant \(^1\text{H} \) concentration in the location where oxygen diffusion profiles were obtained. (d) A comparison of \(C_{\text{H}_2\text{O}} \) measured by FT-IR and by SIMS. The \(C_{\text{H}_2\text{O}} \) SIMS data are calculated from H/Si ratios (without calibration) near the regions where oxygen diffusion profiles were obtained. The detection limit of \(C_{\text{H}_2\text{O}} \) by SIMS is typically at the level of tens of weight ppm [Rhede and Wiedenbeck, 2006], and therefore, \(C_{\text{H}_2\text{O}} \) SIMS remains constant when less than tens of weight ppm. The sample S5045 has worse vacuum condition (~10^-6 Pa) than the others (~5×10^-7 Pa), and therefore, the \(C_{\text{H}_2\text{O}} \) SIMS for S5045 is anomalously high. Figures 4a–4c are modified from Figure S4 in our previous study [Fei et al., 2013].

Figure 5. Plot of \(D_O \) against \(C_{\text{H}_2\text{O}} \) at 8 GPa and 1600–1800 K. The \(C_{\text{H}_2\text{O}} \) data under dry conditions are below the detection limit of our FT-IR equipment, which is less than 1 weight ppm. These values of \(D_O \) are plotted at \(C_{\text{H}_2\text{O}} = 1 \) weight ppm. CC08: data points from Costa and Chakraborty [2008] corrected to 1600 K.
Table 2. Activation Energy for Oxygen Diffusion Determined in Forsterite and Natural Olivine (T: Temperature, P: Pressure, and ΔH: Activation Enthalpy)

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_{H2O} (weight ppm)</th>
<th>T (K)</th>
<th>P (GPa)</th>
<th>ΔH (kJ/mol)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forsterite Dry</td>
<td>1423–1873</td>
<td>10^{-4}</td>
<td>320 ± 40</td>
<td>300 ± 10</td>
<td>Jaoul et al. [1980]</td>
</tr>
<tr>
<td>Forsterite Dry</td>
<td>1523–1793</td>
<td>10^{-4}</td>
<td>440 ± 20</td>
<td>500 ± 10</td>
<td>Anderson et al. [1989]</td>
</tr>
<tr>
<td>Olivine Dry</td>
<td>1473–1623</td>
<td>2</td>
<td>270 ± 10</td>
<td>320 ± 20</td>
<td>Gérard and Jaoul [1989]</td>
</tr>
<tr>
<td>Olivine Dry</td>
<td>1363–1773</td>
<td>10^{-4}</td>
<td>340 ± 10</td>
<td>400 ± 20</td>
<td>Dohmen et al. [2002]</td>
</tr>
<tr>
<td>Olivine Dry</td>
<td>1373–1773</td>
<td>10^{-4}</td>
<td>430 ± 40</td>
<td>450 ± 40</td>
<td>Walker et al. [2003]</td>
</tr>
<tr>
<td>Forsterite Computational simulation</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The oxygen fugacity (f_{O2}) in the enstatite-buffered samples is relatively higher in comparison to the graphite + enstatite buffered samples. However, they show almost the same value of D_{O2}. This observation agrees with that of Jaoul et al. [1980], who suggested that D_{O2} in forsterite is independent from f_{O2}. The f_{O2} dependence for D_{O2} is found in dry iron-bearing olivine [Gérard and Jaoul, 1989; Ryerson et al., 1989] but not in forsterite (this study and Jaoul et al. [2000]), which is attributed to the oxidization of Fe^{2+} to Fe^{3+}. However, the absolute values of D_{O2} in pure forsterite (this study) are essentially the same as those in natural olivine (f_{O2}) given by Costa and Chakraborty [2008] (Figure 5), both of which were obtained with C_{H2O} at the levels of tens to hundreds of weight ppm and f_{O2} using graphite buffer (correspond to the C_{H2O} and f_{O2} conditions in the upper mantle). Therefore, the difference in D_{O2} between forsterite and natural olivine with ~10% Fe_{2}SiO_{4} component is expected to be very small under upper mantle conditions.

The water effect on D_{O2} was already found to be very small [Fei et al., 2013]. In this study, we find that water has no
meaningful effect on D_D, and therefore, we have concluded that water could not significantly affect the creep rate in olivine by assuming the diffusion-controlled deformation mechanism [Frost and Ashby, 1982; Weertman, 1999] even taking into account the contribution of oxygen diffusion to creep. This is an opposite conclusion to that inferred from olivine deformation studies [Karato et al., 1986; Karato and Jung, 2003; Mei and Kohlstedt, 2000a, 2000b]. As suggested in Fei et al. [2013], the creep rates in those deformation studies might be overestimated due to free water on grain boundaries.

We compared D_O, D_D, and D_{Me} (Mg-Fe diffusion) as a function of C_{H2O} shown in Figure 6. Under dry conditions ($C_{H2O} < 1$ weight ppm), the diffusion rates have the following relation: $D_{Mg-Fe} ≈ D_O ≫ D_D$. Hence, the plastic deformation of olivine is controlled by Si diffusion. With C_{H2O} at the level of several hundred weight ppm, which is the case for most of the upper mantle [Dixon et al., 2002; Hirschmann, 2006; Workman and Hart, 2005], $D_{Mg-Fe} ≫ D_O ≈ D_D$. Thus, the olivine deformation is mainly controlled by Si diffusion. On the other hand, oxygen diffusion may also play a role especially at high C_{H2O} conditions. If C_{H2O} is extremely high, which corresponds to the conditions in the mantle wedges or subducting slabs [Iwamori and Nakakuki, 2013; Tonegawa et al., 2008], the C_{H2O} dependence of D_O may become greater than an exponent of 1/3 due to the incorporation of H^+ in V_{O}^{2+} [Fei et al., 2013]. Though D_O may rapidly increase with increasing C_{H2O}, D_O becomes comparable with or even lower than D_D. In that case, the creep rate would be limited by oxygen diffusion.

In conclusion, water is not a significant factor that affects silicon and oxygen self-diffusion rates in forsterite/olivine. By assuming the diffusion-controlled deformation mechanism, the role of water in olivine creep is much smaller than previously considered.

Acknowledgments
Data supporting Figures 2–6 are available in the supporting information. We thank S. Chakraborty and R. Dohmen at Ruhr-University of Bochum for their help in sample coating and A. Yoneda at Okayama University for giving us the high-quality single crystal. We also appreciate the help of H. Keppler for FT-IR measurements, A. Audétat for ICP-MS analysis, and T. Boffa-Ballaran for single-crystal X-ray diffraction analysis. We thank all the technicians at BGI. Comments by Y. Zhang and the Associate Editor are helpful for improving the manuscript. This work is funded by the Deutsche Forschungsgesellschaft (KA 3434/3-1) to T. Katsura and partly by the Deutche Forschungsgesellschaft. This work is funded by the ENB (Elite Network for the Promotion of Science) to H. Fei supported by the JSPS (Japan Society for the Promotion of Science) to H. Fei (P13327) and the ENB (Elite Network Bavaria) programs.

References

Holzapfel, C., S. Chakraborty, D. C. Rubie, and D. J. Frost (2007), Effect of pressure on Fe–Mg, Ni and Mn diffusion in (Fe,Mg$_{1-x}$)$_{2}$SiO$_4$ olivine, Phys. Earth Planet. Int., 162, 186–198.

