English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Enhanced trace element mobilization by Earth’s ice sheets

Hawkings, J., Skidmore, M. L., Wadham, J. L., Priscu, J. C., Morton, P. L., Hatton, J. E., Gardner, C. B., Kohler, T. J., Stibal, M., Bagshaw, E. A., Steigmeyer, A., Barker, J., Dore, J. E., Lyons, W. B., Tranter, M., Spencer, R. G. M. (2020): Enhanced trace element mobilization by Earth’s ice sheets. - Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117, 50, 31648-31659.
https://doi.org/10.1073/pnas.2014378117

Item is

Files

show Files
hide Files
:
5004276.pdf (Postprint), 582KB
Name:
5004276.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Hawkings, Jonathan1, Author              
Skidmore, Mark L.2, Author
Wadham, Jemma L.2, Author
Priscu, John C.2, Author
Morton, Peter L.2, Author
Hatton, Jade E.2, Author
Gardner, Christopher B.2, Author
Kohler, Tyler J.2, Author
Stibal, Marek2, Author
Bagshaw, Elizabeth A.2, Author
Steigmeyer, August2, Author
Barker, Joel2, Author
Dore, John E.2, Author
Lyons, W. Berry2, Author
Tranter, Martyn2, Author
Spencer, Robert G. M.2, Author
Affiliations:
13.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_754888              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.

Details

show
hide
Language(s):
 Dates: 2020-11-232020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.2014378117
GFZPOF: p3 PT3 Earth Surface and Climate Interactions
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America (PNAS)
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 117 (50) Sequence Number: - Start / End Page: 31648 - 31659 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals410
Publisher: National Academy of Sciences (NAS)