English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Statistical upscaling of ecosystem CO2fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties

Virkkala, A., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C., Sonnentag, O., Parmentier, F. W., Ueyama, M., Celis, G., St.Louis, V. L., Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park, S., Dolman, H., Mammarella, I., Chae, N., Poyatos, R., López‐Blanco, E., Christensen, T. R., Kwon, M. J., Sachs, T., Holl, D., Luoto, M. (2021): Statistical upscaling of ecosystem CO2fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. - Global Change Biology, 27, 17, 4040-4059.
https://doi.org/10.1111/gcb.15659

Item is

Files

show Files
hide Files
:
5007301.pdf (Publisher version), 3MB
Name:
5007301.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Virkkala, Anna‐Maria1, Author
Aalto, Juha1, Author
Rogers, Brendan M.1, Author
Tagesson, Torbern1, Author
Treat, Claire C.1, Author
Natali, Susan M.1, Author
Watts, Jennifer D.1, Author
Potter, Stefano1, Author
Lehtonen, Aleksi1, Author
Mauritz, Marguerite1, Author
Schuur, Edward A. G.1, Author
Kochendorfer, John1, Author
Zona, Donatella1, Author
Oechel, Walter1, Author
Kobayashi, Hideki1, Author
Humphreys, Elyn1, Author
Goeckede, Mathias1, Author
Iwata, Hiroki1, Author
Lafleur, Peter M.1, Author
Euskirchen, Eugenie S.1, Author
Bokhorst, Stef1, AuthorMarushchak, Maija1, AuthorMartikainen, Pertti J.1, AuthorElberling, Bo1, AuthorVoigt, Carolina1, AuthorBiasi, Christina1, AuthorSonnentag, Oliver1, AuthorParmentier, Frans‐Jan W.1, AuthorUeyama, Masahito1, AuthorCelis, Gerardo1, AuthorSt.Louis, Vincent L.1, AuthorEmmerton, Craig A.1, AuthorPeichl, Matthias1, AuthorChi, Jinshu1, AuthorJärveoja, Järvi1, AuthorNilsson, Mats B.1, AuthorOberbauer, Steven F.1, AuthorTorn, Margaret S.1, AuthorPark, Sang‐Jong1, AuthorDolman, Han1, AuthorMammarella, Ivan1, AuthorChae, Namyi1, AuthorPoyatos, Rafael1, AuthorLópez‐Blanco, Efrén1, AuthorChristensen, Torben Røjle1, AuthorKwon, Min Jung1, AuthorSachs, T.2, Author              Holl, David1, AuthorLuoto, Miska1, Author more..
Affiliations:
1External Organizations, ou_persistent22              
21.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              

Content

show
hide
Free keywords: OPEN ACCESS. Arctic; CO2balance; empirical; greenhouse gas; land; permafrost; remote sensing
 Abstract: The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.

Details

show
hide
Language(s): eng - English
 Dates: 2021-06-102021
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1111/gcb.15659
GFZPOF: p4 T5 Future Landscapes
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Change Biology
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 27 (17) Sequence Number: - Start / End Page: 4040 - 4059 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals192
Publisher: Wiley