English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Seismic scattering and absorption of oceanic lithospheric S waves in the Eastern North Atlantic

Hannemann, K., Eulenfeld, T., Krüger, F., Dahm, T. (2022): Seismic scattering and absorption of oceanic lithospheric S waves in the Eastern North Atlantic. - Geophysical Journal International, 229, 2, 948-961.
https://doi.org/10.1093/gji/ggab493

Item is

Files

show Files
hide Files
:
5011431.pdf (Publisher version), 8MB
Name:
5011431.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Hannemann, K.1, Author
Eulenfeld, T.1, Author
Krüger, F.1, Author
Dahm, T.2, Author              
Affiliations:
1External Organizations, ou_persistent22              
22.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146029              

Content

show
hide
Free keywords: Body waves, Seismic attenuation, Wave scattering and diffraction
 Abstract: The scattering and absorption of high-frequency seismic waves in the oceanic lithosphere is to date only poorly constrained by observations. Such estimates would not only improve our understanding of the propagation of seismic waves, but also unravel the small-scale nature of the lithosphere and its variability. Our study benefits from two exceptional situations: (1) we deployed over 10 months a mid-aperture seismological array in the central part of the Eastern North Atlantic in 5 km water depth and (2) we could observe in total 340 high-frequency (up to 30 Hz) Po and So arrivals with tens to hundreds of seconds long seismic coda from local and regional earthquakes in a wide range of backazimuths and epicentral distances up to 850 km with a travel path in the oceanic lithosphere. Moreover, the array was located about 100 km north of the Gloria fault, defining the plate boundary between the Eurasian and African plates at this location which also allows an investigation of the influence of an abrupt change in lithospheric age (20 Ma in this case) on seismic waves. The waves travel with velocities indicating upper-mantle material. We use So waves and their coda of pre-selected earthquakes to estimate frequency-dependent seismic scattering and intrinsic attenuation parameters. The estimated scattering attenuation coefficients are between 10−4 and 4 × 10−5 m−1 and are typical for the lithosphere or the upper mantle. Furthermore, the total quality factors for So waves below 5 Hz are between 20 and 500 and are well below estimates from previous modelling for observations in the Pacific Ocean. This implies that the Atlantic Ocean is more attenuative for So waves compared to the Pacific Ocean, which is inline with the expected behaviour for the lithospheric structures resulting from the slower spreading rates in the Atlantic Ocean. The results for the analysed events indicate that for frequencies above 3 Hz, intrinsic attenuation is equal to or slightly stronger than scattering attenuation and that the So-wave coda is weakly influenced by the oceanic crust. Both observations are in agreement with the proposed propagation mechanism of scattering in the oceanic mantle lithosphere. Furthermore, we observe an age dependence which shows that an increase in lithospheric age is associated with a decrease in attenuation. However, we also observe a trade-off of this age-dependent effect with either a change in lithospheric thickness or thermal variations, for example due to small-scale upwellings in the upper mantle in the southeast close to Madeira and the Canaries. Moreover, the influence of the nearby Gloria fault is visible in a reduction of the intrinsic attenuation below 3 Hz for estimates across the fault. This is the first study to estimate seismic scattering and absorption parameters of So waves for an area with several hundreds of kilometres radius centred in the Eastern North Atlantic and using them to characterize the nature of the oceanic lithosphere.

Details

show
hide
Language(s):
 Dates: 2021-12-042022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1093/gji/ggab493
GFZPOF: p4 T3 Restless Earth
OATYPE: Green Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Journal International
Source Genre: Journal, SCI, Scopus, ab 2024 OA-Gold
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 229 (2) Sequence Number: - Start / End Page: 948 - 961 Identifier: ISSN: 0956-540X
ISSN: 1365-246X
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals180
Publisher: Oxford University Press