English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Multi-GNSS PPP solutions with different system-specific clock modeling

Sośnica, K., Mikoś, M., Kazmierski, K. (2023): Multi-GNSS PPP solutions with different system-specific clock modeling, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1108

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sośnica, Krzysztof1, Author
Mikoś, Marcin1, Author
Kazmierski, Kamil1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Multi-GNSS solutions require handling differences in the system-specific biases. One option of the multi-GNSS Precise Point Positioning (PPP) solutions is to calculate a master clock parameter per epoch for GPS with inter-system biases for Galileo, GLONASS, and BeiDou. The other option is to calculate system-specific epoch-wise clock parameters for each GNSS system, however, this option increases the number of estimated parameters almost by a factor of four. In this study, we compare two different approaches to the clock parameter handling for GNSS stations connected to the different clocks: hydrogen masers, cesium, rubidium, and crystal oscillator clocks. We assess how different handling affects the estimated station coordinates in the long-term multi-GNSS PPP solutions for different clocks. Satellite clock products contain discontinuities at the day boundaries. Therefore, the calculated receiver clocks also contain jumps. We assess the impact of estimating inter-system biases as monthly and daily parameters with resetting at day boundaries, as well as resetting the clock parameters and the removal of all off-diagonal elements in the covariance matrix at the day boundaries. We evaluate the impact of neglecting the clock jumps and bias jumps on the estimated station coordinates. We compare the solution with resetting only the master clock parameter with the solution in which the clock parameters and biases are reinitialized at each day. Finally, we compare the results of multi-GNSS time transfer between the solutions using system-specific clock estimates and common clock parameters based on one master clock and inter-system biases.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1108
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -