Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Rapid multispectral data sampling using Google Earth Engine

Brooke, S. A., D'Arcy, M., Mason, P. J., Whittaker, A. C. (2020): Rapid multispectral data sampling using Google Earth Engine. - Computers and Geosciences, 135, 104366.
https://doi.org/10.1016/j.cageo.2019.104366

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Brooke, Sam A.S.1, Autor
D'Arcy, Mitch2, Autor              
Mason, Philippa J.1, Autor
Whittaker, Alexander C.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
24.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146045              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The advent of cloud-based GIS tools has enabled the rapid exploration and processing of geospatial datasets. The Google Earth Engine (GEE) platform provides a library of algorithms and a powerful application programming interface (API) to produce flexible cloud-based applications that leverage Google’s computing infrastructure for geospatial analysis. We introduce ”Spectral Point”, a new GUI tool developed in GEE that allows users to explore, process and extract multispectral data rapidly within a single browser window. The ability to access and measure spectral signals from surface deposits using the entire available Landsat and Sentinel 2 archive is of tremendous benefit to geomorphic research, removing the need to download and process terabytes worth of imagery. Spectral values from composite imagery collected in GEE that relate to changes in surface mineral composition agree with corresponding point values using conventional desktop Landsat processing. The ”Spectral Point” tool makes it fast and simple to extract quantitative, contrast-corrected brightness data from multispectral imagery compared conventional desktop-based approaches. At the same time, the user needs no experience developing code, proprietary third-party software or dedicated high-performance computing and only a modern web browser. The ”Spectral Point” tool has many potential applications in the remote study of Earth’s surface; for example, we explore a case study from the western United States that demonstrates how the tool can be used for mapping, geochronology, and estimating weathering rates for Quaternary landforms. With increasing numbers of satellites, we are now faced with a growing deluge of geospatial data. Cloud-based solutions to mapping, field reconnaissance and image processing will be increasingly necessary to handle this valuable but untapped satellite image resource. ”Spectral Point” is an example of a new generation of web-based remote sensing tools available for Earth scientists, leveraging the revolution in cloud-based processing power and access to entire satellite image archives.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.cageo.2019.104366
GFZPOF: p3 PT3 Earth Surface and Climate Interactions
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Computers and Geosciences
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 135 Artikelnummer: 104366 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals86
Publisher: Elsevier