English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Deep Clustering of Tremor Episodes Can Reveal Different Eruptive Periods during the 2021 Fagradalsfjall Eruption, Iceland

Zali, Z., Eibl, E. P. S., Ohrnberger, M., Cotton, F., Mousavi, S. M., Scherbaum, F. (2022): Deep Clustering of Tremor Episodes Can Reveal Different Eruptive Periods during the 2021 Fagradalsfjall Eruption, Iceland - Abstracts, AGU Fall Meeting 2022 (Chicago, IL, USA 2022).

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Zali, Zahra1, Author              
Eibl, Eva P. S.2, Author
Ohrnberger, Matthias2, Author
Cotton, Fabrice1, Author              
Mousavi, S. Mostafa2, Author
Scherbaum, Frank2, Author
Affiliations:
12.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146032              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Analyzing large seismic datasets and extracting information is becoming more challenging with the continuously growing amount of seismic records. Machine learning (ML) techniques have been utilized as powerful statistical tools for efficient seismic processing. Among other applications, ML algorithms allow the clustering of seismic data in order to reveal different patterns in the data or to identify types of signals for further analysis. The dominant uses of clustering algorithms in seismology have been in the realm of transient earthquake signal analysis. Clustering long lasting signals like volcanic tremors is however another appealing problem that could benefit from ML techniques albeit being slightly more complicated due to their high variability in signal properties such as time duration and time-frequency content. Here we use deep clustering (combination of deep learning and clustering) in order to cluster lava fountaining episodes which are recorded as tremor episodes in the seismic waveform between 2 May and 14 June 2021 during the Fagradalsfjall eruption in Iceland. Using an autoencoder, our model simultaneously learns feature representations and assigns clusters to them. The tremor episodes show systematic changes during the eruptive periods of Fagradalsfjall eruption consisting of distinct patterns with changing tremor duration, repose time and corresponding amplitude. The relation between tremor duration and repose time and their regular changes can indicate special volcanic activity stages containing starting, evolving, and stabilizing sequences. Unsupervised deep learning techniques help to automatically identify patterns in the data, find similar/dissimilar pulses, and lead to a better understanding of the subsurface processes and eruptive activities. The primary investigation on tremor pulses clustering is promising while further analysis is ongoing.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: GFZPOF: p4 T3 Restless Earth
 Degree: -

Event

show
hide
Title: AGU Fall Meeting 2022
Place of Event: Chicago, IL, USA
Start-/End Date: 2022-12-12 - 2022-12-16
Invited: Yes

Legal Case

show

Project information

show

Source 1

show
hide
Title: Abstracts
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -