English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cold atom interferometry accelerometry for future low-low satellite-to-satellite tracking and cross-track gradiometry satellite gravity missions

Knabe, A., Schilling, M., HosseiniArani, A., Romeshkani, M., Müller, J., Beaufils, Q., Pereira dos Santos, F. (2023): Cold atom interferometry accelerometry for future low-low satellite-to-satellite tracking and cross-track gradiometry satellite gravity missions, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1438

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Knabe, Annike1, Author
Schilling, Manuel1, Author
HosseiniArani, Alireza1, Author
Romeshkani, Mohsen1, Author
Müller, Jürgen1, Author
Beaufils, Quentin1, Author
Pereira dos Santos, Franck1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Satellite gravity missions give unprecedented insights in the Earth system. However, a further improvement in spatial and temporal resolution is required to better monitor the various geo-processes. When considering the sensors of satellite missions, the accelerometers are the limiting factors. Cold Atom Interferometry (CAI) accelerometers are characterized by their long-term stability and an accurate knowledge of the scale factor. Closed-loop simulations are performed in order to quantify the influence of different accelerometer performances on the gravity field recovery. The impact of the scale factor knowledge on the acceleration measurement is evaluated in terms of a requirement based on the non-gravitational acceleration signal and the accelerometer noise. Furthermore, the variation of the non-gravitational acceleration signal within one interferometer cycle is studied. It is demonstrated that both aspects are significant. The impact on the acceleration measurements can be reduced to an acceptable level by drag compensation. Moreover, the addition of a CAI cross-track gradiometer to a low-low Satellite-to-Satellite Tracking mission is investigated, as supplemental observations in east-west direction are provided. This combination enhances the estimation of the high-degree coefficients and reduces the striping effects in north-south direction. We acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 434617780 – SFB 1464 and under Germany’s Excellence Strategy – EXC-2123 Quantum-Frontiers – 390837967 and the support by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) for the projects Q-BAGS and QUANTGRAV.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1438
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -