English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Geodetic GNSS observations disclose the response of the solid Earth to changing ice masses in Dronning Maud Land, East Antarctica

Buchta, E., Scheinert, M., Willen, M., Kappelsberger, M., Eberlein, L., Schröter, B., Knöfel, C., Horwath, M. (2023): Geodetic GNSS observations disclose the response of the solid Earth to changing ice masses in Dronning Maud Land, East Antarctica, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3435

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Buchta, Eric1, Author
Scheinert, Mirko1, Author
Willen, Matthias1, Author
Kappelsberger, Maria1, Author
Eberlein, Lutz1, Author
Schröter, Benjamin1, Author
Knöfel, Christoph1, Author
Horwath, Martin1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Geodetic GNSS measurements on bedrock allow to determine secular trends of solid Earth deformation and, therefore, provide valuable constraints for modelling glacial-isostatic adjustment (GIA). There is a high discrepancy in GIA model predictions of vertical displacement rates in Antarctica regarding their spatial pattern and magnitude. While in West Antarctica, in the Antarctic Peninsula and in parts of Victoria Land a comparably large number of GNSS stations exists, East Antarctica exhibits big gaps in the GNSS coverage. The sparsity of bedrock outcrops and the difficult accessibility and logistics are reasons for this.In order to improve the spatial coverage we established a GNSS network in western and central Dronning Maud Land, East Antarctica, with first observations carried out already in the mid-1990ies and a latest observation campaign realized in the Antarctic season 2022/2023. Here we present results of a consistent processing of all episodic and permanent GNSS measurements in that region. We discuss how the long time basis of more than 20 years helps to improve the accuracy of the secular trend inferred from the GNSS time series. We remove the elastic deformation due to present-day ice-mass changes utilizing satellite altimetry observations and surface mass balance models. We discuss our resulting trends in comparison to existing GIA models in a region sparsely covered by GNSS prior to this study.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3435
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -