English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Oxygen diffusion in garnet: Experimental calibration and implications for timescales of metamorphic processes and retention of primary O isotopic signatures

Scicchitano, M. R., Jollands, M. C., Williams, I. S., Hermann, J., Rubatto, D., Kita, N. T., Nachlas, W. O., Valley, J. W., Escrig, S., Meibom, A. (2022): Oxygen diffusion in garnet: Experimental calibration and implications for timescales of metamorphic processes and retention of primary O isotopic signatures. - American Mineralogist, 107, 7, 1425-1441.
https://doi.org/10.2138/am-2022-7970

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Scicchitano, Maria Rosa1, Author              
Jollands, Michael C.2, Author
Williams, Ian S.2, Author
Hermann, Jörg2, Author
Rubatto, Daniela2, Author
Kita, Noriko T.2, Author
Nachlas, William O.2, Author
Valley, John W.2, Author
Escrig, Stéphane2, Author
Meibom, Anders2, Author
Affiliations:
13.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Oxygen isotopes, diffusion, piston-cylinder experiments, gas mixing furnace, garnet, SIMS
 Abstract: Knowledge of oxygen diffusion in garnet is crucial for a correct interpretation of oxygen isotope signatures in natural samples. A series of experiments was undertaken to determine the diffusivity of oxygen in garnet, which remains poorly constrained. The first suite included high-pressure (HP), nominally dry experiments performed in piston-cylinder apparatus at: (1) T = 1050–1600 °C and P = 1.5 GPa and (2) T = 1500 °C and P = 2.5 GPa using yttrium aluminum garnet (YAG; Y3Al5O12) cubes. Second, HP H2O-saturated experiments were conducted at T = 900 °C and P = 1.0–1.5 GPa, wherein YAG crystals were packed into a YAG + Corundum powder, along with 18O-enriched H2O. Third, 1 atm experiments with YAG cubes were performed in a gas-mixing furnace at T = 1500–1600 °C under Ar flux. Finally, an experiment at T = 900 °C and P = 1.0 GPa was done using a pyrope cube embedded into pyrope powder and 18O-enriched H2O. Experiments using grossular were not successful. Profiles of 18O/(18O+16O) in the experimental charges were analyzed with three different secondary ion mass spectrometers (SIMS): sensitive high-resolution ion microprobe (SHRIMP II and SI), CAMECA IMS-1280, and NanoSIMS. Considering only the measured length of 18O diffusion profiles, similar results were obtained for YAG and pyrope annealed at 900 °C, suggesting limited effects of chemical composition on oxygen diffusivity. However, in both garnet types, several profiles deviate from the error function geometry, suggesting that the behavior of O in garnet cannot be fully described as simple concentration-independent diffusion, certainly in YAG and likely in natural pyrope as well. The experimental results are better described by invoking O diffusion via two distinct pathways with an inter-site reaction allowing O to move between these pathways. Modeling this process yields two diffusion coefficients (D values) for O, one of which is approximately two orders of magnitude higher than the other. Taken together, Arrhenius relationships are: logDm2s−1=−7.2(±1.3)+(−321(±32)kJmol−12.303RT) for the slow pathway, and logDm2s−1=−5.4(±0.7)+(−321(±20)kJmol−12.303RT) for the fast pathway. We interpret the two pathways as representing diffusion following vacancy and inter-stitial mechanisms, respectively. Regardless, our new data suggest that the slow mechanism is prevalent in garnet with natural compositions, and thus is likely to control the retentivity of oxygen isotopic signatures in natural samples. The diffusivity of oxygen is similar to Fe-Mn diffusivity in garnet at 1000–1100 °C and Ca diffusivity at 850 °C. However, the activation energy for O diffusion is larger, leading to lower diffusivities at P-T conditions characterizing crustal metamorphism. Therefore, original O isotopic signatures can be retained in garnets showing major element zoning partially re-equilibrated by diffusion, with the uncertainty caveat of extrapolating the experimental data to lower temperature conditions.

Details

show
hide
Language(s): eng - English
 Dates: 2022-07-012022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.2138/am-2022-7970
GFZPOF: p4 T3 Restless Earth
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: American Mineralogist
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 107 (7) Sequence Number: - Start / End Page: 1425 - 1441 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals22
Publisher: Mineralogical Society of America (MSA)