English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Sulfur Isotope Constraints on the Conditions of Pyrite Formation in the Paleoproterozoic Urquhart Shale Formation and George Fisher Zn-Pb-Ag Deposit, Northern Australia

Rieger, P., Magnall, J. M., Gleeson, S. A., Lilly, R., Rocholl, A., Kusebauch, C. (2020): Sulfur Isotope Constraints on the Conditions of Pyrite Formation in the Paleoproterozoic Urquhart Shale Formation and George Fisher Zn-Pb-Ag Deposit, Northern Australia. - Economic Geology, 115, 5, 1003-1020.
https://doi.org/10.5382/econgeo.4726

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Rieger, Philip1, 2, Author              
Magnall, Joseph Michael1, 2, Author              
Gleeson, S. A.1, 2, Author              
Lilly, Richard2, 3, Author
Rocholl, A.1, 2, Author              
Kusebauch, C.1, 2, Author              
Affiliations:
13.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              
2GFZ SIMS Publications, Deutsches GeoForschungsZentrum, Potsdam, ou_1692888              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The Carpentaria province (McArthur basin and Mount Isa inlier) in northern Australia is one of the most important districts for clastic-dominated (CD-type) massive sulfide deposits. The George Fisher Zn-Pb-Ag deposit, located in this province, is hosted by the carbonaceous Urquhart Shale Formation (ca. 1654 Ma) in a region that has an active history of metamorphism and tectonism. In this study, paragenetically constrained pyrite in samples from the George Fisher deposit and unmineralized Urquhart Shale have been analyzed in situ using secondary ion mass spectrometry (SIMS) of sulfur isotopes (δ34S values). Samples were taken from four drill cores through the main orebodies at George Fisher and one drill core through correlative, unmineralized Urquhart Shale (Shovel Flats area). Five generations of pyrite were identified at George Fisher and record a protracted history of sulfate reduction under diagenetic and subsequent hydrothermal conditions: (1) fine-grained, subhedral-spheroidal pyrite (Py-0), (2) coarse-grained, anhedral pyrite (Py-1) associated with ore-stage 1 sphalerite and galena, (3) coarse-grained, euhedral pyrite (Py-2) associated with ore-stage 2 sphalerite, galena, and pyrrhotite, (4) massive subhedral to euhedral pyrite (Py-3) associated with ore-stage 3 chalcopyrite, pyrrhotite, galena, and sphalerite, and (5) coarse-grained euhedral pyrite (Py-euh), which occurs only in unmineralized rocks. In the unmineralized Shovel Flats drill core, only Py-0 and Py-euh are present. Whereas pre-ore pyrite (Py-0) preserves negative δ34S values (–8.1 to 11.8‰), the ore-stage pyrites (Py-1, Py-2, and Py-3) have higher δ34S values (7.8–33.3, 1.9–12.7, and 23.4–28.2‰, respectively). The highest δ34S values (7.2–33.9‰) are preserved in Py-euh. In combination with petrographic observations, the δ34S values of pyrite provide evidence of three different processes responsible for the reduction of sulfate at George Fisher. Reduced sulfur in fine-grained pyrite (Py-0) formed via microbial sulfate reduction (MSR) under open-system conditions prior to the first generation of hydrothermal pyrite (Py-1) in ore-stage 1, which most likely formed via thermochemical sulfate reduction (TSR). During deformation, previously formed sulfide phases were then recycled and replaced during a second hydrothermal event (ore-stage 2), resulting in intermediate sulfur isotope values. Another syndeformational hydrothermal Cu event, involving a sulfate-bearing fluid, formed ore-stage 3 via TSR. This study demonstrates that the fine-grained pyrite formed pre-ore under conditions open to sulfate and outlines the role of multiple stages of sulfide formation in producing high-grade Zn-Pb-Ag orebodies in the Mount Isa inlier.

Details

show
hide
Language(s): eng - English
 Dates: 2020-01-212020-04-202020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5382/econgeo.4726
GFZPOF: p3 PT5 Georesources
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Economic Geology
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: Colorado : Society of Economic Geologists
Pages: - Volume / Issue: 115 (5) Sequence Number: - Start / End Page: 1003 - 1020 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals110
Publisher: Society of Economic Geologists (SEG)