English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Baroclinically triggered formation of a tropical storm in the western North Pacific

Yanase, W., Shimada, U., Kitabatake, N., Tochimoto, E. (2023): Baroclinically triggered formation of a tropical storm in the western North Pacific, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0785

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Yanase, Wataru1, Author
Shimada, Udai1, Author
Kitabatake, Naoko1, Author
Tochimoto, Eigo1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: There are multiple types of synoptic-scale cyclones over the globe including tropical, subtropical, and extratropical cyclones. As the atmosphere is a continuum, cyclones can form as one type and then evolve to another; for example, it is well known that tropical cyclones change into extratropical cyclones at the midlatitudes (extratropical transition). The working group on “phase transitions” in the 10th WMO International Workshop on Tropical Cyclones (IWTC-10) in 2022 focused not only on extratropical transition but also on other types of transitions comprehensively. Tropical transition (TT) is a phase transition in which subtropical or extratropical cyclones change into tropical cyclones. While many studies have reported TT cases in the North Atlantic, TT is considered to be a universal process. We demonstrate a TT case in the western North Pacific based on observations and simulations. Tropical Storm Kirogi formed through baroclinic processes at relatively high latitude in August 2012. Initially, Kirogi had an asymmetric cloud pattern owing to frontogenesis in an environment with enhanced baroclinicity during this period. It also had a shallow warm core under the influence of an upper cold disturbance, and was classified as a subtropical cyclone based on the cyclone phase space analysis. Then, warm and moist air in the lower troposphere and cold air in the upper troposphere became isolated from the environment and wrapped up around the cyclone center, which were similar to occluding extratropical cyclones. Finally, Kirogi became a symmetric and deep warm-core cyclone. Similar evolution was also found in an idealized experiment.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-0785
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -